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CONSTRUCTING REAL PRIME DIVISORS USING 
NASH ARCS 

ROBERT ROBSON 

Dedicated to the memory of Gus Efroymson 

Let A = R[x^ ..., xn] be the affine coordinate ring of a variety V 
defined over the real closed field R. We denote the closed real points of 
F b y Z c Rn and the simple points of X by X0 c X. A geometric preorder 
P on the function field K—R(xi9 . . . , xn) is a preorder corresponding to 
an (open) semialgebraic subset of X0—in other words, there is an open 
semialgebraic set U a X0 such t h a t / e A f| P precisely if/ ^ 0 on [/. 

Fix a geometric order P on K. If B a K is any subring and / c B is 
an ideal, we say that / is convex if / e / whenever 0 g / g g and g e / . 
Here " / ^ g" means g — f e P. A valuation ring (B, ^) c K is said to 
be a real prime divisor if there is a domain C c J [ o f finite type over R 
and a minimal convex prime/ c C such that 5 is the localization C ( / ). 
The theorem motivating this work is the following. 

THEOREM Let /• a A be a convex prime. Then there is a real prime 
divisor (B, ™) c K with ™ fl A = /*. 

Set r = tr.deg. #^. In order to prove this theorem we construct (r — 1) 
functions £l5 . . . , £r_! e Â  and a total order Q c Kcontaining: 

(A)P, 
(B) /*2(f1?.. .,fr_i) - C\ for every non-zero polynomial heR[Tl9.. .,Tr] 

(pure polynomial ring) and some constants Che A ~ / depending on 
A, and 

(C) g2 - Ph\Z i, . . -, £r-i) for every A e *[7\ , . . . , 7 U ] , g e ^ - / , 
a n d / 6 / * . 

Once we know that such an order exists, it is a routine matter to show 
that the convex hull of the ring i4(/0[£l9 . . . , fr_J c= K in the order g is 
our desired real prime divisor. Thus the hard part is defining £l9 . . . , £r_! 
and proving the existence of Q. 

Once the £,. are defined, g exists providing that given any finite col­
lection of inequalities from (A), (B), and (C) we may find a point pe U 
at which all the inequalities are fulfilled. Our definition of the £,- uses 
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power series associated to nash arcs contained in U ending in X(/), the 
real zeroes of / . An example followed by a few general remarks will best 
serve to illustrate our methods and results. 

Let A = R[X, Y, Z] (so X0 = X = R3) and let U be defined by the 
following inequalities : Y2 < ZX < Y2 + F3, so P is generated by 
ZR(X, Y, Z)2, ZX - Y2, and Y2 + Y3 - ZZ. Let / = <JT, 7>, so 
AX/0 is the Z-axis. Given any a, z e R with z > 2, the power series 

X(t) = t2 

(i) r ( 0 = VT" t - t2 + A/3 

Z(0 = z 

define a nash arc y(z a){t) lying in U for small positive / with fu,a)(^) = 
z G *(/*). Let & = Z and & = (l/JOCO/*)«*'2/*) - z)2 - 4zj*. Then 
f i W O , *W, Z(0)=16z(2flV^ + 0 2 + higher order terms. 

Now, if h(Tl9 T2) is given, then either heR[T2]9 in which case we set 
Ch = (1/2)A(Z), or h $ R[T2l in which case Ch = 1. Given finitely many 
non-zero hß;gMeA ~ / , and/^ G / , we find a point (z0, 0, 0) G X(/*) such 
that all hß(7\, z0) G i?[ j y are non-constant and all ^(ZQ, 0, 0) are non­
zero. The power series A^f i(Ar(0, F(0, Z 0 X f2W0> ^(0 , Z(0)) have first 
terms /^(16 z0(2a <\/z~0+1)2, z0). These are non-constant polynomials in a, 
so we may find a0eR such that they are all greater than 2. Since gM(z) ^ 0 
and fM(z) = 0 for all ju, we may find a small positive t such that (A), (B), 
(C) are satisfied at the point 7"(zo,co)(0-

We now summarize the steps of our general procedure, most of which 
were illustrated by our example. 

STEP 1 {Not in example). Let r = tr.deg. RK. Construct a finite algebraic 
projection %\ X-> Rr with %{X(/)) contained in E = {(pl9 ...,pr)e 
Rr\pi = • • • = ps = 0}, where s = codim / . Shrink U so that AT1 is 
nash on 7u(U) but n(U) contains an open semialgebraic subset of E. 
This reduces to the "smooth" case as in the example. 

STEP 2. Choose a nash wing in %(U) ending in E. This wing has coef­
ficients which are nash functions of ps+i, • • • > Ps- The existence of this 
wing follows from a nash curve selection lemma and from the character­
ization of the real closure of a function field K with respect to a total 
order Q as the ring of germs of nash functions on a model of K with 
respect to the directed set of open subsets of the ultrafilter of semi-
algebraic sets corresponding to Q. 

STEP 3. Observe that the power series associated to this wing may be 
truncated and that arbitrary m-th terms may be added for some m. 

STEP 4. Using the fact that the nash function coefficients satisfy poly-
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nomials over R, construct £1? . . . , £r_x as rational functions whose power 
series start with constant terms which are non-trivial polynomials in the 
coefficients of the m-th terms. 

STEP 5. Apply an argument similar to that in the example to find an 
appropriate (0, . . . , 0, ps+l9 . . . , pr) e E, together with coefficients for the 
m-th terms, so that finitely many pre-assigned inequalities from (A), (B), 
and (C) are satisfied at %~l{y{t)) for the associated power series y{t) and 
some small positive t. 

We remark that the nash theory we use is valid over any real closed 
field—Cantor or not—and that the nash wing selection lemma we prove 
is a nice generalization of the classical curve selection lemma. We state 
this result as follows, although we really prove a more useful parametrized 
version. We do not investigate questions pertaining to differentiability of 
the wing at its boundary. 

NASH WING SELECTION. Let Z <=. Rnbe a semialgebraic set. let F c Rn 

be a non-empty irreducible algebraic set of dimension d with Z f| F 
Zariski-dense in F. Then there are an open semialgebraic subset H cz Rd, 
a non-empty interval (0, e) cz R, and a semialgebraic injection œ: H x 
[0, co) -* Rn such that 

(i) o)(H x {t}) c Z ifO < t < e, 
(ii) Û)(H x {0}) c F is an open semialgebraic subset of F, and 

(iii) œ is a nash isomorphism on H x (0, e) — i.e., œ is nash with nash 
inverse on its image. 
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