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Let 4 = R[xy, ..., Xx,] be the affine coordinate ring of a variety V
defined over the real closed field R. We denote the closed real points of
Vby X = R»and the simple points of X by X; = X. A geometric preorder
P on the function field K= R(x, ..., x,) is a preorder corresponding to
an (open) semialgebraic subset of Xy—in other words, there is an open
semialgebraic set U = X, such that fe A (| P precisely if f = 0 on U.

Fix a geometric order P on K. If B = K is any subring and I < B is
an ideal, we say that I is convex if fe€ I whenever 0 < f < gand g€l
Here “f < g” means g — f € P. A valuation ring (B, ») = K is said to
be a real prime divisor if there is a domain C < K of finite type over R
and a minimal convex prime ; < C such that B is the localization C,.
The theorem motivating this work is the following.

THEOREM Let s <= A be a convex prime. Then there is a real prime
divisor (B, =) = K with=m (| A = 4.

Set r = tr.deg. xK. In order to prove this theorem we construct (r — 1)
functions &, ..., &_; € K and a total order Q = K containing:

(A) P,

(B) h%(&q,. . .,&,_;) — Cifor every non-zero polynomial A€ R[TY, ..., T,]
(pure polynomial ring) and some constants C,€ 4 ~ ~ depending on
h, and

(C) g2 — f2h2(&y, ..., &) for every he R[Ty, ..., T, 4], g€ A ~ 4,
and fe 4.

Once we know that such an order exists, it is a routine matter to show
that the convex hull of the ring 4 ,[&}, .. ., &—-1] = K in the order Q is
our desired real prime divisor. Thus the hard part is defining &, ..., &3
and proving the existence of Q.

Once the &; are defined, Q exists providing that given any finite col-
lection of inequalities from (A), (B), and (C) we may find a point p e U
at which all the inequalities are fulfilled. Our definition of the &; uses
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power series associated to nash arcs contained in U ending in X( ), the
real zeroes of 4. An example followed by a few general remarks will best
serve to illustrate our methods and results.

Let A = R[X, Y, Z] (so Xy = X = R3) and let U be defined by the
following inequalities: Y2 < ZX < Y2 4+ Y3,s0 P is generated by
YR(X, Y, Z)2, ZX — Y2, and Y2 + Y3 — ZX. Let s = (X, Y), so
X( ) is the Z-axis. Given any a, z € R with z > 2, the power series

X(@) = t2
) Yt)= sz t —t2 + at3
Z(t) =z

define a nash arc 7, ,(¢) lying in U for small positive ¢ with (, ,(0) =
z€ X(4). Let & = Z and & = (1/X)((1/X)(Y?/X) — 2)? — 4z)*. Then
E(X(@), Y1), Z(t))=16z(2a4/z + 1)2 + higher order terms.

Now, if A(Ty, T5) is given, then either he R[T,], in which case we set
C, = (1/2)K(Z), or h ¢ R[T,), in which case C, = 1. Given finitely many
non-zero h,; g,€ A ~ 4,and f, € 4, we find a point (z, 0, 0) € X( #) such
that all 4,(T, z) € R[T;] are non-constant and all g,(zy, 0, 0) are non-
zero. The power series h,(£,(X(2), Y(¢), Z(1), &(X(2), Y(¢t), Z(1))) have first
terms A,(16 zy(2a4/zy+ 1)?, zp). These are non-constant polynomials in a,
so we may find a, € R such that they are all greater than 2. Since g,(z) # 0
and f,(z) = 0 for all 4, we may find a small positive ¢ such that (A), (B),
(C) are satisfied at the point 7 ,,(?).

We now summarize the steps of our general procedure, most of which
were illustrated by our example.

Step 1 (Not in example). Let r = tr.deg. zK. Construct a finite algebraic
projection z: X — Rr with #(X(4)) contained in E = {(p;, ...,p,) €
Rr|py = +++ = p, = 0}, where s = codim 4. Shrink U so that 71 is
nash on z(U) but Z(U) contains an open semialgebraic subset of E.
This reduces to the “smooth’ case as in the example.

SteP 2. Choose a nash wing in z(U) ending in E. This wing has coef-
ficients which are nash functions of p,.;, ..., p,. The existence of this
wing follows from a nash curve selection lemma and from the character-
ization of the real closure of a function field K with respect to a total
order Q as the ring of germs of nash functions on a model of K with
respect to the directed set of open subsets of the ultrafilter of semi-
algebraic sets corresponding to Q.

SteP 3. Observe that the power series associated to this wing may be
truncated and that arbitrary m-th terms may be added for some m.

StEP 4. Using the fact that the nash function coefficients satisfy poly-
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nomials over R, construct &y, ..., & as rational functions whose power
series start with constant terms which are non-trivial polynomials in the
coefficients of the m-th terms.

STep 5. Apply an argument similar to that in the example to find an
appropriate (0, ..., 0, p,1q, - .., p,) € E, together with coefficients for the
m-th terms, so that finitely many pre-assigned inequalities from (A), (B),
and (C) are satisfied at z=1(y(t)) for the associated power series 7(t) and
some small positive ¢.

We remark that the nash theory we use is valid over any real closed
field—Cantor or not—and that the nash wing selection lemma we prove
is a nice generalization of the classical curve selection lemma. We state
this result as follows, although we really prove a more useful parametrized
version. We do not investigate questions pertaining to differentiability of
the wing at its boundary.

NASH WING SELECTION. Let Z = R” be a semialgebraic set. Iet F = R»
be a non-empty irreducible algebraic set of dimension d with Z (| F
Zariski-dense in F. Then there are an open semialgebraic subset H = R9,
a non-empty interval (0, &) = R, and a semialgebraic injection w: H x
[0, w) — R* such that

DowHx {t}) cZif0<t<e,

(ii) (H x {0}) = F is an open semialgebraic subset of F, and

(ili) w is a nash isomorphism on H x (0, ¢) — i.e., w is nash with nash
inverse on its image.
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