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Let (K, <) be an ordered field, contained in a real closed order-extension
field R. Let X = (X3, ..., X,) be indeterminates and let x = (xy, ..., x,) €
R». A set A = R*is called semi-algebraic (abbreviated s.a.: more precisely,
K-R-s.a.) if it is a finite union of finite intersections of sets (and of com-
plements of sets) of the form {x € R"| f(x) > 0}, fe K[X]. Similarly for
subsets of Rm, m # n.If A € R*and B = R™ are s.a., and if L is a subfield
of R, then a function f: A — B will be called an L-function if f takes points
of A with coordinates in L (“L-rational points’) to points of B with
coordinates in L; i.e., if f(4 (| L") < Lm.

DEeFINITION. We shall call a function = (fy, ..., f,,), from a (K-R-) s.a.
set A in R*to a (K-R-) s.a. set in R™, (K-R-) piecewise-rational, abbreviated
(K-R-) p.r., if we can decompose A into a finite number of (K-R-) s.a.
sets W;, A = U,~W,~, such that for each i and for 1 £ j < m, there is a
rational function in K(X) which agrees with f; on W,..

The absolute value function x — |x| is a good example of a (continuous)
Q-R-p.r. function from R! to R!. Of course, all rational functions are also
p.r. Clearly, K-R-p.r. functions are L-functions, uniformly for all fields
L between K and R (i.e., for K < L € R).

DEFINITION. A K-R-s.a. set S is a K-R-p.r.-neighborhood-retract if
there exists an open K-R-s.a. neighborhood U 2 S and a retraction r:
U — S which is K-R-p.r.

We may as well require U to be regular (i.e., equal to the interior of
its closure), since we can shrink it if necessary until it is regular, by
triangulating U and S and subdividing.

Recall that an ordered field K is called Archimedean (over Q) if for
all d € K there exists e € Q such that d < e (e.g., Q and R are Archime-
dean). We can now state the main theorem.

RETRACTION THEOREM. Let K be Archimedean. Let W < R” be a closed,
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convex K-R-s.a. set with interior. Then W is a K-R-p.r.-neighborhood-
retract.

The full proof of the retraction theorem is too long for this note; instead,
we shall consider only the following special case. For x € R#, write || x| =
2+ -+ + x)HV2, and for f e K[X] write Vf = (9f/oxy, ..., 9f]0x,),
the gradient of f. Fix fe K[X], and let W = {x € R*|f(x) = 0}, and
assume furthermore that W # @& and that there exists an » > 0 such
that for all x € 9W, |Vf(x)|? > 9. Then even though such a ¥ need not
satisfy the convexity hypothesis of the retraction theorem, we still claim
that W is a p.r.-neighborhood-retract. The partial proof we now give will
illustrate the main idea of the proof of the full retraction theorem. This
idea is that the retraction r: U — W should “push into W in the direction
of the gradient of f.”

X if xe W,
x —(If)Vflx) if x¢ W

Note that r is continuous (since 9W < Z{f}) and p.r. We shall show that
there is an open neighborhood U =2 W such that r(U) = W. To show
that U exists, it suffices to show that for all ¢; > 0 and for all (continuous,
s.a.) paths b: [0, ¢;) > R» starting in W (i.e., with b(0) € W), there exists
an ¢; > 0 (g5 < ¢7) such that for all ¢, ¢t €[0, &) implies r(b(z)) € W.
We need only consider & with b(0) € 9W, since r = id on W0, For the
same reason we need only consider b such that for all 7€ (0, &), b(?) ¢
W, ie., f(b(t)) < 0. Therefore L < 0, where L = df(b(t))/dt|,—,. For the
sake of brevity in this note, let us consider only those b such that L < 0.
For such b we must show that there exists an ¢; > 0 (e3 < ¢;) such that
for all t € [0, ¢p), r(b(t)) € W, i.e., f(r(b(¢))) = 0. This holds if L > 0 (and
occasionally even if L = 0, though we shall not deal with this possibility
here). That L > 0 follows from a direct computation which expresses L
as a product of 2 negative quantities.

For more general W satisfying the hypotheses of the retraction theorem,
the proof uses a stratification lemma, the primitive element theorem, a
partition-of-unity argument, and a semi-algebraically parametrized ver-
sion of the Heine-Borel theorem.

If the retraction r were not required to be p.r., but merely s.a. (i.e., to
have s.a. graph in R* x R*), then the theorem could be proved in one
sentence, by triangulating W, even without the hypotheses of convexity,
non-empty interior, and Archimedeanness; this was done in [3]. A novel
feature of the retraction which we construct is that it does not satisfy
U — W) < oW, i.e., r must “push in” through 9W, unlike most retrac-
tions; this is unavoidable if r is to be p.r., since it must then be a K-
function, while 9/ need not contain any points of K.

Indeed, define r: R» — R# by r(x) = {
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None of the hypotheses can be dropped in the retraction theorem. The
first hypothesis, that K be Archimedean, is necessary, for let K = Q(7),
T an indeterminate, ordered so that 7 > Q. Then it is easy to check that
there is no element of K, or even of K(4/2), between the elements /T
and /2T of R. Nowlet W= {xe R?|x; 20 and 4/Tx; < x, — 4/2 <
+/2T x1} (see Figure 1). W is convex. W is prima facie R-R-s.a.; by Tarski-
Seidenberg, it is in fact K-R-s.a. Also, W is closed and has dense interior.
But the conclusion of the retraction theorem fails: Suppose r: U —» W
is a K-R-p.r. retraction, where U is a neighborhood of W (or even of a
small piece of W near (0, 4/2)€ R2); we derive a contradiction. Ucontains
a line segment S on the X,—axis, say {(0,x2)|4/2 < x2 £ /2 + ¢},
where ¢ > 0 is so small that r|s is a rational map (ry, #9), i; € K(X). Now
r cannot map S constantly into (0, 4/2), or else 50, X5) = 4/ 2 ¢ K(X).
So r(S) is a real algebraic curve ¢ in W starting at (0, 4/2). Figure 1
shows that the slope m of the graph of ¢ at (0, 4/2)is between 4/T and
+/2T,hence m¢ K(4/72). But a comparison of the formal fractional power
series expansion X, = f(X;) of ¢ with the Taylor expansions about X, =
v 2 of r(0, Xy) (i = 1, 2) gives me K(4/2), a contradiction.

Thus we need the Archimedean hypothesis. Second, we cannot drop
the hypothesis that W be convex (n = 2). To see this, let K = Q and
W= {xeRYX] — (/3 X, — (Xz— 4/2))% = 0}. Then Figure 2 shows
that m = 4/°3, while the argument in the above paragraph shows m €
Q(4/2), a contradiction.

Third, any s.a. retract must be closed, and fourth, we cannot drop the
hypothesis that W have interior, or else it might have no points in K” to
which to map those points in U () K* (U, being open, must contain such
points, since K is Archimedean over Q, hence dense in K = R). Thus,
all the hypotheses in the retraction theorem are necessary.

Figure 1 Figure 2

Potential Application to Hilbert’s 17th Problem. Let d > 0 be even, let
=(ay, ..., a,) € N* be a multi-index, let |a| = Ja;, let C = {C,lla]| =
d> be a sequence of indeterminates, and let f'e€ Z[C; X] be the general
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polynomial of degree d in X with coefficients C, i.e., f = 2], <,C. X4,
where X« = X1 ... Xan. Write P,; = {c € R("%) |f(c; X) is positive semi-
definite over R in X}. In 1962 Kreisel asked [5] whether a “continuous”
solution to Hilbert’s 17th problem exists. More precisely, do there exist
finitely many K-functions p;: P,;, - R* and r;: P,; x R* —» R such that
fle; X)= X2 ,pic)ri(c; X)?for all c € P,,, with each r; rational in X, and
each summand p;% continuous simultaneously in ¢ and x for (c; x) €
P,; x R#?

The retraction theorem fits in as follows. The “finiteness theorem™ [1]
says there exist finitely many W; such that P,;, = U,-W,., where each W;
is a finite intersection of sets of the form {c € R |g(c) = 0}, some
g € Q[C]. For each i we can use Stengle’s Positivstellensatz to construct
rational functions p; € Q(C) and r; € Q(C; X) as above, except that we
have p;(c) = 0 only for ¢ € W;,and not for all c € P,,;. These functions on
each W, can be glued together into a globally continuous map with p;(c) =
0 for all ce P,,, by a partition-of-unity. This requires writing each W; as
a neighborhood-retract. In [3] we did this with s.a. retractions; the result-
ing p; and r; were only s.a. in ¢, not rational or p.r., and thus they were
K-functions only for real closed K. In [4] we constructed, for each count-
able subfield K of R, a retraction which was a K-function, resulting in
p; and r; being K-functions for these special K. To answer Kreisel’s ques-
tion for arbitrary K, it would suffice for the p;and r; to be rational in C,
hence K-functions; in [2] we showed this is impossible, even without
continuity requirements. Fortunately, it would also suffice for them to
be Q-R-p.r., and this would be achieved if the W, could be chosen to be
Q-R-p.r.-neighborhood-retracts. Since Q is Archimedean, and since those
W; without interior may be ignored, the retraction theorem would finish
the answer to Kreisel’s question, provided the W; could be chosen to be
convex. While this last is still unsettled, there is hope, since P, is obviously
convex.
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