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ABSTRACT. The purpose of this mainly expository paper is to de­
scribe how continued fractions over JT = Q( yD) can be used in the 
development of algorithms for solving computational problems in 
number theory. These problems include: the factoring problem, 
i. e., the determination of whether an ideal in X* is principal; and 
the class group structure of X. Some attention is also given to the 
extension of these methods to complex cubic fields. 

1. Introduction. The purpose of this mainly (but not entirely) expository 
paper is to describe how continued fraction algorithms can be used to solve 
computational problems which arise in the study of real quadratic and 
complex cubic fields. Many of the recent results presented here are due to 
Shanks [12], [13], [14], [15], Lenstra [5], Schoof [11], and Williams, Dueck, 
Schmid [22]. They show that by using the fairly simple idea of 'distance', 
the usual algorithms for solving the type of problem discussed here 
(determination of the regulator, class number, class group structure, etc.) 
can be considerably improved. As this material is scattered about in several 
diverse places and is described in rather different ways, it was thought that 
a simple, unified approach to these results would be useful. Our pre­
sentation will stress the computational rather than the theoretic aspects 
of these ideas. For a more sophisticated description of the quadratic case 
see the work of Lenstra [5] and Schoof [11]. 

The material described here is pretty-well self-contained. We require 
only some well-known properties of ideals and lattices and these are 
reviewed in §2 and §3. In §4, §5, and §6 we show how continued frac­
tions can be used to solve certain problems in real quadratic extensions 
and in §7 we describe some means by which the ideas developed here 
can be applied to the problem of factoring. Finally, in §8, §9, and §10 
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we discussed the extension of our previous developments to the case of 
complex cubic fields. Incidentally, the analogy between the type of con­
tinued fraction of the earlier sections and Voronoi's continued fraction is 
also pointed out. 

It seems as if it should be possible to develop some further extension 
of the algorithms described here. Indeed, in an earlier version of [11] 
Schoof wrote that "it even seems probable that similar algorithms can be 
developed for every class of number field with fixed degree and signature, 
but perhaps it is even more probable that a project like that will involve a 
tremendous amount of work". It certainly seems that if the former part of 
this remark is true, then so is the latter. The results of §1 and §2 give 
some indication of how such extensions might be developed, but at the 
moment no general method is known for extending the results presented 
here. 

2. Ideals and reduced ideals. In this section we summarize many well-
known properties of ideals in algebraic number fields. Most of these can 
be found in any standard text such as Hua [3]. We begin with some nota­
tion. Let p(x) e Z[x] be any polynomial of degree d(^2) , which is ir­
reducible over the rationals Q. If y is any zero of p(x), denote by J T = 
Q(y) the algebraic number field of degree d formed by adjoining y to Q. 
Let p(x) have s real zeros yh y2, 7-3, . . . , ys and It complex zeros ys+li 

fs+h Ts+2, f 5+2. • • •, Ts+ty fs+t* where this ordering of the d = s + It zeros 
is fixed. If we define the d mappings o{ (/' = 1, 2, 3, . . . , d) of JT into the 
set of complex numbers by ody) = y{, a^a + ß) = tfv(a) + 0V(|3)> anc* 
(Ti(aß) = at{a)ai(ß\ for any a, ß e jT, then afa) = y, for some j , and the 
d — 1 conjugates of a e J T are given by tfv(a), where 1 ^ / g rf, but / # 

j . In the case of d = 2 or 3 we often use a or a , a" to denote the con­
jugates of a. We define the norm of a e J T to be N(a) = X[i=\Oi(a). If 
a,€JT(/ = 1, 2, 3, . . . ,&) are rationally independent, denote by [al5 a2, 
«3, . • • , ak] the set {Ttì=\xi^%\xi G z } - If G L *( Z ) is the group of all 
k x k matrices with entries from Z and determinant ± 1 , then [ßl9 ß2, 
iS3 ßkl = [ai, a2, a3, ak] if and only if 

(2.1) A = MB, 

where A is the vector (a^af • * ak), B = (ßx /32/33 • • • ßk) and Me 
GL^(Z). We will require the following theorem. 

THEOREM 2.1. Let a be the gcd(an, au, #13,. . ., a\k), where a^eZ 
(j = 1, 2, 3, . . . , A:). TTzere /s a matrix Me GL^(Z) whose first row is 
made up of the entries aula, au/a, a13/a, . . . , an/a. 

For a proof of this result, where we insist that \M\ = 1, see, for example, 
[3, p. 376]. 
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Let Ojf be the ring of algebraic integers in jf. There exist o)\, co2, CD& 
. . . , cod e (9X such that (9X =[o)i, a>2, <w3, . . . , a)d] and the set {CUI, a>2, 
C03, . . . , C04} is called a basis of 0*,. By virtue of Theorem 2.1 and (2.1) 
we may assume that there exists a basis of (9^, where o)\ — 1. If we put 
ßii = ct{aj) and define A[ax, a2, a3, • • • , a j = Ift/ß*«/» then the dis­
criminant J of j f is defined to zJ[coi, co2, o>3, . . . , coj. 

The subset a of 0 ^ is an ideal of (9X if for any a, /3 e a we must have 
a + ß e a and a£ e a for any £ e ^ . If ft, ft, ft, . . ., ft, e 0 ^ and we 
denote by (ft, ft, ft, . . . , ft,) the set { 2 ^ &ft|& efl^}, then we see 
that this set is an ideal of (9X and we say that ft, ft, ft, . . ., ßm are gen­
erators of this ideal. Further, if a is any ideal of (9X, then a = (ft, ft, 
ft, . . . , ßm) for some ft e (9X (i = 1, 2, 3, . . . m) and m is finite. Indeed, 
we have the following result. 

THEOREM 2.2. If a is any ideal of (9^, then there exist a, e (9X (i = 1, 2, 
3, . . . d) such that 

a 2 = fl2i^i + tf22a>2 

ad = tf^i + 0rf2û>2 + arf3û>3 + • • • + addœd, 

where a{j e Z, au > 0 (/ = 1, 2, 3, . . . , d) and 

a = [ai, a2, a3, . . . , a j . 

If, for some ft, ft, ft, . . . , ft e ^ , we have a = [ft, ft, ft, . . . , ft], we 
say that the set {ft, ft, ft, . . . , ft} is a basis of a. 

We say that an ideal a = (a), which is generated by a single generator, 
is a principal ideal. If a = (ai, a2, a3, . . ., ak), b = (ft, ft, ft, . . . /3m), 
we define the product ab as that ideal generated by the km generators 
ct,ft(/ = 1, 2, 3, . . .k\ j — 1, 2, 3, . . . , m). If a and b are two ideals of 
0 ^ and there exist a, ß^(9# such that (a) a = (ft 6, then a and 6 are 
equivalent and write this as a — 6. This is a true equivalence relation 
which partitions the set of ideals of (9X into a finite number h (the class 
number) of distinct equivalence classes. This set of equivalence classes 
forms a group G called the class group of JT . From the definition of an 
ideal we see that if a = [ax, a2 , . . . , ad] is an ideal of (9X and 1A = /uMB, 
where A, jit e &#-, A = (aia2a3 • • • ad\ B = (ft ft ft . . . ft), then 
6 = [ßi» &> ß3, • . . » A/] is an ideal and a ~ 6. 

As usual we say that the ideal a divides the ideal b (a\b) if there exists 
an ideal c such that b = ac. Also a\b if and only if b £ a. If a|(a), we say 
that a divides a (a|a). If a|a — ft when a, /3 e ®x, then we say that a and 
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ß are congruent modulo a (a = ß (mod a)). If we denote by N(a) (the 
norm of a) the number of distinct residue classes modulo a, then 

(2.2) J [ a i , «2, a3 , . . . , a j = N(a)*A, 

where a = [al5 a2» «3» • • • » «J- Also, if a = (a), then ^(a) = \N(a)\. 
We also mention the result that N(ab) = N(a)N(b). Throughout this 
work we shall assume that the ideals we are considering are not the zero 
ideal (0). 

If coi = 1, we see from Theorem 2.2 that a = [flu, a2, a3 , . . . , ad\ where 
an e Z. This value of an is unique for a and is the least positive rational 
integer in a. We denote it by L(a). Since L(a) e a, we know that there 
must exist an ideal a' such that 

(2.3) aa' = (L(a)). 

We use (2.3) to define a'. 
We say that a is a primitive ideal if it has no rational integer divisors 

except 1 ; that is, if (k)\a, where k e Z, then k = 1. A reduced ideal is a 
primitive ideal a such that there does not exist any non-zero a e a that 
satisfies |öv(a)| < L(a) for / = 1, 2, 3, ..., d. In what follows, this concept 
of a reduced ideal will prove to be very important. 

3. Lattices in jf. If {A^ A2, A^ ... Ak) is a set oik «-vectors which are 
independent over Z, we say that S£ — {ZI;=i x{A{ \ x{ e Z} is a lattice 
with basis {AÌ9 A2, A3, . . . , Ak). In this section we discuss some properties 
of special lattices in jf. For more information on this topic we refer the 
reader to Delone and Faddeev [2]. 

For atJf, define the corresponding ^-vector A by 

A = (vi(a), a2(a\ . . . , as{a), Re (as+1(a)), Im (as+i(a)), 

Re (<7s+2(a)), Im (<7s+2(a)), . . •, Re (<7,+,(a)), Im (ers+,(er))), 

where Re(z) and Im(z) are the real and imaginary parts of the complex 
number z. (Note that, in this instance, the notation represents a d-vector 
and should not be confused with the notation for an ideal given in section 
2.) If OL\, a2, a3, . . . , ad G J T are rationally independent, consider the 
lattice se = {££=i x{A{ \ x{ G Z} in jf. Since the ordering of the zeros of 
p(x) is fixed, we see that A is completely determined once a is. We therefore 
often use the more convenient expression a e i f t o denote that it is actually 
the correspnding vector A that is in j£f. We also say that j£? above has 
{ai, a2, A3, . . . , arf} as a basis. Further if d e jf, we define if* = 0j£? 
to be the lattice with basis {0ai, 0a2, ##3, • • • » #arf}. 

LEMMA 3.1. Let <£ be a lattice with basis {fih ju2, /z3, . . . , fj,d}, with fix = 
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1. If A = SjL=i *iMXi G Z)> and g c d (̂ 1> *2> *3> •••> *</) = U ^ / ? if 
Aflj a éos/s [v»i, v2, 3̂» • • • » H/L w/7/z vi = 1 tftfd v2 = A. 

PROOF. Let X e GLrf_x(Z) such that the first row of X is made up of 
the entries x2, x3, A4, . . . , xd. Put 

\ ' /</*</ \ fid I \Vd 

Clearly, Ye GLd(Z), and if TV = YM, we have our result. 
If a = [£(a), a2, a3 , . . . , ad] is an ideal of (9# we say that the lattice ££ 

with basis {1, a2/L(a), cczlHo), . . . , ad/L(a)} is the lattice that corresponds 
to a. 

LEMMA 3.2. Lé>/ if 6e //ze lattice that corresponds to an ideal a and let 
£g* be a lattice with basis {1, y2, V3, • • •, vd). If 6 <£* = ££, then there exists 
a primitive ideal b such that £g* corresponds to b and 

(3.1) (L(a)0)b = (L(b))a. 

PROOF. Let m be the least positive rational integer such that Xt = mv{ e 
(9x(i = 1, 2, 3 , . . ., d). If a = [L(a), a2» «3» • • • * a J , then 

where M e GLrf(Z). Thus 6 = [ra, A2, A3,... AJ is an ideal, m = L(b) and 
6 is primitive. 

The normed body A\a) for a e <£ is defined to be the set of d-vectors 

Jf(a) = {(*!, *2, *3 , . . ., xd)\Xi real, |x,| < a{{a) (/ = 1, 2, 3 , . . . , s), 

x? + x%x < ^ ( a ) 2 (1 = s + 1, J + 3, . . . , s + 2/ - 1)}. 

For example, when d — 2 and / = 0, jV(a) can be considered geomet­
rically as an open rectangle which is symmetric about the origin. We say 
that (j) (or the corresponding vector 0) is a minimum of S£ if <f> e if and 
JT{$) H ^ = {0}, where 0 is the ^/-vector (0, 0, 0 , . . . , 0). If i f is a 
lattice with basis {1, /a2, ju^ . . . , jLtd} and 1 is also a minimum of if, we 
say that if is a reduced lattice. Notice that an ideal a is reduced if and only 
if its corresponding lattice is reduced. 

THEOREM 3.3. Let ££ be a lattice with basis {1, /z2, /̂ 3, . . . , fid}. There 
exists some 0 e ^ such that <£* = (I/o) if #«</ ^ is a reduced lattice. 
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PROOF. If j£? is already reduced, then 6 = 1 and if* = if. If & is not 
reduced there must exist some p e if such that p # 0 and 

(3.2) \at{p)\ < 1 (i = 1, 2, 3, . . . , s + t). 

If S is the matrix (ai(juj))dxd (fi\ = 1), then since the ^ are rationally 
independent, we have \S\ # 0. Let S~l = (zv/)rfx«f. If 

i° = 2 *yj"y (*/ e z> / = 1, 2, 3, . . . , rf), 
y=i 

then 

and 

\Xj\ ik 2 |Ty,|. 
*=1 

Thus, there can only be a finite number of elements of if that satisfy (3.2). 
Let Px = {p[l\ pg\ p£\ . . ., pi1]} be the set of these p values in & = ifi-
Since |(7/( —p)| = k/(|0)|, we see that /: must be even, lï p e P1 and p = 
Ei=i *ii"i> p u t / = gcd (x2, x3, . . . , xd) and j> = xx (mod/), with | j ; | ^ / /2 . 
We have 0 # /3 = (p - V ) / / G J ^ and |^,(/3)| ^ k , (p ) | / / + b / / | < 
1// + 1/2. Thus, if / ^ 2, we see that ß e Pv We may therefore assume 
with no loss of generality that we have a p = p{^ = 2]f=i *,-/*,• e ^ i with 
gcd (*2, x3, . . . , xrf) = 1. By Lemma 3.1, i ^ has a basis of the form 
{1, p{g\v^ v4, . . . , i^}. If if2 = 1 /p .̂1) ifi , then S^2

 n a s a basis containing 
1. If if 2 is reduced, we are finished. If if 2 is not reduced, there must exist 
a set P2 = {p{i\ pf\ • • • , pP} of all the non-zero elements of S£2 which 
satisfy (3.2). If p e P2, then X = ± p^p e if i and 

k,-tt)| = \Oi(pf)\ k,(p)| < 1 (/ = 1, 2, 3, . . . , s 4- 0 ; 

thus A e /Y Since X # ± ^1}, we get 1^1 ^ |P2| + 2. We can next find 
a value for p^2) in j ^ 2 and define if3 = (l/^2))if2. Since the number of 
elements satisfying (3.2) in i^3 is strictly less than \P2\, we see that by con­
tinuing this process, we must ultimately find some S£'n such that <£n is 
reduced. 

If we define 

(3-3) p„ = n V . 

we have 

(3.4) i^* = <en = (l /^)if . 
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Putting if* = S£n and 0 = pn, we have our result. 

COROLLARY. If a is any ideal, then there exists a reduced ideal b and a 
tea such that (X)b = (J^(b))a. 

PROOF. Let b be the primitive ideal which corresponds to £gn in (3.4). 
Since X = pn J?(a) e Û, the corollary follows by the theorem and Lemma 
3.2. 

Thus, there is always at least one reduced ideal in every ideal class of 
JT . The proof of Theorem 3.3 provides us with an algorithm for finding 
a reduced ideal equivalent to another; however, it is not a very practical 
algorithm. We will describe better algorithms in the case of d = 2, s = 2 
and d = 3, s = 1 below. Another important aspect of minima in if for 
our work is given in the following result. 

THEOREM 3.4. Let ££ and $£* be reduced lattices. If 0<£* = £f, then 0 
is a minimum of ' £g. 

PROOF. Clearly, 0 e if. If 0 is not a minimum of if, then there must 
exist <f> e Se such that 0 # 0 and |«7,-(0)| < k<0)| (/' = 1, 2, 3, . . ., s + /). 
Now consider ß = <f>/0. We must have ß e &*, but |<T,-(J8)| = |ÖV(0)/ÖV(0)| 

< 1 (/ = 1, 2, 3, . . . , s + 0 and ß # 0. This contradicts the assumption 
that Jf* is a reduced lattice. 

Thus, the problem of finding all of the reduced ideals in any ideal class 
containing a given ideal a reduces to the problem of finding all the minima 
in the lattice i f corresponding to a. We also notice that if rj is any unit of 
JT , then (7])a = a and, as a consequence of this, yj0 is a minimum of if if 
0 is a minimum of £/? and S£ corresponds to a. In general, the problem of 
finding all the minima in î 7 is rather complicated. In order to simplify it, 
we make at this point an assumption concerning our lattice 5£ in jf. 
We will assume that j f has the property that if a, ß e J T and |öv(tf)l = 

|ÖV(/3)| for any i <Z s + t, then a = ± ß. This is certainly true when X 
is totally real (s = d), and it is also true for d = 3 and s = 1. It is not, how­
ever, true for d = 4 and 5 = 0. For example, let 7- = v

/ ( — 1 + ^/Z^ß 
and J T = Qif). We have \a\ = |/3|, when a = ?ß. 

Under our simplifying assumption, we can define what is meant when 
two minima of if are said to be adjacent. Let 0 and (j> be minima of S£ 
such that, for some k g s + /, we have \ak{0)\ > \ak(<j>)\ and |OV(0)| < |tfv(0)L 
for all other / ^ k. The minima 0 and ^ are adjacent if there does not exist 
a </>e£> such that |<7*(̂ )| < \ak(<fj)\ < \ak(0)\ and 1 ^ ) 1 < k,-($l for all 
/ 7* /r. If /: is a fixed integer such that 1 ^ k ^ s + t and 

(3.5) 0!, 02, 03, . . . , 0m, . . . 

is a sequence of minima in ^ such that |O*(0,-+I)| > \ak{0t)\ and 0 m , 0t-
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are adjacent, we call (3.5) a &-chain of minima of if. By Minkowski's 
Theorem (see [2]) we know that such chains always exist in i f and that 
they may be extended to any length. 

In order to show how the elements in (3.5) can be constructed, we re­
quire several simple lemmas. 

LEMMA 3.5. Let if be a reduced lattice. If 0 is a minimum of 3? adjacent 
to 1, then there exist y3, y4, v& . . . , vd e JT such that ££ has {1,0, v>3, V4, 
. . . , vd) as a basis. 

PROOF. Certainly, there exist xl9 x2, x3, . . , xdeZ such that 0 = 
Tiî=ixiMi> where jui = 1 and {tuh ju2, ^3, . • ., /^} is a basis of if. Let 

/ = gcd(*2, x3, . . ., xrf) and put y = X/ (mod d), where | j | g d/2. If 
ß = (0 - y)lf then |8 # 0 and /3 e if. Further, 

k,(/3)l S \am\lf+ \ylf\ Û k-(fl) | / /+ 1/2. 

Now, for some A:, we have \ak(0)\ > 1 and \a{(d)\ < 1, for all / 7e &. Thus, 
if/ ^ 2, we get \ak(ß)\ < \ak(0)\ and |<7f-(/3)| < 1 for / # A:. By definition of 
0, this is impossible ; thus, our lemma follows from Lemma 3.1. 

LEMMA 3.6. if ££ and 6 are as defined in Lemma 3.5 and &* = (l/0)if, 
then <£* is a reduced lattice. 

PROOF. We note from the previous lemma that there exists a basis of if * 
which contains 1. If <£* were not reduced, there would exist ß e ££* 
(ß # 0) such that \a0)\ < 1 (/ = 1, 2, 3 , . . . , s 4- t). In this case, we have 
X = ßO e ^ and 

\om\ = Mß)am\ < k-(0)i (/ = 1,2,3,..., s + 0. 
By definition of 0, this is impossible. 

LEMMA 3.7. Let <£, ££* and 0 be as defined in Lemma 3.6 and let œ be 
the minimum adjacent to 6 in £?. If 6* is the minimum adjacent to 1 in <£*, 
then co = 66*. 

PROOF. Let cj> = 66*. For some k ^ s + t, we have \(7k(<f>)\ = 
\ak(6)ak(6*)\ > \ak(6)\ and \a^)\ < \a{{6)l for 1 ^ i ^ s + / and / # k. 
Thus, if ci ï Û), then |^(Û>)| < Wk(<f>)\ and |^(Û)) | < k<0)l (/ # fr). Since 
co/0 ^ 0, û)/fl e if*, and 

WM0)\ < M0*)l, kWfll < 1 (/ # *), 
we have a contradiction to the definition of 6*. 

Let if = ^£ 1 be any reduced lattice. As an example of such we mention 
that if {&>!, o)2, CÜ3, . . . , o)̂ } is a basis of 0^-, then it is also the basis of a 
reduced lattice. For a fixed k, let 0<° be a minimum adjacent to 1 in if,-, 
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with \ak(0f)\ > 1. Define yi+l = (l/d®)^. By our previous results, 
we see that each y{ is reduced, and if 6\ = 1 in (3.5), then we have 

(3.6) 0H = "fi fl« 

and 

(3.7) enyn = sex. 

Thus, we can find the elements in a chain (3.5) with 0\ = 1, once we are 
able to solve the problem of finding the minimum adjacent to 1 in any 
reduced lattice. This is a problem that we shall examine for the case of 
s + t = 2 only. The reason we choose this case is explained by the follow­
ing lemma. 

LEMMA 3.8. If s + t = 2 and 6 is any minimum in a reduced lattice ££ 
such that \ak(6)\ > U then there must exist some 6m in the k-chain (3.6) 
such that 0 = ±0m. 

PROOF. Since s + t = 2, if / # /c, then / = 3 - k. If ±0 is not an ele­
ment of the &-chain (3.5), there must exist a dm and 0m+\ such that 

Wk(Om)\ < \ak(6)\ < \ak(0m+1)\. 

Since 0 is a minimum, we must also have \Gi(Om)\ > |tfv(0)| for / ^ k. 
This contradicts the definition of 0m+\. 

We are left with lattices in fields for which s = 2, t = 0, J T = Q(<\/7)), 
D 6 Z, D > 0, <J~D t Q and s = t = 1, JT = Q(5), where 5 is the real 
zero of an irreducible cubic p(x) with negative discriminant. We will de­
note lattices in these fields by the symbols y and & respectively. We also 
define Gi(cc) = a, a2{oc) = a and, in the case of d = 3, <j3(a) = a". 

4. Continued fractions. Let J T = Q ( v ^ X where Z> > 0, D e Z and 
VB" <£ Q. Let ^ be any lattice in X as described in the previous section. 
If y is not a reduced lattice we have the problem of finding a reduced 
lattice y* and p e y such that py* = y. If ^ is a reduced lattice, we have 
the problem of finding a chain (3.5) when 0X = 1. We will show how a 
particular continued fraction can be used to solve both problems in an 
expeditious manner. In order to do this we need the following result of 
Voronoi [19]. 

THEOREM 4.1. Let y have {(ft, (ft} as a basis and suppose that (ft > (ft > 0. 
Then <ft and (ft are adjacent minima of y if and only if |0' | > \(ftf\ and 
(ft'cj)' < 0. 

PROOF. If (ft and <ft are adjacent minima of y, then we have |0'| > \(ft'\. 
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Since 0 < (p — (j) < (p, we must have \<J>' — <j>'\ > |< '̂|; otherwise, 0 could 
not be a minimum. Hence $'(/>' < 0. 

Suppose |0'| > \(J>'\ and ficjj' < 0. If <f> is not a minimum of y, there 
must exist ß e £f> such that \ß\ < <j> and |/3'| < |0'|. Since ß = a<j> + bp 
(a, be Z), this means that \a<f> + b(fi\ < <f>, \a<f>f + b<fi'\ < \(f>'\. Clearly, 
neither a nor b is zero; but, if ab > 0, then \a<f> + bp\ > $ and if ab < 0, 
then \a<f>' + £0'| > |0'|. Thus, ^ must be a minimum of y and, by similar 
reasoning, so is c/j. Further, there can not exist a, b e Z such that both 
\a<j) + b<])\ < <j) and \a<f>' + b<J>'\ < |0' | hold; thus, <f> and cjj are adjacent 
minima of Sf. 

We are now ready to develop our continued fraction algorithm. Let 
Sf = yi have {1, /iX} as a basis and define 

fin + [ - Uni 

\vn + 1 when vn < - 1/2 

\vn otherwise, 

- sgn(A^w))/0„, 

(We use [a:] hereto denote that integer suchthat a — 1 < [a] ^ cr.) 
We note that — 1 < v'n < 0; thus, if vw > 1, then £fn must be reduced 

by Theorem 4.1. If vn < - 2 , then - 1 < - 1 - vn < 0 and - 1 - vn > 
1. Again, Sfn is reduced. Notice that, in either case, \(f>„\ is the minimum 
adjacent to 1 in Sfn. Now, if —2 < vn < — 1, or if 0 < vn < 1, then 
iV(^„) < 0 and vw+1 = 1/̂ » + [ - Wnl- W e h a v e v«+i < ~ 2 w n e n - 2 < 
vw < — 1, and vn+\ > 1 when 0 < vn < 1. Thus, «9*w+i is a reduced lattice. 
Also, |0B| < 1. If — 1 < vn < 0, then ^ w can not be a reduced lattice and 
0 < (j)n < 1/2. Since there can only be a finite number of elements of £f 
inside the normed body of 1, there must exist a positive c (< 1) such that 
each of these elements in absolute value exceeds c. If we put p® = < ,̂ 
we must have pn in (3.3) satisfying pn ^ c. Then n < —log c/log 2 and 
our algorithm will find a reduced lattice Sfm in 0(|log c|) operations. 

If we define <f>n by ^0 = — /^, < „̂|< |̂ = 1 (« â 1), we see that (f>n > 1 
(zi è l)and, if r! = l,then 

(/>n+l = rn+ll{<t>n ~ <ln\ 

where |rn+1| = 1 and #-w+1, qn e Z. Indeed, rM+1 = - sgn <Jjn sgn 0 ^ 
(n ^ 1), and it can be shown that if n ^ 1, then rw+1 = — 1, when — <j>'n + 
[çU < ~ 1/2 and rw+1 = 1 otherwise. Thus 

Vn 

(pn 

Vn+1 

^n+l 
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0 = 00 = tfO + ' 1 

02 +^2_ 

(4.1) 
?3 + 

<Pn 

is a semi-regular continued fraction expansion of ^ (see Perron [8, p. 152]). 
If we define 

Cm = <70 + ' 1 

02 + r2 
03 + 

+ 

then Cm = AJBm, where r0 = 1, A_2 = 0, ^ U = 1, £_2 = 1, 2?_i = 0 
and Ak+1 = qk+1Ak + ^+1^Ä_1? ^Ä+1 = qk+lBk + rk+lBk_x(k = - 1 , 0 , 1, 
. . . ) • 
Further 

AmBm-\ - Bm^m-i = (-\)m~l rxr2rz. . .rm. 

If <f>Q = (p0 + v^r)/e<), with />0, Co e Z. and ß 0 | £ - Pg, define />„, ßw by 
0n = (Pn + VD)IQH (PH, Qn e Z). It is easy to verify that 

J\+i = IkQk - Pk, Qk+i = >Vfi (/> - ^ i ) / ô * (k = 0, 1, 2, . . .)• 

Also, 

<7*+i = 
>H-1 + A / / > 

e*+i 
i ' fe+2 (Ä: = - 1 , 0 , 1, . . . ) . 

Put öi = 1 and, for n > 1, define 

(4.2) On = (Qn-l H ^ ) 00 

Since N((j>t) = —r{Q^ilQh we see that 

(4.3) 

and 

(4.4) 

Since 

i = l 

W = lß,^/ß-il, 

IO j = "n w-
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, , (j)nAn_1 4- rnAn_2 
<pnBn_x + rnBn_2 

we have 

r rh - An~2 ~ $B«-2 rnYn ~ r n A 

From this result it is a simple matter to show by induction that 

(4.5) en = An_2 - <j>fBn__2 {n = 1 ,2 ,3 , . . . ) . 

It is also a simple matter to show that &>n is reduced if and only if — 1 < 
(j)f

n < 0. When this occurs we see that rn+1 = 1 and — 1 — [<f>n] < <j>'n — 
[<f>ni < - [fail thus, - 1 < (j)'n+l = {(j)'n - [<j>n])-1 > 0 and we have, for all 
k è n, rk+l = 1, 

(Pk + ^~D)IQn > 1, - 1 < (P, - V~D)IQk < 0; 

consequently, 

(4.6) 0 < Qk < 2 V^D; 0 < Pk < <JJS. 

Furthermore, 

(4.7) Qf = \<Jjk\ = P* +
n
s/D > 1 and - 1 < Of < 0, 

for all k ^ n. 
In the case of S?i being reduced, we see that the 0n in (4.2) is the same as 

the dn in (3.6). That is, our continued fraction algorithm produces all the 
minima 0 of Sfx such that 0 > 1. Since 

0(*+D = 1/0 C« + [_ !/#(*)'], 

we get 

hence 

(4.8) 

0tt+l)0W > 1 + [-1/0« 

0B > 2[("-1>/2]. 

We end this section by remarking that if we have a regular continued 
fraction expansion of (j>\ that is, if all r{ = 1 (/ ^ 1), (we certainly do 
when S?i is reduced), then Levy has shown that for almost all irrational 
(f>, we have 

(4.9) lim ( 0 ^ • - - <j>ny* = e', 
M->CO 

where / = TZT2/(12 log 2) « 1.18656911. 
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5. Ideals in Q(\/~D). Let D be a positive square-free rational integer, 
X = Q ( V ^ ) 5 a n d 

(2 Z) = 1 (mod 4) 

\ 1 otherwise. 

We have â = 4Z)/r2, and if co = (r - 1 + ^~D)\r, then 0* = [U co]. 
By the remarks of §2, we see that if a is any ideal of (9X, then a = 
[L(a), 6 4- ceo] (Z>, c e Z , c > 0). Since L(a) e a and è + eco e a, we 
must have N(a)\N(b + ceo) and N(a)\N(L(a)). Since 7V(a) = |cL(a)|, 
N(L(a)) = L(a)2, and 7V(Z> 4- ceo) = b2 + bc(co 4- co') + c 2 W , it follows 
that if a is primitive, then \c\ = 1 and N(a) = L(a). Also, two primitive 
ideals cti = [£(cti), bx 4- co] and a2 = [£(a2), 62 + co] are equal if and only 
if L(ÛI) = L(a2) and b\ = b2 (mod £(ai)). We can also easily prove the 
following theorem. 

THEOREM 5.1. If a = [L(a), b 4- co], then a is a primitive ideal of X if 
and only if L(a)\N(b + co). 

We illustrate a means of finding a basis of a, given the generators of a, 
by using the specific case of a = (a, /3). By definition of a, we must get 
a = [a, ß, aco, /3co]. If a = ax + a2co, ß = bx 4- 62<^>tnen 

a = [«J + tf2co, b\ 4- b2co, - cocoa2 4- co(ai 4- #2(eo 4- co')), 

— b2 coco' 4- eo(6x 4- 62(eo 4- co'))]-

We may assume that g = gcdfai, ôl9 tf2> ^2) = 1 î f°r> otherwise we can 
write a = (g)(a/g, ß/g) and consider (a/g, /3/g). Thus, we can find xl9 

x2, x3, X46Z such that 

^^2 4- x2b2 4- ^3(c7! 4- tf2(eo 4- co')) 4- x4(6i 4- £2(co4-co')) = 1 

and put 

m = xtfi 4- x26i - coco'tf2*3 - coco'62*4-

Then a = [a, /3, aco, ßeo, m 4- co] and, by subtracting suitable multiples of 
m + co from each of a, ß, aco, aß, we get a = [c1? c2, c3, c4, m + co], 
where c ,̂ c2, c3, e4 e Z. Hence, if n = gcd(cl5 c2, c3, c4), then a = [«, m + 
co]. 

If a = [fli, ox 4- co], b = [Ö2, Z>2 4- co], then ab = (s) [a3, b3 4- co]. The 
problem of determining s, a3, b3 given aÌ9 bh a2, b2 can be handled (see 
[5]) by noting that 

ab = [a\a2, a\b2 4- a\co, a2bi 4- a2co, b^b2 — coco' 4- (co 4- co' 4- &i 4- £2)ÉO] 

= (<y) [a3, è3 4- co]. 
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From this, it follows that s = gcd (ah a2, co + co' + bx + b2). Also, since 
N(ah) — N(a)N(b) = s2a3, we have a3 = axa2\s

2 and 

(5.1) L(ah) = L(a)L(b)/s2. 

Now there exist jcl5 JC2, x3 e Z such that 

s = jfjflx + x2a2 + X3(Û> + Û/ + &i 4- è2); 

hence, 

b3 = faafa + x2«2*i + *3(*i*2 - (OÛ)'))/S (mod a3). 

In order to develop a connection between the continued fraction (4.1) 
and our ideals here, we simply point out that yn has as a basis {1, jun}, 
\Mn\ = I W»-il> ! Wn-il = \ti\ for n ^ 2, and | ^ | = \ft\. Thus <^ has 
{1, <J>n

f} as a basis for « ^ 1. By Theorem 5.1. we may assume that cti = 
[Qolr, (-Po+ V^D)irl where L(ax) = ß0/r, P0 e Z, and rß0|Z) - P0

2-
Since yn is the lattice that corresponds to a„, when 

= [\Qn-l\lr, (Pn + V B ) W 

we have, from (3.1), that 

(5.3) (UaM^ = (L(a„))ab 

for öw defined in (4.2). For any primitive cti we know that there must 
exist some n for which a„ will be reduced. We will now obtain an upper 
bound on this value of n. We require first some results on reduced ideals 
i n Q ( V ^ ) . 

THEOREM 5.2. If a is a reduced ideal in Q(\/~D), then L(a) < \/~2F. 

PROOF. If a is reduced, by Theorem 4.1 and Lemma 3.5, there must exist 
X e a such that X > L(a), - L(a) < X < 0, and a = [L(a)9 X] ; thus, 
L(a) < I - X and I - X = co - co' = j~Ä". 

THEOREM 5.3. Let a be any primitive ideal in Q(\/T)). If L(a) < </~J/2, 
then a is reduced. 

PROOF. Let a = [L(a), ß], where ß = b + co and put X = ß + [ - ß'l 
L(a)]L(a). Then a = [L(ct), X] and -L(ct) < A' < 0. Since X > co - co' -
L(a) and co - co' = ^ 1 > 2L(a), we have X > L(a). By Theorem 4.1, 
a is reduced. 

Let an in (5.3) be reduced and suppose that a„_i is not reduced. By 
virtue of the results derived in the earlier part of this section, we may as­
sume that |c/v| < 1/2 for 1 ^ / <; n — 2; thus, 

\N(<Jjt)\ = L(Û I + 1)/L(Û,) < 1/2 (i è n - 2) 

file:///Qn-l/lr
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and L(an-i)/L(ai) < 1/2»"2, for n ^ 2. Since a„_x is not reduced, we have 
L(an-i) > ^/~J/2 by the previous theorem; hence, 1/2W~2 > ^/~J/2L(ai). 
It follows that 

(5.4) n < 3 + log(I(ai)/V2") log 2. 

Also, if X = L(ai)|ÖJ, then, from (4.4), we have \X\ S Udì), |A'| ^ L(ÛI). 

Since A e Û! we have (A)|cti and N(X)\N(ai). Thus |>U'| è Hai) and 

(5.5) 1 < X è L(ai) 

with equality only when ax is reduced. 
Let £0(> 1) be the fundamental unit of QC-v/ZT). If ai a n d 6 a r e anY 

two reduced ideals in the same ideal class of Q(\/~D), then there must 
exist some 6 in the lattice Sf\ which corresponds to cti such that (0L(ai))b = 
(L(6))ai. Let <j> = ± eg1 0 such that <£ > 1. Then (<f>L(ai))h = (L(b))ai, 
and, by Theorem 3.4, çJ must also be a minimum of Sf\. By Lemma 3.8, 
we have (fi = 0k for some k; hence, since 6 and ak are both primitive, we 
must have h = ak. Thus the continued fraction (4.1) finds, for any given 
primitive ideal, all the reduced ideals that are in the same ideal class. 
We also note that e0 e S^\ and, indeed, is a minimum of «9^; hence, there 
must exist some p such that 0p+\ = £0- Also, since ap+\ = cti, we get 

(5.6) ap+t = at (/ £ 0 

and 

(5.7) 0,+, = £0Ö, (t ä 1). 

This of course, is simply the well-known result that the continued fraction 
development of a quadratic irrational is periodic. Here, the period length 
is the quantity /?. 

6. The distance between reduced ideals and applications. Let J T = Q( VÎT) 
and let ÛI be any reduced ideal of (9#. From (5.3), we get 

(L(am)dn)an = (L(an)6m)am. 

Let n ^ m. In [13] Shanks introduced the idea of distance between an 

and am and defined this as d(an, am) = log (0J6m). In [5] Lenstra defines a 
different distance, using (1/2) \og(L(am)/L(an)) + log(dJdm) instead of 
just log (0J0m). Lenstra's definition is more convenient in certain ap­
plications but we will use Shanks' definition here, as it is more easily ex­
tended to the cubic case. From (4.2), (4.4), and (4.7), we find that 

(6.1) ejem è Qn-ilQm-i = L{an)IL(am) 

and 
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Wm = "ff df è L 

i—m 

Thus d(ant am) è 0 and 

(6.2) OJOm è VL(an)/L(am), 

with equality only when n = m. From (4.9) we also see that when n — m 
is large, we would expect that 

(6.3) d(an, am) » /(n - m). 

Note that distance is only defined for two reduced ideals in the same class. 
If p is defined as in (5.7), we also have d(ap+i, cti) = log^+i) = 

log £0 = R, the regulator of Jf. If k = n + tp, then, from (5.7), we derive 
the result 

d(ak, am) = d(an, am) -f tR 

and ak = an, from (5.6). Thus, we need only consider those distances which 
are reduced modulo R. Under this convention we may assume that 

(6.4) d(aH9 a J < R. 

Further, since R < *JH log A (see, for example, [3, p. 329]), we have an 
upper bound of ^~d log J on d(an, am). 

Suppose that c = Ci is any primitive ideal and suppose further that 
ck is a reduced ideal and that c*_i is not reduced. We have 

(6.5) (L(ci)Pk)ck = (L(ck))cl9 

where, by (5.5), we have 1 < L(c{)pk ^ £(ci). If ÛI = (1) and h\ is any 
reduced ideal, let ci be the primitive ideal found by multiplication of an 

and bm. Then 

(6.6) C?)d = anhm (s e Z). 

We have minima 6n and <f>m in the lattices corresponding to cii and b\, 
respectively, such that 

(6.7) (LiaMa» = (L(aM))a! 

and 

(6.8) {L(bù(j>m)K = (UbJ)hi. 

By combining (6.5), (6.6), (6.7), and (6.8) we get 

(0L(6i)) ck = (L(c,))6x, 
where 

<l) = (sL(ci)pkOn<j>m)IL(an)L(am) = pkanajs > 0, 

by (5.5). Since h\ is reduced and |< '̂| < 1, we must have cp > 1. Since 
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ck ~ 61 and ck is reduced, we must also have ck = bt, for some f ^ 1, 
<f>t = (p, a n d 

(0,L(*i))b, = (L(bt))h. 

Thus, 

(6.9) rf(b„ bi) = </(bm, bi) + rf(a„ ax) + 97, 

where 77 = log(pk/s). Also, since ^ g min(L(aM), £(bw)) < ŷ 3~> by Theor­
em 5.2, we have 

6.10) - l o g j < ^ < 0 . 

By (4.8) we see that 77 will be small when compared to dx = d(am, b\) 
and d2 — d(am cti), when n and m are large. The process of multiplying 
the two ideals an and bw and then reducing the resulting ideal gives us 
an ideal b„ with d(bt, b\) « d\ + rf2-

Now, if Û = [L(a), b + a>], we easily find that a' = [L(a)9 b + co']. 
Further, we may assume the existence of A e a such that A > L(a), — L(ct) 
< A' < 0 and a = [L(a), A]. Putting ^ = -A + [A/L(a)]L(a), we have 
a = [L(ct), xl and a' = [L(a\ %']. B u t s i n c e %' > L ( a ) a n d _ L ( a ) < X < 
0, it follows that a' is also reduced. 

If cti is an ideal such that cti = ai (for example, cti = (1)), we say that 
ci! is ambiguous. (This definition applies only in the case J T = Q(\/~D).) 
Suppose that cti »s a reduced ambiguous ideal. Let 1 < n g p and (0W 

£(ûi))a„ = (^(a»))ûi. Since a'n is also a reduced ideal, we must have a'„ = 
aw for some m ^ p. Thus, (0mL(cti))am = (L(aw))cti. Since L(am) = 
L(a„) = L(a„) and cti = ÛI, we get 

(6.11) (0n0mL(fii)) = m*n)). 

From (6.2), we have 1 < 0nVUäJ/UäJ < e0 and 1 S dmVL(a1)/L(am) 
< e0. Thus, 1 < 0w0mL(a1)/L(a„) < £§ and, from (6.11), we get e0 = 
dn6mL(ai)/L(an). It follows that 

(6.12) d(a'n, ai) = * - d(an, a0 + log(L(an)/L(ai)). 

If we combine (6.9) and (6.12), we see that if (s)ci = a'nbm, and (£(ci)p*)b, 
= (L(bi))ci, then 

</(b„ bi) = Ä + rf(bm, bi) - rf(an, a0 + 77, 

where 

(6.13) (-3/2)log J < 7? = log (^L(aw)/j) g (l/2)log J . 

Thus, if d(bm, bi) > t/(a„, ÛI) + (3/2)log J , we get 

(6.14) d(bt, bi) = </(bm, bi) - «/(a,, ax) + 77. 
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We also point out that, in order to find b„ we require only 0(log L(ci)) = 
0(log A) steps. 

The ideas and formulas introduced above can be used to solve a number 
of problems which arise in performing arithmetic in Jf. Consider the prob­
lem of determining whether or not a given ideal b is principal. One method 
of doing this would be to simply find a reduced ideal bm ~ b and then 
compare bw to cti = (1), a2, Û3, . . ., ap. If bm is equal to one of these, then 
b is a principal ideal; if not, then b is non-principal. The difficulty 
with this approach is that for large values of Z), p can be quite large 
and this process will be rather time consuming. For example, if D = 
300272328240091, then p = 65344634. It certainly appears (see Willams 
[21]) that we often have p > A1/2. Thus, 0(J ( 1 / 2 ) + £) steps could be re­
quired to execute this algorithm. 

Here is another algorithm for doing this. 
1) Calculate and store the bases of ÛI = (1), a2, a3,. . . a5, as+i,. . ., at. 

Here s and / are determined by d(as, Qi) « R1/2 and 

(6.15) d(at9 ÛI) > (3/2)log A + d(a„ ax). 

Put / = 1, Ci = bm, where bm is a reduced ideal equivalent to b. Sort the 
ideals above on the values of L(ay). 

2) If c, = ùj (1 Sj ^ t), then we are done and b is principal. (This part 
of the algorithm is most expeditiously achieved by first searching in the 
sorted list of £(a/)'s above for those which have L(c,) = L(CLJ).) Otherwise, 
put ci+i equal to the reduced ideal (as found by our continued fraction 
algorithm) equivalent to c ^ . 

3) Replace the value of / by that of / + 1 and check that 

(6.16) i< R/(d(a,9 ax) - (l/2)log A). 

If this is so, go back to step 2; otherwise, b is not principal. 
To show why this algorithm works we first mention that b ~ c,- (/ = 

1, 2, 3 , . . .). Suppose b is principal. If c,-#ai, a2, a3 , . . . , a„ then 

d(ck, ai) > d(a„ ax) + (3/2)logJ (k = 1, 2, 3, . . . , /). 

Hence, from (6.13) and (6.14), 

d(ck+i, ûi) = d(ck, ÛI) - d(as, ax) + r)k, 

where k S / and ( - 3/2)log A< rjk < (l/2)log J . It follows that 

(6.17) rf(Cj.+1, ÛX) = d(bm, aO - 1 d(aS9 ax) + 2 7*. 

Now, since d(bm, b{) < R, we must have 

0 ^ d(ci+l9 ÛI) < R - 1 d(a„ ÛI) + (1 log A)/2 
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or 

i è R/(d(as, ai) - (l/2)log A) * * 1 / 2 < J(^>+». 

Thus, we see that our algorithm solves the problem in 0(J ( 1 / 4 ) + £) s t eP s> 
an improvement over the previous algorithm. If R were not known in 
advance, we could use the bound Aln log A instead. We shall see below, 
however, that a variant of this algorithm can also be used to compute R. 

If, further, we wished to find the value of d(bm9 ax) above, we see that, for 
some z, we would have cf- = ak, for some k ^ t. If the values of d(aj, a,-) 
(j — 1, 2, 3, . . . , t) were computed and stored along with the bases of the 
a/s, then we would have 

(6.18) d(bm ÛI) = d(ak9 al) + (i - l)d(aS9 ax) + £ rjj 

from (6.17). Thus, if the values of the rj/s were all computed by using 
(6.13) as we go along, we could easily calculate d(bm, cti). Notice that 
if we began with bm = <x'2 and found d{a2, Oi) by this procedure, then, 
from (6.12), we would get 

R = rf(û2, ai) + rf(û2, ÛI) + log L(a2). 

Hence, this algorithm provides an 0(J ( 1 / 4 ) + £) method of computing R. 
Actually, if certain generalized Riemann Hypotheses hold, it is possible to 
develop an 0(Aa/5)+£) algorithm for finding R and the class number h 
of JT. The means by which this can be done is explained in [12], [5] and 

[ni. 
From (6.18), we also see that it would be possible to find (j>m = 

exp {d(bm, ÛI)} such that (<f>m)hm == (L)bm))9 when bm is principal. Since 
bm = ($!n), this algorithm would provide a method of finding a single gen­
erator of any principal ideal. If h = 1 and a9 ß e (9#, then we can find 
the gcd(a, ß) by simply determining a basis of a = (a, ß) and then 
finding a generator of the principal ideal a. 

Since two ideals a and b of ®# are in the same ideal class if and only if 
ab' ~ (1), we can use our algorithm as a means of determining whether 
or not two ideals belong in the same ideal class. Given the value of /?, 
we can now develop a 0(J ( 1 / 4 ) + €) algorithm for finding the structure 
of the class group of X. A method for doing this was first described by 
Shanks [12] and has been more fully discussed by Solderitsh [17], Lenstra 
[5], and Schoof [11]. Again, in order to show that these methods are of 
order Aa/A)+e, we must assume some generalized Riemann Hypotheses, 

7. Factoring. We have already seen a number of applications of the re­
sults developed in the previous sections. In this section we show how these 
ideas can also aid in solving the problem of factoring a composite rational 
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integer D. We first require several results concerning ambiguous ideals in 
ff — Q( V~D)- Many of these results go back to Gauss but they are in­
cluded here for the sake of completeness. 

LEMMA 7.1. If a is a primitive ambiguous ideal, then a\( \/~2F). 

PROOF. Let a = [L(a), b + co]. Since a' = [L(a), b + co'] and a = a', 
we must have co — co' £ a; thus, co — oo = 0 (mod a) and a|(\/~J). 

LEMMA 7.2. Let a be a primitive ambiguous ideal. If L(a) < i/~J, then 
a is either reduced or 41 Zf and ^ A /2 e a. 

PROOF. Suppose a = [£(a), 6 + co] is not reduced. There must exist 
aea such that a j - 0, |a| < L(ct), |a' | < L(a). If a = xL(a) + y(b + co) 
(x, j G Z), we find that 

(7.1) \2xL(a) + y(2b + œ + œ)\ < 2L(a). 

Now, by Lemmas 7.1 and 6.1, L(a)\ â and L(a)\N(b + co). Also, 

(7.2) 4N(b + co) = (2b + oo + co')2 - â\ 

thus, L(a)\2b + co + œ' and, from (7.1), we get 

(7.3) 2xL(a) + >>(2ft + a> + to') = 97 L(a), 

where 97 = 0,1, or - 1 . Hence, 2a = rj L(a) + v(eo - co'). Since |a|, |a' | 
< L(a), we get L(a) + \y\(co-co') < 2L(a) when rj ^ 0. In this case, 
then, L(a) > |>>|(6o - co') ̂  y ^ > a contradiction. If rj = 0, then a = 
X<e> ~ co)\2. If co + eo' = 1, we have 2\y from (7.2) and \a\ ^ y 7 ^ > L(a), 
which is also a contradiction. If co 4- co' = 0, and |>>| = 1, then 4 | J and 
V^ß = (co- cof)/2 e a. 

THEOREM 7.3. If a is a primitive ambiguous ideal, there exists a reduced 
ambiguous ideal b such that b ~ a. 

PROOF. If 4|â and *J~â\2 e a, put /3 = <J~A\2\ otherwise, put ß = ^~J. 
If L(a) < ß we see from Theorem 5.3 and Lemma 7.2 that a is already 
reduced. Suppose L(a) > ß. Since ß e a, there must exist an ideal b such 
that ab = (j3), Since ß' = -ß, we see that \N(ß)\ = ß2 and L(b) < j8. 
Further, since a = a', we have 6 = 6'; hence, b is reduced, (L(a))b = (/3) 
a and b ~ a. 

If 4| J , let r = [2, & + co], where k = D (mod 2), be the prime ideal such 
that r2 = (2). 

THEOREM 7.4. If a is a reduced ambiguous ideal and et 7e (1), r, then L(a) 
or L(a)j2 is a nontrivial factor of D. 

PROOF. From the previous results we have L(a)\â and L(a) < \/~2F. 
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Thus, if L(a) ^ 1 (i.e., a # (1)), then L(a) is a nontrivial factor of A. If 
L(ct) is odd, then L(a) is a nontrivial factor of D. Since a2 = (£(a)), we 
see that if 2|L(a), then 4|J. Now, if 4|L(a), we get (2) |a which is not pos­
sible; thus, if L(a)/2 ^ 1 (a # r), then L(a)/2 is a nontrivial factor of D. 

Thus, if we can find a reduced ambiguous ideal of 0^, we can very 
likely find a factor of D. In the next set of results we develop one method 
of attempting to find such an ideal. 

THEOREM 7.5. If b is an ideal such that b2 = a = (a), where N(a) > 0, 
then there exists an ambiguous ideal c such that c ~ b. 

PROOF. Since N{a) > 0, we get L(b)2 = N(a). If we put ß = L(b) 4- a', 
then 

(7.4) F a' = L(b)a' + N(a) = L(b)ß. 

Now, since b2 = (a), we have (L(6))b' = (a)b and Q3L(b))b' = (a'|8)b. 
From (7.4), we find that if c = (/3)b, then c = c'. 

LEMMA 7.6. Le/ Û be a primitive principal ideal of (9X such that gcd (L(a), 
D) — 1. If L(a) = /2(f e Z), //^tf /Ae/r ex/s/s a« ideal b such that a = b2. 

PROOF. If a = [L(a), b + co], put b = [|/|, é + co]. Since L(a)|#(6 + co) 
and t\ L(a), we see that b is an ideal of (9X. If 2|f and co 4- co' = 0, we 
have zJ == 4D and (2)|Û, a contradiction; thus, it follows from (7.2), that 
(r, 2b 4- Û> + Û/) = 1. Let x, yeZ such that x\t\ 4- j(2è 4- Û) + o)') = 1. 
Putting c = x|f |Z> 4- y(b2 — toco'), w e have c = b (mod L(ct)). Thus, H w 
e b2 and a = b2. 

From our developments here we can see that one method of attempting 
to factor D would be to search for an ideal a = (a) such that L(a) is a 
perfect square and N(a) > 0. We could then find a reduced ambiguous 
ideal such that b ~ a. If L(b) ^ 1, 2 we would have a nontrivial factor 
of/) . 

Shanks [16] has developed a method of factoring, called SQUFOF, 
which utilizes this idea. His algorithm can be very simply stated as follows: 

1) In the regular continued fraction expansion of cio = <*), search for 
an odd value of m and a Qm-\ such that Qm-\\r = t2 (t e Z). 

2) Compute the regular continued fraction of <̂ 0 = (Pm + y/~D)jr\t\ 
= (P0 + A/I7)/ÔO until we find Pk = Pk_v Then Qk-i/r or g*_i/2r is a 
factor of Z). 

We now explain why this algorithm works. We first remark that an 

= [ô»-i/r> (^»-i - V^/r] is reduced, as ÛI = [1, co] is. We have 

(7.5) (dm)am = (L(aJ) (L(0l) = 1) 

and N{0m) > 0, by (4.3). Thus, a'm = (flm) and L{a'm) = f2. If c = [|f |, 
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ÇPm_i - VD)/r], then c' = [|f|, {Pm- ^ D)jr]9 and_c2 = am. Now L(c) 
= \/L(am) and am is reduced; thus, L(c) < ^ J < *JAß and c is reduced. 
If 6i = c', then $x is reduced and 

(7.6) Bf = C 

By Theorems 7.5 and 7.3, there must exist a reduced ambiguous ideal 
b such that b ~ bi. Now bs = [ßs_i/r, ( P ^ - y ^ / r ] = féU/r, 
(Ps + VD)/r). If Ps = Ps_!, we have bs = ft. Also, by (4.7), 

0« = (Ps + V~D)/Qs-i > 1 and - 1 < 0W'< 0. 

Futher, 

&_i = (Ps_i + V^D)lQs-i > 1 and - 1 < ^ < 0. 

It follows that if bs = h'S9 then 6(
g

s) = <j>s-\\ for, we can not have two dis­
tinct minima adjacent to 1 in the lattice which corresponds to bs. Thus 
Ps = Ps_i if and only if bs = b's. 

If we define Sk by (1(^)6^ = (L(b*))bb we have (L(b*)K = 
(L(aJÖi), from (7.5), and the results b\ = bkb'k = (L(6*), L ^ ) 2 = L(aw). 
If 02L(am)/L(b„) < i, then ÔpL(am)/L(bk) < 1. Since 02L(aw)/L(>) e am9 a re­
duced ideal, this can not be; hence, 0%L(am)/L(bk) > 1, 0m = d2

kL(am)lL(bk), 
and d(bk9 bi) = (</(am, aO/2) + 7 , where 7 = (l/2)log(L(b,)/L(aJ). Since 
I57I < (1/4) log J , we would expect, in view of (4.9), that k « w/2. Thus, 
in step (2) of SQUFOF, we need only go roughly half the distance in the 
continued fraction expansion of 0O that we did in the continued fraction 
expansion of <f>0. 

It might occur that the factor L(bk) or L(bk)/2 is trivial. Shanks has a 
way of avoiding this possibility by saving, as he proceeds through the 
continued fraction expansion of (f>0, those values of t that would lead to 
a trivial factorization. If Qm-\\r = t2 for any of these saved values of /, 
the algorithm just continues on to find another square Qjr value. We 
can do this by noting that b^bi is principal, primitive, and L(bkb{) < ^ A /2, 
when bk = (1) or r. Thus, as = bkb[, for some s. Since 

a2 = {L{bk))b? = (L{bk))am, 

we find em = e2J L(bk) and 

d(aS9 ûi) = d(am9 ax)ß + (log L(6*))/2 < d(am9 ax). 

Now 

L(am) = L(as)
2/ L(bkV < <fä ; 

hence, if we save those values of t such that t = Qjr for some s and 
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(\/J, t odd 
t2 < { __ 

[4^/A, t even 

then we cannot get a trivial factorization if Qm-\\r does not equal any of 
these stored values of t2. 

It can also occur that the period length p is too small to admit any useful 
Qjr values. In this case one can replace D by a small multiple of D and 
try again. This algorithm would seem (see Monier [6]) to factor D in 
0(/)(i/4)+e) operations. Note that, by (4.6), each of the numbers produced 
as this algorithm executes occupies about half of the storage space needed 
by D. 

It might be argued that we have assumed that our D here must be 
square-free. However, if, instead of using ideals of &#• we use ideals of 
the integral domain yn = [\, nco], the above theory, with minor modifica­
tions, will still go through. The only difference is that we use nco instead 
of co and n2A instead of A. Thus, if D = f2d, where d is square-free, then 
we need only work with ideals in «/"/. That is, we still have co = (r — 1 + 
<y/~D)/r and A = 4D/r2. In fact, we can work in yrf; in which case A = 
AD and co = \/~D. If we do this, then we can assume that r = 1 in the 
SQUFOF algorithm given above. Also, we can assume that r = 1 in the 
description of the Morrison-Brillhartalgorithm given below. 

Another application of these ideas can be made to the well-known 
factoring algorithm of Morrison and Brillhart [7], now commonly re­
ferred to as CFRAC. In this algorithm we expand cf>0 = co into a regular 
continued fraction and trial divide each of the Q{ values by each prime 
in a set called the factor base FB. We usually select FB = {q\q prime, (D/q) = 
1, q < /?}, where B is some preselected factor bound. We attempt to find 
a set Q = {Qs-i \j= 1, 2, 3, . . . , t} such that, by using the primes of FB, 
we can completely factor each of the Qs _x values and 

(7.7) n ( - l ) " - 1 &._!//-= L2 (L6Z) . 

From (4.2) and (4.5), we know that if Gn_2 = rA„_2 - (r - 1) Bn„2 

(mod Z)), then 

GU^i-Xy-^rQ^ (mod/)); 

thus M2 = N2 (mod /)), where 

N = rlL and M = f] G5y_2 ( m o d D)> 

If we calculate F = gcd(M — N, D) we often find that F is a non-
trivial factor of D. Pomerance [9] has shown that under reasonable heur­
istic assumptions we could expect to factor D by this method in about 
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exp (^2 log D log log D) operations. This technique is one of the most 
powerful factoring routines currently known. Pomerance and Wag-
staff [10] have used it to factor numbers of up to 54 digits. 

One problem that develops in using this routine is the evaluation of the 
G„_2 values and the storage of these for which Qn-\/r factors completely 
over FB. Shanks has pointed out that we can simply evaluate (and store) 
the appropriate Pn_i values. By (4.6), these numbers require about half 
the storage space needed by the Gn-2 values and, since they have to be 
computed to obtain the Qn-\ values, the cost of their evaluation is es­
sentially free. 

We now describe a version of Shanks' idea. If a = f[y=i Û5/ and (k)h 
= a, where k e Z and 6 is primitive, then L(b) = (L/k)2. Now, 6 is prin­
cipal and (k)h = (/3), where ß = IT/=i05y. Since N(ß) = L2, we have 
6 = (a), where N(a) > 0. Since we know the values of Ps._i, Qs~i and 
we also have the complete factorization of ßs._ l5 we can easily determine 
the prime ideal decomposition of as.. This allows us, by using the multi­
plication and reduction routines, to find a reduced ideal b such that b ~ c 
and c2 = 6. Since a is principal, we let am ~ a, where, by (6.9), we have 

(7.8) d(am, cti) = S d(asp a{) + rj. 
y=i 

Here rj is likely to be small compared to 2]/=i ^(<V, ÛI) a n d d(b9 a) « 
d(am9 ÛI)/2. From (4.9) we also get d(am9 cti) » / Sy=i sj- If w e P u t u Ä 

(1/2) 2]J.=1 sj, we can very quickly find an ideal av where d(aV9 cti) « 
d(au, ai). We simply observe from (4.9) that d(ah+i9 at) » J(aÄ, cti) + 
rf(a,-, ÛI); thus, by using (6.9), we see that we can find av in about 
0(log v) multiplication and reduction steps. We then have d(av, cti) Ä 

rf(am, ai)/2 « </(b, ai). 
Let gi be a reduced ideal equivalent to g = b'tv We note that g2 = 

(b')2a% = (A), where 7V(A) > 0. Thus, there must exist a g„ such that gw 

= ĝ  and this will produce a factor of D. Further, by (6.12) and (6.14), 
we have 

<%, gi) or <%;, g i) « | d(b, ai) - rffo, ai)|, 

which is small. Hence, after finding b and ay, w^ should not have much 
work to do to find Q„. We simply use both gx and g{ and develop two con­
tinued fractions until we find that gM = ĝ  for one of them. Since all that 
is done here is multiplication and reduction, only the values of the P's 
and g's are required. Also, as noted by Shanks, knowledge of the prime 
ideal factorization of the as 's often allows us to abort this process before 
we would find a trivial factor of D. 

When Shanks first discovered this idea, the problem of generating and 
storing the Gn values was not considered to be much of a bottleneck in the 



CONTINUED FRACTIONS 645 

running of CFRAC, as only sequential machines were being used and 
90% of the machine time was spent in the trial division of the Q values. 
Now, however, with the proposed use of highly parallel machines, it might 
be advisable to implement these ideas. Incidentally, it was through these 
investigations that Shanks discovered SQUFOF. 

8. The Voronoi continued fraction. We will now deal with the problem 
of finding the reduced ideals in the complex cubic field X = Q(<5). As 
we have seen in §3, this is equivalent to the problem of finding the 
chain of minima (3.5) in a reduced lattice j ^ = & with basis {1, /n, v). 
As in the case with 5£ — ¥, this can be done when we know how to find 
dg, the minimum adjacent to 1, in any reduced latticed. From Theorem 
4.1, we saw that this is an easy problem when <£ = £f\ however, when 
S? = ^ , the problem is somewhat more difficult. It was solved by Voronoi 
[19] in 1896. In what follows, we will give an algorithm for finding 0g 

which is similar to one given by Voronoi. For a complete discussion and 
proof of this algorithm we refer the reader to Williams, Cormack and 
Seah [20]. 

Let a e £ We define a special projection of a called the puncture P(a) 
to be the 2-vector (£a, rja\ where £a = (2a - a - a")/2, r]a = Im(a). 
We also define Ç« = Re(a). We note that a = Ç« + £a, £a+j8 = ?a 4- £ß, 
Va+ß = Va + Vß, Ça+/3 = Za + Ç/j, and, if ß = a + a(a e Z), then P(ß) = 
P(a), Zß = a 4- Ca- Also, P{ — a) = —P(a). Hence, the set of all punctures 
formed from all the elements of & forms a lattice S£{p) (in the more general 
sense mentioned at the beginning of §3) with basis {P{pi), P(v)}. If 0t 
is a reduced lattice and P(fj) = (f̂ , ^ ) , P(v) = (£,, 7]v), then Voronoi [19, 
§30] showed that 

(8.1) Er= l e ^ - f ^ l > VT/2 . 

In [20] it is shown that there exist 0, cjj e 01 such that {P(<f>), P(<p)} is a 
basis of JS?(*> and 

£* > Ê0 > 0; 9 ? ^ < 0, |ç0 | > 1^1, 

M > VT/4, 1̂ 1 < 1 - VT/4, 2 1̂ 1 > 1 - 1̂ 1. 

Further, such a pair (^, ^) can be found by using a continued fraction 
algorithm in Sf{p) as described in [2] or [20] and it is easy to show that this 
procedure will terminate in 0(log L(a)) operations. Actually, there exist 
^, <J>e& such that fy > fy > 0, TJ^ < 0, | ^ | < 1/2, | ^ | > 1/2, but 
these may be difficult for a computer to find because of precision problems 
encountered when attempting to store irrational numbers in a computer; 
hence, the more relaxed conditions given above are preferable for com­
putational purposes. In [20] the following theorem is proved. 
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THEOREM 8.1. If dg is the minimum adjacent to 1 in a reduced lattice 
@, then P(0g) must be one of P'(0), P(0), P(<f> - 0), P{<j) + 0), P(2çJ + 0). 

Thus, once 0 and cf; have been found, there are only a few choices for 
P(dg). We need only find that 0 such that P(d)is one of these choices |0'| < 
1 and 0(> 0) is least. Then 0^ = 0. Since 

(8.2) |a'|2 = ni + g, 

we must have | ^ | < 1 ; hence, 0 must be Ö + ß where /3 e {<j>, (J), cj> — (J>, 
$ + (]), 2(j) + (j)} and a = [ — Zßl or [— QJ + 1. It is therefore necessary 
to find the least 0 of these 10 possibilities for which |0'| < 1. 

If @i = @ is reduced, then the chain (3.5) can be constructed by the 
repetition of the above process. By using methods developed in Williams 
and Dueck [23], it is possible to show that if ^ is any reduced lattice, then 

0«0^1 )0^'+ 2 )0^3 )0^'+ 4 ) > 2. 

Indeed, if these methods are refined somewhat, it is possible to show that 

e!fdg
i+l)dg

i+2)eg
i+^ > 2. 

This is the best result possible, however, as there are many examples where 

Thus, we have 

9£'>0£+1)0£+2) < 2. 

(8.3) dn = \[0? > 2c(*-1>/4], 

a result analogous to (4.8). While we do not at the moment have a rule like 
Levy's law concerning the Voronoi Continued Fraction, it seems from 
empirical evidence that log 6n » vn where 1.12 < v < 1.13. 

If EQ (> 1) is the fundamental unit of J T and <%x
 iS the lattice that cor­

responds to the ideal ai of (9X, then e0 is a minimum of <%x and 6p+i = <s0 

for some p. Also ap+t = at(t ^ 1). Thus, this algorithm can be used to 
find £0. Several years ago Ray Steiner observed that Voronoi's algorithm 
for finding e0 is very robust in the sense that, if occasional errors are made 
in the selection for 6g

n) in <%n, the algorithm will still find e0 as long as these 
erroneous values for 0{

g
n) can be embedded together with 1 in a basis of 

@£n. The reason this phenomenon occurs for the algorithm given here is 
contained in the next theorem, a proof of which is given in [22] (Theorem 
7.7). 

THEOREM 8.2. If& has 1 as a basis element but £% is not reduced, then 
there exists pg^& and a^0t such that 0 < pg < 1, \pg\ < 1, {1, pg, a} 
is a basis of ûë, and P(pg) is one of P(<f>), P(<fi), P{<j) - cp), P(<f> + 0), 
P(2<p + <j>). 
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In view of the remarks made in §3, Voronoi's algorithm can also be 
used to find pk e <%x and a reduced lattice <%k such that pk@k - @i. 
Hence, Voronoi's algorithm is completely analogous to the continued 
fraction (4.1) above. The reason that this explains Steiner's observation is 
that if the 0*f selected for £%n is not correct, then &n+i is not a reduced 
lattice. Since Voronoi's algorithm will, however, find p* e £%n+\ and 
@*+1 such that p*&*+i = &n+i and ^*+ 1 is reduced, we see that the 
algorithm will correct itself, provided the errors in evaluating d(

g
n) are not 

too frequent. 
In the next section we will need some results concerning elements of <% 

and their punctures. We first define what we mean by co* for any co e ^ . 
If P(co) = (£Û„ 7)ta) is the puncture of co, let co* be that element of 0t such 
that P{of) = P(co), \o)*'\ < 1, and \co*\ is minimal. We point out here 
that if ItyJ > 1, then co* can not exist by (8.2). Since there must be some 
aeZ such that \Ha - a\ g 1/2, we find that if \TJW\ < A / T / 2 , then co* 
must exist. The next two lemmas given here are proved in [22] as Lemmas 
7.2 and 7.4, respectively. 

LEMMA 8.3. If co e ài, \co'\ < 1 and \co\ < 1, then £ œ < 1 + y^ - rjl < 2. 

LEMMA 8.4. If co e m, of exists and |£J < ^\ - rjl, then \of\ < 1. 

LEMMA 8.5. Let co e & and let ßw = 1 - y^ - ^ If co* exists, 1/2 
< \co*\ < \andO < Çw< \Q)\*9 then |ÇJ < ß„. 

PROOF. Certainly, by (8.2), we have |ÇW*| < 1. Suppose 1̂ *1 > ßa, and 
consider the following two cases. 

Case \.co*>0. If C* < 0, then | U = - L* > & and <»* = |co*| = 
CS + f» < f/i - j3a» which is not possible. If £w* > 0, then ßw < Çw*< l 
and (1 - Ç*)2 + vl < l ; thus> if z = Û>* - 1, then | z ' | < 1 and | z | < 

Owe 2. co* < 0. If £„* > 0, then co* = £«* + £*< 0 and we get C* < 
0, which is impossible; thus |£w*| = — C)ü)*> ßü) and — Çw* < 1. It fol­
lows that (1 + Qa*)2 + 7)1, < 1 and, if x = ^* + U w e n a v e Iz'l < U 
Ixl < |o)*|. 

In both cases we produce a % e & such that P(%) = P(co*), \%'\ < 1, 
\x\ < of. This contradicts the definition oîof. If 1̂ *1 = ßw, then |^'| = 
1 and this means that % — ± 1, which is also not possible. 

In order to get some idea of how rapidly Voronoi's algorithm will find 
a reduced ideal equivalent to a given primitive ideal of jf, we will need 
the following theorem. We first define the set B a Z2 as 

B = {(0, 1), (0, 2), (1, 0), (2, 0), (1, - 1 ) , (2, - 1 ) , (3, - 1 ) , (1, 1), (2, 2), 

(1, 2), (1, 3), (2, 3), (2, 4), (2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)}. 

file:///andO
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THEOREM 8.6. Suppose (% is not reduced and pg is that element of & such 
that \p'g\ < I, P(pg) is one of i>(0), P{cjj\ P(<f> - <fi), P(</> + 0), P(2<f> + 0), 
and \pg\ is least. If\pg\ > 2/3, and co(^ 0) e & is such that \œ\ < 1, \œ'\ < 
1, then ± P((o) = aP{(j)) 4- bP((Jj), where (a, b) e B. 

PROOF. Since — &> e <% and | — œ\ = \œ\, we will only consider those 
values of œ such that fw > 0. Since P(œ) e^(P\ we have P(co) = aP(<fi) + 
bP((/j), where (a, b) e Z2. Now, if a > 0, we must have b > 0 or else £œ < 
0. Since |T?J = \a\ | ^ | 4- 6 |%,| > 1, for b ^ 2, we can only have b = 1. 
In this case, however, ^ < 0; thus, we must have a ^ 0. If a = 0, then 
1 > l??J = 1*1 \v<f>\ anc* 1*1 = 2- Since ^ > 0, we can only have b = 1 
or 2. 

If b = 0, then since ^ < 2, by Lemma 8.3, we have £̂  < 2/3 for 
a ^ 3. Thus, since 0* exists, we get |0*| > 2/3, \^\ < |0*|, and £| 4-
^ < (2/3)2 4- (1 - V~T/4)2 < j ; hence, |0*| < 1 by Lemma 8.4. Since 
1̂ *1 =§ £, + IC^I, l%l = l?J/a, ^ = £» < 1 + V r ^ f f l . by Lemma 8.3, 
and |^*| < ßf, by Lemma 8.5, we find that 

0* < (0 + V\ - a* r]l)la) + 1 - V n ^ z £ 2/flf ^ 2/3, 

a contradiction. 
If b S - 2 , then | 7 J = Ä | ^ | + |A| | ^ | > | ^ | + 2 | ^ | > 1, which is 

not possible. If b = — 1 and a ^ 4, we have £^ < 2/3 again. Further, since 
\VJ <_ !> I%l > V3/4, and \VJ = a\^\ = | ^ | , we have 1 > | ç j > a\rj^\ 
4- A/3/4. Thus, by using Lemma 8.3, 8.4 and 8.5 as before, we find that 
|0*| > 2/3 and 

î *i <c* + ß+< ((i + vi-(fli^i + v3/4)2)/(* - D) +1 - v T ^ l 
^ ( A / 1 - 3/16 + l ) / ( a - 1) <2 /3 , 

a contradiction. 
Suppose & ̂  a > 0. If d = b — a ^ 0, we have 1 > \T]J = a\rjf 4- T]^\ 

4- d\q$\\ thus, d ^ 2. If <̂  = 0, we can use the same reasoning as that 
used earlier with (j) replaced by </> 4- 0 to show that « = 1 or 2 only. If 
1^ + y</,\ > 1/2, then \TJ^\ > 1/2; thus, a + d < 2, which can not be so 
for a, b > 0. If \T]9 4- ^ | < 1/2, then x = (0 4- 0)* exists. If a ^ 3, then 
£z < £<u/3 < 2/3 and | ^ | < 1/3; hence, |^| < 1, by Lemma 8.4, and 
\X\ ^ \pg\ > 2/3. We also have 1 > \rjj > a | ^ | 4- A/3/4; thus, by using 
reasoning similar to that used in the case of b = 1 and a ^ 4, we will 
find that |^| < 2/3, which is, again, a contradiction. 

We need only deal now with the case of a > b ^ 1. Since £^ < 2/a, 
we have ^ < 2/3, for a ^ 3 and 2/3 < |çi*| < 1. We must, then, have 
10*1 ^ ^ 4- ICSI < 2 / f l + l + Vl - (1 - v"3/4)2. This is less than 
2/3 when a ^ 5. 
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9. Ideals in Q(5). Let a be any primitive ideal of (9X, where j f = Q(d). 
In [18], Voronoi showed that a = [a1? a2, aß], where cc\ = P = L(a), 
a2 = P'Cw + <5)/r, a3 = />"(/! + «'5 + ö2)lz2a, 0 <m < zP\P\ 0 < 
n < zaP'/P", 0 < n < z2aPjP". He also showed how the rational in­
tegers cr, z, P, P\ P'\ m, n, ri could be computed. The values of G and z 
are invariant for any fixed J T and z6a2A = Ap, where Ap is the discriminant 
of/?(*). Also, gcdCP', P") = 1, P 'P" |Pand JV(Û) = PP'P". 

Now, if ^ is the lattice with basis {1, ju, v}, where fi = cr2/£(ct), v = 
az/L(a), we have £ = P'P , /

v^[jf/2P2r3(7. If a is a reduced ideal, then 
^ is a reduced lattice and, by (8.1), we get 

(9.1) L(a)3/N(a) = P2\P'P" < V R l / ï 

It follows that, for a reduced ideal a, we must have 

(9.2) L(a) < V\Ä\ß, 

a result analogous to that of Theorem 5.2. This bound is actually very 
good. For example, if ö = %/T), where D = k3 + 3k is square-free, it 
can be shown that if aY = 3Â:3 - 3k2 4- 9k - 1, a2 = k3 - 2k2 + 5k + 
(* - l)2 <5 + (Â: + 1)<52, a3 = 2/c3 - 3k2 - 4k + 1 + 2(k2 + 1)5 + 
(3— /:)<52, then a = [ai, a2, a3] is a reduced ideal. In this case L(a) = 
3A:3 - 3k2 + 9k - 1 is quite close to the value 3(A:3 + 3*) of V\A\]3. 

We also have a result analogous to that of Theorem 5.3. 

THEOREM 9.1. If a is a primitive ideal and L(a)A < ^\A\\21 N(a), then 
a must be a reduced ideal. 

PROOF. Suppose a is not a reduced ideal. There must exist some a e a 
such that a ± 0, 0 < a < L(a) and \a'\ < L(a). If we put ß = Re(a'), 
y = Im(a')> we get 

\a - cc'\2 + |a' - a"\2 + \a" - a\2 = 2(/3 - a)2 + 6 r
2. 

Now \a'\2 = /32 + r2 < L(a)2; hence, |/3| < L(a\ \r\ < L(a). If ß > 0, 
then |/3 - a| < L(a) and 2(ß - a)2 + 6 r

2 < 8 L(a)2. If 0 < 0, then \ß-a\ 
< L(a) - ß and f < L(a)2 - ß2; thus, 

2(0 - a)2 4- 6 r
2 < 8L(a)2 - 4L(a)ß - 4/32 < 9L(a)2. 

If d(a) = (a — a02(a ' — a")2(a" — a)2, then, since the geometric mean 
can not exceed the arithmetic mean, we have \d(a)\ < (9L(a)2/3)3 = 
27L(a)6. Since a2 e a, we must have L(a)2 d(a) = A[a^ cc2, a3] |X|2, where 
a = [ai, a2, a3] and ^ is a matrix with rational integer entries. If d(cc) = 
0, then a must be a rational integer and L(a)\a, which is not possible; 
thus \X\2 ^ 1. Since A[ah a2, a3] = JV(a)2J, we get L(a)4/#(a) > V\Z\ITJ 
when a is not reduced, and our result follows. 
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If a is any primitive ideal of (9#, we know, by Theorem 3.3, and its co­
rollary that there exists 1 e a such that (X)b = (L(b))a and 6 is a reduced 
ideal. Further, A = L{a)pm where 

Pn=nf\\pf\,\pf\< U\P?'\ < 1 . 
1=1 

Indeed, by Theorem 8.6, our version of Voronoi's algorithm will find 
pf such that \pf\ < 2/3 as long as / > 2\B\ = 38. Since N(a)\N(X) and 
\N(X)\ = \X\ U'l2, we also have 

\X\ = N(X)l\k'\* > N(a)/L(a¥ ^ \/L(a). 

Hence, 

(9.3) 1/L(a) < |A| S Ua), 1 < |A'| ^ L(a). 

By (3.1), we have 

(p®Uai))ai+i = (£(ctm)) a(-, (ÛI = a), 

thus, 

N(p?) = L ( a m ) 3 N(adlN(ai+1) L(a,)3. 

Since IpW'l < 1, we have L(a m ) 3 7V(a,)/7V(a/+1)L(a,)3 < 2/3 for i £ * -
39. Thus, if« ^ 39, we get 

iV(o1)L(o„-i)3/Ar(a„-i)L(a1)3 < (2/3)»-«». 
Since we may assume that b = an and an-\ is not reduced, we have 
L(aB_i)^(an_i) > ^ 1 ^ 2 7 , by Theorem 9.1. Since L{an.x) < L{an^fl 
JV(aw_i), it follows that L(aw_x)

3/iV(aM_i) > </|J|/27. Hence, the number of 
ideals « that our algorithm must find before finding a reduced ideal an 

satisfies the inequality 

(9.4) n < 39 + (log (L(a)3/(iV(a) V|JÌ/27))/log (3/2)), 

a result analogous to (5.4). 

If a = [ai, a2, #3] and b = [/3i, /32, /3s] are any two ideals of (9X then 
c = ab = [ocißi, a2ßi,. . ., 0:3^3]. If we let 2>i, A2, A3,..., A9 represent the 
values of aißi, a2ßi, • • • , <x3/33, then our multiplication algorithm must 
find Ai, A2, A3 such that c = [A\, A2, yl3]. We may certainly assume that 
Xi = {a{ + bid + Q<52)/ra, where m = cr2r and a,-, 6,-, c,- e Z ( / = 1,2, 3, 
. . ., 9) can be easily computed. It is not difficult to show that if 

Ax = Ax\m, A2 = (A2 + £2<5)/m, 4 , = (A3 + 53<5 + Czô
2)/m, 

(Al9 A2, B2, A3, B3, C 3 eZ) , 

then C3 = ged (ci, c2, c3,. . . , c9). 
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If 

then 

Also, 

If 

9 

S XiCi = C3 (Xi e Z), 

9 9 

» = 1 1 = 1 

£2 = gcd {(6, - 53c,/C3)|i = 1, 2, 3, . . . , 9}. 

2 > A - - ^3Q/C3) = Ä2and S^c , . = 0, (j,, e Z), 

then ^ 2 = 2?=i 7A--
Finally, 

^ = gcd {(a, - A2(bi - 2*3c,/C3) - A3cJC3)\i = 1, 2, 3, . . . , 9}. 

By using the results given in [18], it is often possible to shorten this pro­
cedure; however, the details can be very tedious (see [22]). In principle, 
though, one sees that ideal multiplication can be accomplished by finding 
some gcd's and solving some linear Diophantine equations, a process 
requiring 0(\og(<TT2L(a)L(b))) operations. We can also compute a basis of 
a' from that of a in 0(log (ÖT2L(U)) operations. (Note that if a is primi­
tive, we must have L(a') = L(a).) We point out here that if a is reduced, 
it is not necessarily the case that a' is reduced, the reason why the Voronoi 
algorithm, starting with a\ = (1), does not have the nice symmetry prop­
erties of the regular continued fraction expansion of CD. 

10. Algorithms and some numerical results. As we have seen, many of 
the results concerning Q(^/~D) given in the first part of this paper have 
analogues in the Q(5) case. In fact, we can define for this latter case a dis­
tance, d(am, an), just as we did for ideals in Q(<\/~D). That is, we define 
d(am, an) = log (0J0m\ when n i> m and ax is reduced. With this definition 
and the results proved above we can derive several facts concerning 
d(am, aM). If ûi = (1), &i is a reduced ideal and (s) ci = an bw, where Ci is 
primitive and «yeZ, then there exists some reduced ck ~ Ci and ck = bt. 
In fact, if (L(ci)pk)ck = (L(c*))ci, then we can show, as was done in §6, 
that 

(10.1) d(bt9 6i) = d(bm, Bi) + dia», ax) + V, 

where 
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77 = log f L ( Q * 6 > * ^ 
' [0g\L(an)L(hm))' 

By (9.3) and (9.2), we have - 2 1 o g | J / 3 | < rj < 0. 
If ai is a reduced ideal such that ai = a[ (e.g., ai = (1)), let 1 <. n ^ p 

(OnL(ai))an = (L(an))ai and (zjL(bi))bj = (L(by))bi, where bi = a'n and 
bj is reduced. Since by ^ bi = a'n ~ a{ = cti, we must have by = ag for 
some q. We can also show that 

(10.2) d(aq, a1) = R- d(a», ax) + l o g ( ^ J ^ 

when this is positive. (From (9.3) and the fact that L(bi) = L(an), we 
see that the right hand side of (10.2) must be positive when ai = (1); 
for, in this case \d'Qd'n L(ai)/L(an) z)\ < 1.) Also, 

-2 log V0Ï3 < 1 °g ( J 7^ f ) < ]°g V073|. 

If ai = (1), bi is a reduced ideal and (s) ci = agbw, where a ^ c O 
is as described above, then, by combining (9.1) and (9.2), we get 

d(bt, h) = R + d(bm, bi) - dia», cti) + 7], 

where {L{z^p^bt = (L(bt))ci and bt is reduced. Here 

- 3 log IJ/31 < 77 = l o g ( ^ ^ ^ ) < (1/2)iog IJ/31. 

Thus, if d(bm, bi) > d(a„, a0 + 3 log |J /3 | , we get 

(10.3) rf(6„ bi) = rf(6m, bi) - rf(a„ ai) + 97, 

when bt ~ bma'n and bt is computed in the manner described above using 
our version of Voronoi's algorithm. 

With these results we see that the algorithm of §6 can be modified to 
solve the problem of determining when a given ideal b in Q(<5) is principal. 
We need only replace (6.15) by 

d(at9 cti) > 3 log | J /3 | + d(as, ax) 

and (6.16) by 

1 < R/(d(as, ai) - (l/2)log IJ/31). 

Now Landau [4] has shown that R = 0(|zf|1/2+£); hence, by (9.4) and (8.3) 
we see that once we find bm ~ b with bm reduced (a process requiring 
0(log L(b)) steps by (9.4)), we require a further 0(|J | ( 1 / 4 ) + £) steps to solve 
the problem. 
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We can also, as was done in §6, develop algorithms for finding R and 
h, the gcd(a, ß) when h = 1, a, ß e (9X, and the class group structure of 
jf. Further, we can determine R and h in 0(|zJ|(1/5)+£) operations under 
generalized Riemann Hypotheses. For the complete details of finding 
R by this technique when ö = %/T)(D e Z), we refer the reader to the 
voluminous [22]. As an example, we mention that we were able, by means 
of this technique, to find that when D — 2124689657, we have R = 
6127255313.478815 and h = 1. This result required only 15 minutes of 
computer time to calculate. Had Voronoi's continued fraction algorithm 
only been used to find R, it would have required about 80 days of time on 
the same machine. Somewhat whimsically we point out that if {x, y, z] ^ 
{1, 0, 0} is any solution set of the Diophantine equation 

(10.4) x3 + Dy3 + DW - 3Dxyz = 1, 

for the above Z), the value of R here means that 

min {|x|, \y\, \z\} > 10109. 

A lower bound of this magnitude on the solutions of a Diophantine 
equation would ordinarily cause us to regard the equation as having no 
further solution. But, of course, we know that (10.4) has an infinitude of 
solutions. 

We have also written a computer program which determines the class 
group G for any pure cubic field. This was done by using the results 
developed here together with the ideas of [12], [17], and [11] as they apply 
to the Q(d) case. The only real difference in the techniques is in the com­
putation of a stock of ideals from which to develop G. This was done 
by using the results of Voronoi [18] to find ideals a with L(a) a prime. 
A method of finding cube roots modulo L(a) wad developed from the idea 
of Shanks [14]. With this program we were able to find the structure of all 
G for each pure cubic field Q( %/~D) with D < 30000. This has allowed us 
to complete the table of 2-types of the class groups for all D < 10000 
begun by Eisenbeis, Frey and Ommerborn [1]. (There were 39 cases that 
they could not compute by their methods.) 

Let G = C(fìi) x C(n2) x • • • x C(nk)9 where C(n) is a cyclic group of 
order «, be the essentially unique canonical form of G; that is nt-1 n, if 
/ > /. We say that rm is the m-rank of G if m divides exactly rm of these 
numbers. Up to D = 30000 we have found that rp ^ 1 for all primes 
p > 5. We have only one example of r5 = 2 and that occurs for D = 
10263, where G = C(90) x C(5). The largest 2-rank found is 3 and the 
largest 3-rank found is 4. We found 27 values of D for which the 9-rank 
is 2 and we found 24 values of D for which the 4-rank is 2. We found no 
other values of n for which rn ^ 2. We mention, in conclusion, that the 
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largest value of h which we found is h = 2412, for D = 28365 and G = 
C(804) x C(3). 
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