
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 16, Number 1, Winter 1986 

UNIVALENT FUNCTIONS HAVING UNIVALENT DERIVATIVES 

HERB SILVERMAN 

ABSTRACT. For functions of the form f(z) = z — £»=2 anz
n

$ 

a„ ^ 0, that are analytic and univalent in the unit disk, we inves­
tigate subclasses of functions having some or all of their deriva­
tives univalent. Sufficient conditions are given for the functions to 
be in the various classes and a sharp upper bound for the second 
coefficient of functions whose derivatives are all univalent is found. 
Surprisingly, there is no function in the class whose second co­
efficient attains this sharp upper lound. 

1. Introduction. A function/(z) = z + L ^ 2 anzn *s said to be in the 
family S if it is analytic and univalent in the unit disk A — {\z\ < 1}. If 
/ m a y further be expressed as 

CO 

(1) f(z) = z - £ anz\ a„ ̂  0. 
w=2 

then / i s said to be in the family T. In [6] it is shown that functions of the 
form (1) are in T if and only if £ ^ 2 nan == j- This enabled us to show 
that the extreme points of T were z and z — zn/n (n = 2, 3 , . . .). 

Denote, by 7\, the subfamily of T consisting of functions / for which 
f is also univalent in A. Since the second coefficient of a function in 7\ 
cannot vanish, the only extreme point of T that is also a member of 7\ 
is z — z2/2. Although Th unlike T, cannot easily be characterized by its 
coefficients, we do find separate sufficient and necessary conditions that 
lead to various coefficient bounds. We also investigate subfamilies of T 
for which higher order derivatives are univalent and obtain a sharp upper 
bound for the second coefficient when all derivatives are univalent. 

2. The family T . 
THEOREM 1. Iff(z) = z - £ ^ 2 anz

n e Tl9 then a2 ^ 1/2 and 
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r - z-2/2 ^ \f{z)\ ^ r + z-2/2, (|z| = r < 1), 

1 - r ^ \f'(z)\ g 1 + r, (|z| = r < 1). 

Equality holds only for f(z) — z — z2/2. 

PROOF. In [6], it is shown that these bounds are valid for T, and, con­
sequently, for the subfamily T\. 

We now give a sufficient condition for functions of the form (1) to have 
a univalent derivative. 

THEOREM 2. Iff(z) = z - 2]^=2 anz
n e T, a2 > 0, then f e Tx if 

oc 

(2) J^(n - ì)n an^ 2a2. 

PROOF. The function/'(z) = 1 - Z!S=2« < V _ 1 is univalent in A if 
and only if the normalized function 

g(z) = ±=J-*L = z + L ^ i ^ - z « = z + 2 V 
^2 n=2 ^2 n=2 

is in S. The result follows upon noting that ££L2 « bn ^ 1 is a sufficient 
condition for g to be in S. 

Inequality (2) is sharp in the following sense: Given e > 0, there exists 
a sequence {an}, 0 < a2 < 1/2, such that 2 ^ 3 ( « — 1)« an = 2a2 + e 
and /(z) = z — ££L2

 ö«zW e T — T\. To see this, set /(z) = z — #2z
2 

— ((2a2 -f e)/n(n + l))^n+1, where « is large enough to insure that 2a2 

+ (2a2 + e)/n g 1. Then fe T, but £(z) = (1 - f(z))/2a2 is not in S 
because g'{z) = 1 + (1 + el2a2)z

n~l = 0, for a point z0, |z0| < 1. 

COROLLARY 1. Iff(z) = z - £™=2 anz
n (an ^ 0, 0 < a2 ^ 1/3), fAe/i (2) 

/.s a sufficient condition for f to be in 7V 

PROOF. In view of Theorem 2, we need only show that fe T. Since 
2E^=3nan ^ E%L£n-l)n an ^ 2a2, we have ES^/ia« £ 2a2 + a2 £ 1, 
for a2 ^ 1/3. 

COROLLARY 2. 7/* {«„} w # complex sequence, a2 # 0, awrf aja2 ^ 0 /or 
« ^ 3, then f(z) = z + 2^=2 V A&y a univalent derivative in A if and 
only if J^^=3(n — l)n \an\ g 2 |a2|. # further, \a2\ ^ 1/3, f/ze« both f and 
f are univalent in A. 

PROOF. We have/ ' univelant in A if and only if 

s(z) = 1 -fi') = z - f (« + 1) l«„+ll z„ = z _ y b 2„ 
g() 2a2 h 2\a2\ h " 

is in T. Since 2^=2 n bn ^ \ is necessary and sufficient for g to be in T, 
the result follows. As in Corollary 1,/will also be in S if 2 \a2\ + \a2\ g 1. 
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3. Necessary Conditions for Tx. We next prove that (2) is necessary, as 
well as sufficient, for/in Tto be in 7i when/is a cubic polynomial. 

THEOREM 3. If f(z) = z - a2z
2 - a3z

3 (a2 > 0, a3 ^ 0), then fe Tx if 
and only if 

• f l - 2*2 3a3 ^ min < 
1*2 

PROOF. We have 3a3 <j! 1 — 2«2 if and only iff e T. On the other hand, 
/ ' is univalent in A if and only if g(z) = z 4- (3a3/2a2)z

2 e 5. But a neces­
sary and sufficient condition for g to be in S is that 3a3/2a2 ^ 1/2. This 
completes the proof. 

COROLLARY. If f(z) = z - a2z
2 - a3z

se 7i, /Aen #3 ^ 1/9. Equality 
holds if and only iff(z) = z - (l/3)z2 - (l/9)z3. 

PROOF. By Theorem 3, we must have 3a3 ^ a2 ^ (Ì — 3a3)/2, which 
means that a3 ^ 1/9. The only time this double inequality can hold, when 
a3 = 1/9, is when a2 = 1/3. 

From Theorem 3 and its corollary, one might be led to believe that 
(2) is both necessary and sufficient for a function to be in 7\ and that 1/9 
is an upper bound for the third coefficient. We shall show that neither of 
these is the case for quartics. But first we need a result due to Brannan 
and Brickman. 

THEOREM A [1] The function g(z) = z + b2z
2 + b3z

3, b2 and b3 real, is 
in S if and only if 

\b2\ â 0 + 3fta)/2, - 1 / 3 g is è 1/5, and 

\b2\ S 2V*s(l - h\ 1/5 â h è 1/3. 

Note that g in Theorem A cannot be in S if \b3\ > 1/3 because g' would 
then have a root in A. We are now ready to prove 

THEOREM 4. Iff(z) = z - a2z
2 - a3z

3 -- A4Z
4 G r l 9 ^e« a3 ^ ( V T - 1) 

/3. 77ze result is sharp, with equality for 

f{2) = 2 - | (2 - V l > 2 - ( V T 3 ~ ' ) 2 3 _ ( 2 ~ ^ T ) z 4 . 

PROOF. For a2 > 0, #3 ^ 0, and #4 ^ 0, we have/ ' univalent if and only 
if g(z) = z + (3a3/2a2)z

2 4- (2aja2)z
3 e S which, according to Theorem A, 

is equivalent to 

3#3 S a2 + 6tf4, 0 ^ û 4 g 02/IÖ, and 
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For fio be in T, we must also have 3#3 ^ 1 — 2a2 — 4a4. Thus, / e Ti 
if and only if 

(a2 + 604 
(3) 3 a 3 ^ m i n j , 0 ^ a4 ^ a2/l0 

[l - 2a2 - 4fl4 

and 

(4V2aA(a2 - 2fl4) 
(4) 3a3 ^ min < , a2/lO ^ <z4 ^ <32/6. 

[ l - 2ö2 - 4tf4 

The right side of (3) will be maximized at a point where a2 + 6Ö4 = 1 
— 2a2 — 4fl4, i.e., where 

(5) 3a2 + 10fl4 = 1. 

Set fl4 = a2t/10, 0 ^ t ^ 1, and note that (5) yields a2 = a2{t) =1/(3 + 0-
Now A(/) = a2(t) + 6a4(0 = (1 + 3//5)/(3 + t) ^ A(l) = 2/5, so that 

(6) 3a3 ^ 2/5, 0 ^ Û4 ^ a2/10. 

Similarly, the right side of (4) will be maximized at a point where 

(7) 4\/2a±(a2 - 2aA) = 1 - 2a2 - 4tf4. 

Setting 

(8) ö4 = fl2//6, 3 / 5 ^ / ^ 1 , 

we see that (7) is equivalent to 

(9) a2 = \ 
1 

2 L(3 + 0 + 2Vt(3 - t) 
3/5 ^ t ^ 1. 

With a2 = a2(t), defined by (9), and Û4 = tf4(/)> defined by (8), either side 
of (7) is maximized with / = 1. Thus, from (4), we have 

(10) 3a3 â 1 - 2fl2(l) - 4a4(l) = V T - 1, a2/10 ^ a4 = a2/6. 

Combining (6) and (10), it follows that a3 ^ (\/~2" ~~ 0/3 when fis in 7". 
Equality holds if and only if f(z) = z - a2(l)z

2 - (( V T - l)/3)z3 -
(«2(0/6)^. 

Before giving an upper bound for the third coefficient in the entire 
class Ti, we state a result due to Pick [3]. 

THEOREM B [3]. Iff(z) = z + £~=2 <V* e 5 w/ïA |/(z)| ^ Af, for z w J , 
fAe/i \a2\ ^ 2(1 - 1/M). 

THEOREM 5. Iff(z) = z - ££L2 anz» G TU then a3 < 1/6. 
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PROOF. If fe Th then g(z) = (1 - f\z))\2a2 = z + ^=2((n + l)aw+1 

/2a2)z
ne S. Since |g(z)| ^ g(l) g 1 + (1 - 2a2)l2a2 = l/2«2, for z in J , 

according to Theorem i?, we have 2>a^2a2 g 2(1 — 2ö2), or 

(11) 3 Ö 3 / 4 ^ Ö 2 ( 1 - 2a2). 

But the right side of (11) is maximized when a2 = 1/4, from which we 
conlcude that a3 ^ 1/6. Suppose Ö3 = 1/6. From (11), 1 5̂  8tf2(l — 2a2) 
= 1 - (1 - 4tf2)

2. So fl2= 1/4. Since fe Tl9 E £4 «fln ^ 1 - 2Ö2 - 3a3 

= 0. Hence, an = 0 for n ^ 4. But then the corollary to Theorem 3 shows 
that 03 ^ 1/9. Therefore, it can never be that a3 = 1/6. This completes 
the proof. 

Combining Theorems 4 and 5, we have the following 

COROLLARY. Set ß = sup {a3: fe 7^}. Then ( v T - l ) ^ ^ /3 ^ 1/6. 

4. Higher order derivatives. We now look at functions in J for which 
derivatives of higher order are also univalent. 

A function/(z) = z — ££L2 anz
n, an ^ 0, is said to be in Tm i f / and 

its first m derivatives are univalent. I f / e Tm for every integer m, t h e n / 
is said to be in T^. 

THEOREM 6. / / /(z) = z - £ ^ 2 ÖWZ* G r w/fA Ffö1 «» # 0, then feTm 
if 

00 

(12) 2 ( / » - * ) ( « - * + 1) . . . «a, £ ( * + 1)! a m . 
«=yfe+2 

for k = 1, 2, . . . , m. 

PROOF. The case m = 1 was proved in Theorem 2. For k > \,f(k)(z) is 
univalent in A if and only if 

W - N _ _ (/<*>(*) + *!*,) _ . , g , ( / i+ l ) ( / i + 2) •••( / ! + /:) 

^ ) - 7 iT+T)!^r" z +ä (F+ryi^^ w 

= z + f] ô„z» e 5. 

The result follows upon noting that ££L2 «ò„ g 1 is a sufficient condition 
forgez) to be in S. 

COROLLARY, if f(z) = z - £^= 2 aMzn
 G r , an ^ 0, W (12) Ao/rf-s /or 

ev^ry /:, then f e Tœ. 
In [5] Shah and Trimble investigated the family E consisting of functions 

in S having univalent derivatives of all orders. They showed t h a t / i n E 
must be an entire function and that a = sup{|a2| : fe E} must satisfy 
7T/2 S OC < 1.7208. They further conjectured that a = n/2, with extremal 
function f(z) = {e%z — \)/ir. This conjecture sas disproved by Lachance 
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[2], using a perturbation of e%z. The best known lower bound for a may 
be found in [4]. 

We close with the sharp upper bound on the second coefficient of a 
function in T^ for which, surprisingly, there is no extremal function. 

THEOREM 7. Iff(z) = z - E^a^e Tœ, thena2 < 1/2. The result is 
sharp in that the value 1/2 may be replaced by any smaller constant. 

PROOF. The function z — z2/2, which is not in 7^, is shown in Theorem 
1 to be the unique extremal function in r(=> 7^) for the second coefficient. 
It thus suffices to show, for s( > 0) arbitrarily small, that there exists a 
function in T^ whose second coefficient is (1 — e)/2. For any e, 0 < e 
^ e0 = (le1^ -1)"1, set 

F,(z) = z-±^-Lz2-c^ zn 

Then F£e T because 

In view of the corollary to Theorem 6, Fs is in T^ if its coefficients satisfy 
(12), for every k. Now, /e 7\, because 

*|3 4 ^ = 2e E 4nT = W2 - *> * i1^ 

when e ^ £o-
For k > 1, we have 

v» ( i\( v . i\ ?i (n - k) (n - k + 1) • • • ne 

n=k+2 L ^ 

Hence, (12) is satisfied, for every k, and Fe e Tœ, for every e, 0 < e ^ $Q. 
Since (1 - e)/2 -» 1/2 as e -* 0, the proof is complete. 

REMARK. That there is no extremal function in Theorem 7 shows that 
7*«, is not a compact family. In fact, the sequence {fk(z)} defined by 

is in J1«,, for every integer k ^ 3, yet {fk(z)} converges uniformly on com­
pact subsets of â to f(z) = z — z2/2 4 T^. In particular, in the general 
class E of functions in S with all derivatives univalent, which was inves-



UNIVALENT FUNCTIONS 61 

tigated in [5], there need not, a priori, be an extremal function for sup 
{M:feE}. 

It would be of interest to determine a sharp upper bound on the third 
coefficient for functions in Tœ. We know from the bound on 7\ ^ T^ 
given in Theorem 5 that the third coefficient cannot exceed 1/6 and, since 
F£o, defined in Theorem 7, is in T^, that an upper bound on the third 
coefficient is no less than £0/6 « .076. 
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