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OPTIMAL ALGORITHMS FOR LINEAR
PROBLEMS WITH GAUSSIAN MEASURES

G. W. WASILKOWSKI

ABSTRACT. We study optimal algorithms for linear problems in
two settings: the average case and the probabilistic case settings.
We assume that the probability measure is Gaussian. This assump-
tion enables us to consider a general class of error criteria. We
prove that in both settings adaption does not help and that a trans-
lated spline algorithm is optimal. We also derive optimal informa-
tion under some additional assumptions concerning the error cri-
terion.

1. Introduction. In this paper we study the optimal reduction of uncer-
tainty for linear problems in two settings: the average case setting and the
probabilistic case setting.

By a linear problem we mean the problem of approximating Sf, where
S is a linear operator defined on a separable Hilbert space F;, when only
partial information Nf on f is available. This partial information causes
uncertainty. In the average case setting the intrinsic uncertainty is meas-
ured by the average size of the error of the best possible algorithm that
uses N. In the probabilistic case setting it is measured by the probabilty
that the error of the best possible algorithm is small. In this paper we as-
sume that the probability measure on the space F; is Gaussian and the
difference between Sf and x, the value given by an algorithm, is measured
by E(Sf-x), where E is an arbitrary error functional.

The average case setting has been studied in [5, 7, 8] for a rather general
class of probability measures, assuming however that the error functional
is of a special case. Typically it is assumed that E(Sf—x) = ||.Sf—x||2 and
S(Fy) is a separable Hilbert space. Here, restricting the class of probability
measures to Gaussian measures, we relax the assumption concerning the
problem and the form of the error functional E. We are able also to study
the probabilistic case setting.

The following results are obtained for both the average case and the
probabilistic case settings:
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1° For every error functional and for every adaptive information N2,
there exists nonadaptive information of the same structure as N? with
uncertainty not greater than the uncertainty caused by N2. Thus adaption
does not help.

2° For every error functional and for every nonadaptive information
N, a translated spline algorithm is optimal. A sufficient condition for the
spline algorithm to be optimal is given.

3° Optimal information N* is exhibited under some additional as-
sumptions concerning the error functional E.

We now comment on the results mentioned above. The result 1° states
that adaptive information is not more powerful than nonadaptive informa-
tion in either setting. A similar result for the average case setting has been
established in [5, 8]. This is not merely of theoretical interest since adaptive
information has several undesirable properties, e.g.:

1) It has more complicated structure than nonadaptive information;

2) It is ill-suited for parallel computation, whereas nonadaptive infor-
mation can be computed very efficiently in parallel.

Since adaptive information does not decrease the uncertainty, it may
be replaced in practice by nonadaptive information. We want to stress
that many commonly used algorithms use adaptive information.

We comment on the result 2° which states that in both settings a trans-
lated spline algorithm ¢* is optimal. (For a similar result for the average
case setting, see [5, 7, 8].) Since the spline algorithm is linear, the optimal
algorithm ¢* is affine. Hence the cost of evaluating ¢* for given y = Nf
is proportional to the cost of evaluating y = Nf. This is a desirable prop-
erty from the complexity point of view.

The result 3° gives us the best information to be used, i.e., information
which minimizes the uncertainty in two settings.

We now summarize the contents of the paper. In §2 we formulate the
problem. In §3 we derive some properties of Gaussian measures. These
properties will play a key role in the rest of this paper. In §4 we study the
average case setting, and we prove that 1°, 2° and 3° hold for that setting.
In §5 we study the probabilistic case setting, and we prove that 1°, 2° and
3° hold for that setting. In §6 we prove that the spline algorithm enjoys
one more optimality property. Namely, assuming that the error functional
E(Sf—x) = || Sf—x|?, the spline algorithm minimizes the variance.

2. Basic concepts. Our aim is to approximate the solution operator .S,
S: F 1 F,.

We assume that S is linear, F; is a separable Hilbert space and F; is a
linear space, both F; and F, over the real field. Hence we want to construct
an element x = x(f) € F, which approximates Sf, for all f€ F;, with a
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small error. The error between Sf and X is measured by E(Sf — x), where
E: F. 72— R+,

is called an error functional. For example, £ might be of the form E(g)
= ||g||? if F, is normed. Here we consider a general class of error func-
tionals. The only assumption concerning E is that, for every g € Fp, H( )
# E(S( - )—g) is measurable, i.e., H-1(B) € B(F,) whenever B € B(R,),
where B(F;) stands for the g-field of Borel sets from F;.

To construct x = x(f) we need to know something about f. We assume
that our knowledge of f'is given by N2(f). Here N2 is a linear adaptive in-
formation operator (for brevity adaptive information), i.e.,

(2]) Na(f) = ((f; g1)9 (f; gZ(yl))a ) (f; gn(yl s v ey yn—l)))a

where ( °, *) is the innerproduct in Fj,

n=nl) = g

2.2) :
y1=yt(f)=(f; gi(ylaa"'yi—l)9 l =2, 3,-..,71.

For brevity we shall write g;(y) = g{y1, ..., y;-1) € Fy, for every y =
(1, - - ., ¥s) € R%. We assume that g/ - ), as functions of y, are measur-
able. Without loss of generality we assume that g,(»), ..., g,(») are line-
arly independent for every y € R*. By

2.3) card(N?) = n,

we mean the cardinality of N2. Note that, in general, the it evaluation
(f, g1, .., ¥:-1) depends on the previously computed information
10, ..., ¥:—1(f). That’s why N2 is called adaptive. If g; do not depend on
-y, g») = g;, for all i, y € R», then N2 is called nonadaptive. To stress
the nonadaptive character of N2 we often write N™" instead of N2. For
every adaptive information N?, by fixing y € R” and letting g; & g.(»), we
obtain a nonadaptive information

(2'4) N;on(')=((',g1)a"~,('7gn))

which uses the same evaluations as N2
Knowing N3(f) we construct an approximation x = x(f) by an algo-
rithm ¢,

x = p(N*(f)),
where, by an algorithm ¢ that uses N, we mean any mapping
2.5) ¢: N3(F;) = R* - F,.

We are interested in optimal algorithms, that is algorithms with mini-
mal errors. What we mean by the error of an algorithm depends on the
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setting we are dealing with. In this paper we study two different settings:
the average case setting and the probabilistic case setting. We begin with
the average case setting.

In the average case setting the error of ¢ is determined by the average
behavior of the error E(Sf-p(N?f)). More precisely, let 1 be a Gaussian
measure defined on B(F;). Then the average error of ¢ is defined by

2.6) estp, N = || E(SS = o) @)

and an optimal algorithm ¢* that uses N2 is defined by

@7 e5(p*, N*) = rs(N*) Linf exve(p, N*).
14

This means that in the average case setting we are interested in algorithms
¢*, if they exist, whose average error are minimal. In §4 we find ¢* for
every nonadaptive information ¥, and for adaptive N* we prove that
r*e(N®) Zz r*&(Ny") for some y*.

We now turn to the probabilistic case setting. In this setting the good-
ness of ¢ is measured by the probability of success, i.e., by the probability
that the error E(Sf — o(N?f)) of ¢ is small. More precisely, given ¢ Z 0,
let

2.8) Prob(p, N*, ¢) = p({fe Fy: E(Sf—p (N*/)) < &}),

where x is a Gaussian measure defined on B(F;). Then, by an optimal
algorithm that uses N, we mean an algorithm ¢* so that

2.9 Prob(p *, N2, &) = prob(N?, ¢) 4 sup prob(p, N3, ¢).
¢

In §5 we find ¢* for every nonadaptive N*". For adaptive N2, we prove
that Prob(N?, ¢) < prob(Ny, ¢) for some y*.

We comment on the definitions (2.6) and (2.8). In order for (2.6) and/
or (2.8) to be well defined, E(S( - ) —(N?( - ))), as a function of f, should
be measurable. It is shown in [6] that this assumption is not restrictive
since it is possible to extend the definitions (2.6) and (2.8) for every al-
gorithm and prove that, for optimal algorithms ¢*, E(S( - )—¢*(N*( - )))
is measurable.

We now recall some basic properties of Gaussian measures. By a Gaus-
s an measure on B(F;) we mean a measure g such that

J, expU; ) ) = explita, %) — -, ),
VxeF, (==,

where 4: F; — F; is a self-adjoint nonnegative definite operator with finite

(2.10)
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trace and q is an element of F;. (The left hand side of (2.10) is called the
characteristic functional of x and is denoted by ¢,(x).) Then the mean
element m,, of x is given by

2.11) m, = a
and the correlation operator S, of u, by
2.12) S, =4

(see [2, 3, 4]). Recall that, for an arbitrary measure y, its mean element
m,, is defined by

@13) (%) = | o 0ud, VxeF,

and its correlation operator S, by

Q1) (88 = [ (= ) U=my D), Vg he Py

Throughout the rest of this paper we shall assume without loss of gen-
erality that the mean element m, of 4 is zero, m, = 0, and that the cor-
relation operator S, is positive definite.

3. Conditional measure. In this section we exhibit an important property
of the conditional measure for adaptive information. This property will
be extensively used in the next sections. We begin with the definition of
conditional measure (see [3]).

For an adaptive information operator N2, let yy( -, N®) be the prob-
ability measure on B(R”) induced by N2, i.e.,

w4, N*) = u(N*)"Y(A4)) = u({fe Fi: N(f) € 4}),

@D VA € B(R").

Let uy(« |y, N®), y € R%, be a family of probability measures on B(F;)
such that

ﬂZ(Flly’ Na) = #2((Na)—l({y})|y, Na) = 1,

3.2) for almost every y € R#,

3.3) u2(Bl -, N*), as a function of y, is y( - | N®)-measurable,
VB e B(F)),

and

G4 wB = [ Bl Nyudy, N, VBEBF).

The family y,( - |y, N®) is called the conditional measure with respect to



732 G.W. WASILKOWSKI

N2 and y. The existence and uniqueness of g, follows from [3, Th. 8.1].
Now let G be a measurable function, G: F; — R,.
Then

a5 | cuan={ (.. GWud1y. N9)ud. N

where V(N3 y) = (N*)"1({y}) = {fe Fy: N*(f) = p} is the set of elements
ffrom F; which share the same information, Nf = y. The essence of (3.5)
is that we first integrate G over all f with fixed information value y, and
then over all values y from R~

Recall that

Na(f) = ((ﬂ gl)’ (f’ gZ(yl))9 R (f; gn(yl’ L] yn—l))a
Vi = yt(f) = (f; gi(yla s yi—l))'

For brevity we write g(y) = g.(y1, . - . , y;—1). Without loss of generality
we assume that

(3.6)

3.7) (S,&(»). () = 8, VyeR~.
Let, for a fixed y = (yy, . . ., »,) € R?,

(3.8) m(N?, y) = jZillnyﬂg,-(y)
and

(3.9) o) = 33 (- £ ONS,&).

Then oy, ,: F; —» F; is linear and m(N®, y) = oy, ,(g), for every g €
V(N®, y), and every fixed y € R~ Of course, m(N*, y(f)) and oy.y(s).
y(f), = N3(f), need not be linear in f.

THEOREM 3.1. Let N? be an arbitrary information operator of the form
3.7).

(i) Then the induced probability measure
(3'10) ;ul( ‘o Na) = ,Ul( * )9

where y is the Gaussian measure on B(R”) with mean element zero and
correlation operator identity, i.e.,

3.11) 1n(4) = Z/(_;T—) [ exp( = 4@ 0)d,

(ii) The conditional measure ps( - |y, N®) is the Gaussian measure on
B(F,) with mean element m(N?, y), given by (3.6), and correlation operator

(3.12) Sna,y = (I = Onay) Sl = 0Fs, )
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PRrOOF. It is shown in [8, Th. 4.2] that there exists a probability measure
1 on B(R”) such that g(-, N®) = (), for every N# of the form (3.7).
It was shown in [6, Th. 4.2 (i)] that, for every nonadaptive N™" of the
form (3.7), py( -, N™) is the Gaussian measure on B(R”) with mean
element zero and correlation operator identity. Since (-, N?) =
#1(+, N*) = g, the proof of Theorem 3.1 (i) is completed.

To prove (ii), let A3(+ |y, N?) be the Gaussian measure on B(F;) with
mean element m(N?, y) given by (3.8) and correlation operator Sy., , given
by (3.12). We prove that Ay(:|y, N*) = pa( - |y, N?). The measure
Ao( - | y, N?) satisfies (3.2). Indeed, for G(g) ¥ [N*(f—m(N?, y))|2, G(f) > 0
if and only if f¢ m(N?, y) + ker(N3) = (N*)"1({»}). An easy calculation
yields that [, G(f) A2(df |y, N*) = X 7= (Sne,y85(¥), ;(¥)) =0 which implies
that Ay(- |y, N?) is concentrated on (N*)~1({y}) as claimed. It is easy to
check that A,( - |y, N?) also satisfies (3.3). We now prove that A5( - |y, N?)
satisfies (3.4). Due to (2.10) and the definition of A(- |y, N?),

[ e 21y, N%) = expim(V®, y), %) = H (S, )
1
Since g%, ,(x) = X% (x, S,.8(»)gi(y), one can check that

(SNﬂ,y X, X) = (Sp(x - 0.?:/3, y(x))s X— UK’“, y(x))
= (S,ux’ x) - Z?:l(S#X, g/(y))z
Hence

313) [ e a1y N = exp( = (S, ) Hx, ),
where
H(x, ) = explim(N*, 3), ) + % Tpa(S,x, g,00)2).
Due to (3.8),
H, ) = exp Tl (5,5 8400) + 5 (S, ,(0)?)
= T exp(ini(S,% £0) + 5 (S, £,))2).

Recall that g(y) = g;(»1, . - . » ¥j-1)> and that g, is the Gaussian measure.
Hence

a% L" H(x, y)p(dy)
= 7(%7),, _“ 2 L 13- exp (iyj(S,,x, gy, - --»¥i-1)

+ %_— (S,x: 8i(y1; -+ .Vj—l))>exP{_ % 2 y;’*}d(yl, R %
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Observe that
1 . 1
ﬁ jR exp(’.})j(syx» gj(ylv ey yj—l)) + T(S‘uxs gj(yls ceey yj—l))>
exp(— %ﬁ)dy; = eXP%(S,,x, 8- s ym)))
V2T jRCXP<i}'j(SyX, &y -« - yj—l))> CXP<— %J’?)dyj
= €Xp %(Syxs gf(yb ey y;-—l)))

exp<_ ‘%_(S,ux’ g]'(ylv ... J’j—l))) =1

This yields that @ = 1 and

S § om0 dtar 1, o) = exp( = (S, ) = 9,09

where ¢, is the characteristic functional of u. Since characteristic
functional defines measure uniquely and since conditional measure is
determined uniquely (up to a set of yj;-measure zero), us( - |y, N?) =
Ao( - |y, N?), for y € R?, a.e. This proves the theorem.

Theorem 3.1 states that the induced measure 4;( - , N?) does not depend
on N2, it only depends on n = card(N?2). From (ii) we can easily conclude
that, for y € R», the conditional measure y( - |y, N?) is the same as the
conditional measure for the nonadaptive information operator N},

(3.14) pa(- 1y, N?) = po(+ |y, N3™).

Furthermore, u,( - |y, N®) is a translated measure g( - |0, N3°"), i.e.,
(3.15)  pa(Bly, N*) = po(B—m(N®, )| 0, N3*%), VBe B(Fy).

In particular, if N™" is nonadaptive, then

(3.16)  p2(Bly, N™*) = p(B—m(N™", y) |0, N™"), VB e B(Fy).

We end this section by two lemmas whose proofs, because of their length,
are presented in the Appendix.

LEMMA 3.1. For every Gaussian measure A with mean element zero and
for every balanced and convex set B,

3.17) AB)Z A(B+ h), VheF;.

LEMMA 3.2. Let Ay, A be two Gaussian measures on a separable Hilbert
space with mean elements zero and correlation operators S; and S;, re-
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spectively. Let ay;, Qs ;, . . ., (@}, Z j11,) be the eigenvalues of operators
Sl,wi = 1,2 If(Xj,l é aj 2, Vj = 1, 2, .. ey
then

11('](07 E)) g AZ('](O’ ‘S))’ Ve g 0’
where J(0, ¢) stands for the ball with center zero and radius e.

4. Spline algorithm and adaptive information on the average. In this sec-
tion we prove that, for every error functional £ and for every nonadaptive
information, a translated spline algorithm is optimal. We also prove that,
for every adaptive information N2, there exists nonadaptive information
of the same cardinality and whose radius is not greater than the radius
of N2,

Let N and ¢ be given. Recall that the (global) average error of ¢ is
defined by

@D evstp, N = || E(ST = pN*P)ute)
and the (global) average radius of N2, by
4.2 ravg(N?) = inf e*&(p, N?).

14

Hence the global average radius of N2 is the minimal global average error
made by any algorithm ¢ that uses N2, and the optimal algorithm ¢* that
uses N2 is defined so that its error is minimal, i.e.,

4.3) e*¥(p*, No) = rave(N?),

We now define the concept of the local average error as studied in [6].
Due to (3.5) and Theorem 3.1(i),

4.4) es(p, N9 = [ ems(p, N%, p)p(ay),
where the local average error e*¢(p, N2, y) is given by
4.5) e¥(p, N*, y) = j.E(Sf — (M) pdf 1y, N?).

THEOREM 4.1. For every nonadaptive information N** of the form (3.7)
the average radius is given by

(4.6) sV = inf [ E(Sf—~)ualdf10, N,
gEFz F]
Let

@D P={geFu | B/ - gmldf10, N = ros(in).
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An algorithm ¢* that uses N™" is optimal if and only if

(4.8) g(») 4 o*(y) — Sm(N™", y) € P, for almost every y € R™.

PRrOOF. Let ¢ be an algorithm that uses N™. Consider the local error
e¢(p, N™n, ). Due to (3.16) and linearity of S,

e8(p, N*, p) = |  E(S(f + m(N™", y)) — p(»)p2(df10, N™)
F

J, ECT = @0) = Sm(vee, y))puataf 10, N7y

v

inf | E(SS — oyualaf10, Ny ¥ A

gEF,
This proves that
ravg(Nnon) g H

To prove that r2v¢(N™") = H we can assume that H is finite. Then, for
every § > 0, there exists g, € F, such that [r E(Sf—g,)u(df |0, N™) <
H + §. Define ¢;(y) = Sm(N™", y) + g,. Then

eavg(goa, Nnon) = eavg((pa, Nnon, y),ul(dy) § H + J.
R?

Since § is arbitrary, r2¥(N™") < H and consequently r2g(N=") = H.
This proves (4.6). To complete the proof observe that if H = + oo, then
every algorithm is optimal and P = F,. Therefore we can assume that
H < + oo, If p*(y) = Sm(N™, y) + g*(y) with g*(y) € P for almost
every y, then, obviously, ¢* is optimal. On the other hand, take an arbi-
trary algorithm ¢. Define

Y = {yeR*: g(y) = o(y) — Sm(N™, y) ¢ P}.

If Y has a positive py measure, then
e, Ny = [ f B - gm0, Nomyuey)

4§ o J . B0t 10, 8oty
> (M) + pRAY)rvs(N)
— ravg(Nnon)_
Hence ¢ is not optimal. This completes the proof of Theorem 4.1.

Theorem 4.1 states that there exists an optimal algorithm if and only
if the infinum in (4.8) is attained by some element g*. Of course g* need
not be unique, but taking any g* satisfying (4.8), the algorithm



OPTIMAL ALGORITHMS 737

o*(-) =¢(-) + g*

is optimal, where
P (N™f) = 22\(f, 8)SS,8; = Sm(N™", N f).

The algorithm ¢, called the spline algorithm, is linear. Hence ¢* is an
affine mapping, which is a desirable property from the complexity point
of view. On the other hand, if the infinum in (4.8) is not attained, i.e., P =
@, then there is no optimal algorithm. In this case, taking g* so that
{r, E (Sf—g¥)ue(df10, N™) is sufficiently close to rave(N™r), say, not
greater than r2v¢(N™") + g, the affine algorithm

p*(:) =¢(-) + g*

is almost optimal, since e*'&(p*, N™") < ravg(N"°") + §.
We now prove that adaption does not help on the average. Let N2 be
adaptive information of the form (3.7), and let

HO) = inf | E(Sf - @yldf10, Ny,
gEFz Fy
Then, due to (3.15) and (4.6),
@9 e = [ HOu@) = [ vy @)
Let y*, y* € R*, be such that
(4.10) revE(NTE) < rav(N).

Observe that such y* exists. Indeed, r2¢(Ni") > rav§(N?), for every y
would contradict (4.9). Hence we have proven

THEOREM 4.2. For every adaptive information N@, there exists y* € R»
such that

ravg(N;gn) é ravg(Na)’

We now give a sufficient condition on the error functional E so that the
spline algorithm ¢* is optimal. Technically, this means that 0 € P.

THEOREM 4.3. If E is convex and symmetric (with respect to zero), then
for every nonadaptive information N the spline algorithm ¢s is optimal.

Proor. Although Theorem 4.3 follows immediately from [6], we present
its proof for completeness. Take g € F,. Then, due to the symmetricity of

pa( ) = pa( - 10, N™®) (i.e., pp(B) = po(— B), VB e B(FY),

§ . B - yater) = 1| B~ 9) + E(~SF - )uie.
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Since E is symmetric and convex,
S (ESf—g) + E(Sf— g)) = S (E(Sf— 8) + E(Sf + 2)) 2 E(S/).
Hence
§, B =pyatan z || ESHpan), VeeFe

This proves that g* = 0 € P and completes the proof of Theorem 4.2.

REMARK 4.1. Optimality of the spline algorithm on the average has been
established in [7, 8] for orthogonally invariant measures, assuming that
F, is a separable Hilbert space and E(g) = |g||2. The same result was
obtained in [5] assuming that F; is a finite dimensional space and E(Sf—
P(N2f) = ISf — p(N*/)1%o((S,.f, f)), for some function p.

In this paper, restricting the class of probability measures to Gaussian
measures we relax the assumptions concerning E and the spaces F; and F,.

We now exhibit an n-th optimal information operator N* of card (N*)
= n, i.e., N*, satisfying

rvE(N*) < rve(N%), VN, card(N?) = n.

We find N* under some additional assumptions on F,, S and E. Namely,
we assume that F, is a separable Hilbert space, S is continuous, and

4.11) E(g) = H(llgll),

for some function H: R, — R, which is convex and nondecreasing. Ob-
serve that then E is convex and symmetric and, therefore, the spline al-
gorithm is optimal for every nonadaptive information.

To find N* we proceed as follows. Let

4.12) R = SS,5*: F; - F,

Since S is continuous, R is a nonnegative definite operator with finite trace.
Let T, {F, ... be eigenelements of R corresponding to the eigenvalues
]'1 g 12 g e g 0’ i'e" RC:.: = ll'Ci*’ (Cl*’ =/k) = 55',]" Take

1
4.13 F=—=8S*, i=
( ) g Vl‘- S Cl b l 19 2’
REMARK 4.2. The optimal information for the average case setting
studied in [7] is derived from the operator K defined by
K = S §*SSI2: F; — Fi.

Observe that if 7 is an eigenvector of K corresponding to an eigenvalue
B, Ky = By, then, letting { = SSY2%p, we get



OPTIMAL ALGORITHMS 739

Rl = SS,S*SSV2p = SSV2Kyp = ‘BSS,I/ZW = AL

Hence the operators K and R have the same eigenvalues. Furthermore
7 is an eigenvector of K if and only if S} 7 is an eigenvector of R.

Define the nonadaptive information operator

(4.14) N*(f) = ((f; 1), - .-, (/: g0)).
Note that N* satisfies (3.7).

THEOREM 4.4. The information operator N* defined by (4.14) is n't opti-
mal.

PrOOF. Due to Theorem 4.2, we need only to prove that
ravg(N*) é ravg(Nnon)’

for every N™" of the form (3.7). Due to Theorems 4.1 and 4.3,

Py = [ HOISS Dt 10, N,

If H is constant, and H(x) = ¢, then r*8(N™") = ravg(N*) = ¢, for every
Nmn Hence, without loss of generality, we can assume that H is not
constant. Then H(R,) = [H(0), + o). Indeed, convexity of H yields
2H(x) = H(0) + H(x), Vx € R,. Since H is nondecreasing, sup{H(x):
xeR,} = lim,,,, H2x) = ¢. Note that H(0) < c¢. If ¢ < + oo, then
2¢ £ H@0) + ¢ < 2c¢ which is a contradiction. Hence H(R.) = [H(0),
+ o0) as claimed. Define

(4.15)  7(B, N*")= pp({f € F1: H(|Sfl) € B} |0, N™"), VBeB(H(R,)).
Then y(-, N™") is a probability measure on B(H(R,)) and

+oo
4. avg( \Jnon) — j , N non),
(4.16) reNen) = | eyt N
Let D(- , N™") be the distribution function for y( -, N™"), i.e.,
4.17) D(x, Ny = j ;«» A(dt, N™v), Vxe H(R.,).
We shall prove that

(4.18) D(x, N™) < D(x, N¥), Vxe H(R,), VN

Before presenting the proof of (4.18), we show that (4.18) will complete
the proof of Theorem 4.4. For this end, observe that

= llin Z:i=l tt',k X(a,',;,ya,'+1,hJ(t)’ vt > H(O)s



740 G.W. WASILKOWSKI

for some numbers H(0) = a1, < dp; < *+- < Gy < Gps1 = + ©
and ¢, € (a; , a;+1,;)- Hence, for every N,

rag(Nrer) = li:n 21tk 7@ 0 @511, N™)
= likm 21 1 l(D(@s 11,4 N™) — D(a;p, N™))
= lim (S (1 = i1, 0 D@ir 0 N™) + 11,
since D(ay 4, N™") = 0 and D(a,1 4, N™) = D(+ oo, N™") = 1. Hence,
ravE(N™o") — rvE(N*) = likm 25t = 101, 0D (@11, N™™) = D(@;41,1 N¥))
and t; — t;4; < 0 imply that
reve(Nmon) — pave(N*) > 0.

Hence to complete the proof of Theorem 4.4 it is enough to show that
(4.18) holds. Observe that

D(x, N*) = p({f: H(ISfI) < x}10, N™)

(4.19)
= w({f: ISf] £ H1(x)} |0, N™).

Define

A(B, N™) = uy({f€ F1: Sfe B}|0, N™), VBe B(F,).
Then A(-, N™") is a probability measure on B(F;) and, due to (4.19),
(4.20) D(x, N™) = A(J(0, z), N™n),

where now z = H~1(x) and J(0, z) is the ball in F, with center zero and
radius z. We need the following two lemmas.

LeMMA 4.1. For every N™", A(-, N™") is the Gaussian measure with mean
element zero and correlation operator

RNnon = S([ - aNnon)S#(I_ U*Nnon)S*.

ProOF: Observe that, for the characteristic functional ¢ym. Of A(-,
N™n), we have

drnall) = [ explice. m)acg, N7,

Change variables by setting /' = Sg. Then
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dwna() = | expliCs, S * )uatdf10, Nom)

I

exp<— %((1 -_— aNnon)S/l(I - oﬁ“O“)S*h’ S*h))

exp<— L Ry, h)), VheF,

This completes the proof of Lemma 4.1.

Let 71, 72, ... (7; 2 7,41 2 0) be the eigenvalues of Ryn. It is easy
to check that, for N*, 4,.1, 4,42, ... are the dominating eigenavlues of
Ry

LEMMA 4.2.

(4.21) /1,,.”; § Tks Vk = 1, 2, PP

PROOF (see also [9]). For k = 1, (4.21) holds trivially. Suppose therefore
that (4.21) holds for every k < ky,. We prove that (4.21) also holds for
k=ky+ 1

For this end, let »;, 7,, . . ., 5, be eigenelements of Ky... corresponding
to 71, 72, - - - » 74 Take g = Y24 x,(¥ € F, such that

(4.22) lgl? = Lt xi =1,

(4.23) OFnon(S*g) = 0,

and

(4.24) (8 7) =0, i=12....kg=k— L

Since (4.23) and (4.24) are equivalent to a homogeneous system of n +
k — 1 linear equations with n + k unknowns, such g exists. Furthermore,
(4.22) and (4.24) yield that 7, = (Ryw» &, g).- Hence, due to (4.23), we get

Tk -2- (RNHO“g’ g) = (Rg’ g) = Zn+k A xl = ln+k Z”i—lkx
= an-f-k’
which completes the proof of Lemma 4.2.

We are ready to complete the proof of Theorem 4.4. Due to Lemmas
4.1, 4.2 and 3.2,

A(J(0, z), N*) = AJ(O, z), N™"), VN™ VzeR,.
Hence (4.20) yields that
D(x, N*) =z D(x, N™n), VN VxeR,.
This completes the proof of (4.18) as well as the proof of Theorem 4.4.
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5. Spline algorithm and adaptive information in the probabilistic setting.
In this section we prove that, for every error functional E and for every
nonadaptive information N, the probability of the fact that the error does
not exceed ¢, is maximized by a translated spline algorithm. We also prove
that adaption does not help in this setting.

Recall that, for given ¢ = 0, N2 and ¢,

(5.1) Prob(p, N*, ¢) = u({f€ Fy: E(Sf — p(N*f)) £ ¢})

is the probability of the fact that the error E(Sf — ¢p(N2f)) made by ¢ is
not greater than ¢ and

(5.2) Prob(N?, ¢) = sup Prob(p, N2, ¢).
1

Then Prob (N2, ¢) is the maximal probability among all algorithms that
use N2, and the optimal algorithm ¢* that uses N is defined so that

(5.3) Prob(p*, N2, ¢) = Prob(N?, ¢).

THEOREM 5.1. For every rnonadaptive information N™* of the form (3.7).
(54)  Prob(N™,e) = sup (/€ Fy: E(Sf~g) S €}10, N
Let

P = {g* € Fy: py({f€ Fy: E(Sf — g*) < €}|0, N™")

(5:3) = Prob(N™", ¢)}.

An algorithm ¢* that uses N™" is optimal if and only if
df

(5.6) g(y) = o*(») — Sm(N™", y) € P,

Jfor almost every y € R,

PRrOOF. The proof of this theorem differs from the proof of Theorem 4.1
only at the beginning. Observe that for every algorithm ¢ that uses N™"
we have, due to (3.16) and linearity of S,

Problp, N, &) = [ (/e Fy: E(SF = p(») = e}y, No) (@)

= | malre Fr: E(SF = () = Sm(Nwn, )

< £}10, Noo)y(dy)
gsél}'}?z ,UZ({fE F1: E(Sf — g) é 5} |0’ Nnon)‘

Hence, using the same reasoning as in the proof of Theorem 4.1, one can
easily complete the proof of Theorem 5.1. Therefore we skip this part.

IIA

Let N be adaptive. Similar to (4.10), let y*, y* € R#, be such that
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(57)  Prob(N®, ¢) = jm Prob(N™", &)1 (dy) < Prob(N™, ¢).

Of course, such y* exists.

THEOREM 5.2, For every adaptive information N* there exists y* € R»
such that

Prob(N3", ¢) = Prob(N?, ¢).

As in §4 we give a sufficient condition on E for the spline algorithm to be
optimal, i.e., g* = 0 P.

THEOREM 5.3. If E is convex and symmetric (with respect to zero) and
if F; = S(Fy), then, for every nonadaptive information N™", the spline
algorithm ¢* is optimal.

ProOF. To prove this theorem it is enough to show that
(5:8) pw({feFLE(Sf) S e}) 2 w({feF1: E(Sf—g) S ¢}), VgeF,
where uy( - ) = uo( - |0, N™"). Let
B(g) = {feFi: E(Sf — &) < ¢}
and
B = B(0) = {fe Fi: E(Sf) < ¢}.

Since F, = S(F}), there exists an element 4 € F; such that Sh = g. Observe
that

B(g) = B+ h
Indeed, for fc:B(g), let £ = [ — h. Since E(Sf) = E(S(f — h)) = E(Sf—
g) < eThusfeBandf = f + he B + has claimed. This means that
pe({f € F1: E(Sf — g) < &}) = pa(B(g)) < po(B + h).
Hence, to prove (5.8), we need only to show that
(5.9) ta(B) Z po(B + h), VheF,;.

Observe that B is convex and balanced. Indeed, if f;, f; € B, then
E(th + (0 —0f) stE() + (1 - DE) s e ie, i + (1 — 1)f,€B,
and if f€ B, then E(—f) = E(f) £ ¢, i.e., — f€ B. Since y, is a Gaussian
measure with mean element zero, Lemma 3.1 completes the proof of
Theorem 35.3.

The next theorem is about n-th optimal information N*. The informa-
tion N* of cardinality n is optimal if and only if

Prob(N*, ¢) = Prob(N?, ¢), VN?, card(N?) = n.
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THEOREM 5.4. Let E be of the form (4.11) and let S be continuous. Then
the information N* defined by (4.14) is n-th optimal for every ¢ = 0.

ProoF. This theorem follows immediately from (4.18). Indeed, due to
Theorem 5.2, we need only to consider nonadaptive information AN™n,
But then, for every N™" and every ¢ = 0,

Prob(N™, ¢) = s({f€ Fi: H(ISFI) < &}) = D(H-Y(e), N™*).
Hence, (4.18) implies that
Prob(N*, ¢) = Prob(N™", ¢), VN™» Ve = 0,
which completes the proof.

We end this section with the following problem. For a given set A €
B(R”) let

]

Prob(p, N*, ¢, A) = p({f€ Fy: E(Sf — p(N*f))

(5.10) e A N2 fe A)).

IA

We want to find ¢* such that

Prob(N?, ¢, A) g sup Prob(p, N2, ¢, A)
(5.1 0

= Prob(p*, N2, ¢, A).

Observe that Prob(gp, N?, ¢, A) is the probability that E(Sf — p(N2f)) <
¢ under the condition that N?(f) € A. Of course, for 4= R”, Prob(p, N2,
¢, A) = Prob(p, N2, ¢).

For every adaptive information N2,

Prob(p, N*, ¢, 4) = Lﬂz({f € Fy: E(Sf = p(») = e} |y, N pa(dy)
s J, sup wA(/e P E(5/ — ) < €10, Ngun(@)

= IA Prob(Ny™, ¢)uy(dy).

From this we can conclude

THEOREM 5.5.
(i) For every adaptive information N* there exists y* € R” such that

Prob(N2, ¢, A) < Prob(N", ¢, A), VE,V e = 0,VA4eB(R".
(ii) For every nonadaptive information N™"
Prob(N™", ¢, A) = Prob(N™", g)u;(A), VE,Ve = 0VA e B(R?).

In particular, p* is optimal independently of A.
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(i) If F; = S(Fy) and E is convex and symmetric (with respect to zero),
then the spline algorithm ¢* is optimal, for every N™", every ¢ =z 0 and
every A € B(R7).

(iv) If F, is a separable Hilbert space, S is continuous and E is of the
form (4.11), then N* defined by (4.14) is optimal for every ¢ = 0 and every
A € B(R").

Theorem 5.5 states that the probability of a small error does not de-
pend on the value N f of information. This result will be used in a future
paper for studying optimal stopping criteria.

5. Variance of spline algorithm. In previous sections we showed when
the spline algorithm ¢° is optimal. Here we exhibit another optimality
property of ¢s showing that it minimizes the variance whenever F, is a
Hilbert space and E(g) = | gl|2.

Let N™" be a nonadaptive information and let ¢ be an algorithm that
uses Non, By the variance of ¢ we mean

(6.1)  var(p) = jFl(lle — (N )2 — e¥(p, N™)2p(df),

where
es(p, N = [ IS = oV )2 ).
1
THEOREM 6.1.
(6.2) var(ps) = inf var(p).
14

PROOF. Let ¢ be an algorithm. Define & = ¢ — ¢, i.e,, p(N™ f) =
@*(N™ f) + h(N™" ). Then, due to (3.18),

varp) = [ [ (157 = ) = 012
= e, N2 pldf |, N*)a(@y)
= {057 =h0z = estp, N2 oty

where pp( - ) = pp( - |0, N™®). Observe that |Sf — A(y)? = [ISf11Z — 2(/,
S*h(y)) + ||A(»)||2. Since mean element of y; is zero, [p (f, S*A(y)) pa(df) =
0, and

esp N = [ [ (s - 27 520
+ A2 ol ()
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= f an f , (IST12 + TR padf) 1 ()

= es(pr, N+ [ IO ).

Hence
var() = [ | (1F12 = evs(gr, N — 27, S*HO) + IH)I2
= V@I () o) @)
Change the variables by letting f = — f. Then
vartp) = 4 [ [ Sr1E = enstgr, W) = 27, SO + IR
= [ I @202 + (15112 = e, N")
+ 201, 0N + 1K) = [ 12 () @ putey)
2 [, (712 = st Moy + )2
= § UG (@22 o) g,
since 1/2((a + b)? + (a — b)?) = a?. Hence
6.3) var(p) 2 var(p®) + 2H; + H,,
where

= f s = e, v (I
= f @2 () ot ()
and
ty= [ | N2 = | 112 pdh m@).
Of course, H, = 0 and therefore

(6.4) var(p) = var(p®) + 2H;.

We now prove that #; = 0. Indeed,
Hy = @h)lE - 1@ m@ay?

§ . 1712 = e, N ) ey,
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and since e*¥¥(ps, N™") = fp || SfI2 ua(df) (see Theorem 4.3 and (4.8)),
H; =0 as claimed. Hence

var(p) 2 var(p®), Vo,
which completes the proof.

We want to stress that the minimal variance of the spline algorithm
strongly depends on the form of E, i.e., E(g) = | g||?. For arbitrary E
(even convex and symmetric) the spline alogirthm need not minimize
the variance.

7. Appendix. We prove Lemmas 3.1 and 3.2. Since these lemmas are
well known for finite dimensional spaces, the proofs are mainly to show
that the infinite dimensional case can be reduced to a finite dimensional
one.

ProOF OF LEMMA 3.1. We prove that (3.17) can be reduced to a problem
with a finite dimensional Gaussian measure. Then Anderson’s inequality
will complete the proof.

Let y, {5, ... be eigenvalues of the covariance operator S;, S; {; =
a,L; and (§;, {;) = 0;;. Let X = ker S; and let X+ be the orthogonal
complement of X, F; = X+ @ X. Then, for every fe Fy, f = f; + f5, where
fi€ X and f, € X, and, for every C e B(F}),

(A.D) AC) = AH(C N XY,

where A+ is the Gaussian measure on B(X*) with mean element zero and
covariance operator S;. = S;|x. (see [4]). Observe that B [ X+ is convex
and balanced and that B+ A N Xt <c (BN XY) + hy(h = hy + hy,
hi€ X and hy e X+). Hence, due to (A.1),

AB)=AMBNXDNand A(B+h)=A((B+hHNX)ZAH(BNXY) + hy).

This means that to prove (3.17) we can assume without loss of generality
that X+ = F; and S; = S,., i.e., that all eigenvalues of S; are positive
For k =1, 2, ..., define P,: F; > R,

A2) P = (£ 55) - (£5E))

Observe that, for every set C € B(F)), Py(Py(C)) o Pi(Prs1(C)) and
Ny Pi1(Py(C)) = C. Hence

(A3) AC) = li;n MPFHPKC)), VCeB(Fy).

Let A, be the probability measure on B(B#) induced by P,, i.e.,
A(A) = APy} (A4)), VAeB(RH.
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Then (A.3) can be rewritten as

(A.4) AMC) = likm A(P(C)).

Since, for every k = 1, 2, .. ., the operator P, is of the form (3.7) then,
due to (3.10), A, is the Gaussian measure on B(R*) with mean element
zero and correlation operator identity. Observe also, that P,(B) is convex

and balanced and that P,B + h) = P,(B) + P,(h). Hence Anderson’s
inequality [1] yields that

(A.5) APYB)) Z A(P{(B+ h), Vk=1,2,....
This and (A.4) imply that
AB) Z A(B + h)
which completes the proof of Lemma 3.1.
PROOF OF LEMMA 3.2. Let q; ; be the eigenvalues of S; (i = 1, 2), and
(A.6) aj1=ajz Vi=1,2,....

As in the proof of Lemma 3.1, we can assume that «;; > 0. Then

(A.7) A(J(0, ) = likm Aip, i=1,2,

where

Ay = ﬁj‘ eXp<— % 25 Ay, - )

Birk
and
By={yeR: 2 a;,)5 < ).
Since a;1 £ aj2, Vj =1, 2,..., then By, c B, ;, which implies that 4, ,
Z Az k= 1,2,.... This and (A.7) complete the proof of Lemma 3.2.
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