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COMPACT WEIGHTED COMPOSITION OPERATORS
ON SOBOLEV RELATED SPACES

HERBERT KAMOWITZ AND DENNIS WORTMAN

ABSTRACT. If m is a positive integer and 1 < p < oo,
let Wi, p denote the set of functions f on the unit interval
[0, 1] for which £, f',..., f{m=1) are absolutely continuous and
£ € Lr. With (|fliw,,, = (S0, 1F918)"7, 1 <
p < 00, Wm,p is a Banach space. We show that if v €
Wm,o0,® : [0,1] = [0,1],¢0 € Wpy,00 N C, and there exists a
positive integer N for which ¢ 1([a,b]) can be expressed as
a union of N intervals for all a,b € [0,1], then the weighted
composition operator uCy : f(z) — u(z)f(¢(z)) is a bounded
linear operator on Wy, p which is compact if and only if
up' = 0. Further, if uC, is compact on Wy, p, then the
spectrum o(uCp) = {A|A" = wu(c)...u(pn-1(c)) for some
positive integer n and some fixed point ¢ of  of order n}U{0}.

If m is a positive integer and 1 < p < oo let Wy, , denote the set of
functions f on [0, 1] for which f and the derivatives f’, f”, ..., f(m=1
lie in AC, the space of absolutely continuous functions on [0, 1], and
fm € LP(0,1) = LP. For 1 < p < 00,Wy,, is a Banach space un-

der the norm ||f|lw,. , = (Zeo ||f(3)||g)1/p. These spaces are closely
related to Sobolev spaces on [0,1] (see [1,2,3]). A weighted compo-
sition operator on Wy, , is a map from Wy, , to itself of the form
f(z) — u(z)f(e(z)), where u : [0,1] — C and ¢ : [0,1] — [0,1].
We denote such a map by uCl,.

In [1] Antonevich considered weighted composition operators on
Wm,p, where u, o € C™[0,1] and ¢ is a bijection of [0, 1] onto itself
and determined their spectra. In this note we study other weighted
composition operators on Wy, , and characterize those operators which
are compact. We show that if u € Wy 00,0 € Wi 0o N C! and if
uCyp : Winp — Wpp, then uC, is compact if and only if up’ = 0.
Further, if we let o, denote the nth iterate of o and o(uCy) the
spectrum of uC,, then if uC, is compact on Wy, ,, we have that
o(uCL)\{0} = {AA™ = u(c)...u(pn-1(c)) for some positive integer
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768 H. KAMOWITZ AND D. WORTMAN

n and some fixed point ¢ of ¢ of order n}

Our first step is to determine maps u and ¢ which induce weighted
composition operators on W, 5. In doing so the following result of Jose-
phy [4] will be useful. If N is a positive integer, let Jy = {E C [0,1]|E
can be expressed as a union of N intervals } (where the intervals may
be open or closed at either end and singletons are allowed as degen-
erate closed intervals). A function f : [0,1] — [0,1] is said to be of
N-bounded variation if f~*([a,b]) € Jn for all [a,b] C [0,1]. As usual,
BV will denote the Banach space of functions of bounded variations on
{0, 1].

THEOREM (JOSEPHY [4]). For g: [0,1] — [0, 1], the composition fog
belongs to BV for all f € BV if and only i1f g is of N—bounded variation
for some positive integer N.

Combining this theorem with the fact [6, p. 250] that a continuous
function f of bounded variation is absolutely continuous if and only
if f maps each set of measure 0 into a set of measure 0, we have the
following.

THEOREM 1. If ¢ : [0,1] — [0,1] s absolutely continuous and of
N-bounded variation for some positive integer N, then fop € AC for
all f € AC.

LEMMA 2. Let g € L',p : [0,1] — [0,1],p € C! and p be of
N-bounded variation for some positive integer N. Then fol lg((z))

' (z)lde < N [ |gl.

PROOF. Since ¢’ is continuous, {z|p’(z) # 0} is open and can thus be
expressed as a union of disjoint relatively open subintervals | J(a;, b;).
The image ©(a;, b;) of (a;, b;) is again an interval since ¢ is continuous.
Write o(U(as, b)) = Uel(ai,bi) = U(Ak, Bx), where {(Ag, Bi)} is
again a disjoint union of relatively open intervals. Clearly, for each
k, (Ax,Br) = U{e(ai,b:)lp(a:i,b;) C (Ax,Bg)}. Since, for each
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z € Jp(a;,bi), o 1 ({z}) has at most N elements, it follows that

1 B,
N 2NE [T [l
0 k7 Ak ki U

(a:,b:)

where the inner sum is on all ¢ for which p(a;,b;)) C (Ag,Bg)-
By a change of variables, f¢(ai,bi) lg| = f(a;,b,-) lg(p(2))||¢ (z)|dz =
fb‘ lg(e(z))||¢’ (z)|dz, and since ¢'(z) = 0 on [0, 1]\ U (as, b;), we have

1 b; 1
N /0 o2 / lole@)ll @)z = /0 l0(p (@)l (2)ldz

as required.

Now suppose ¢ : [0,1] — [0,1],p € C! and ¢ is of N-bounded
variation for some positive integer N. Let s be a non—negative integer.
If f(*) € L?, then |f(®)|? € L! and, by Lemma 2,

1 1
N /0 TOIS /0 17O (@) Pl (2) dz.

Therefore, for such f and ¢,
1 1
| 1@ @I < ([ 119@)PIe @z el
1
<Nl [ 1.

Hence ||(f(=1) o p)'||5 < N|l¢' |55 f)]|p or
@) NV op)lp < NVP|IQ' 1491 9)lp, where 1/p+1/q=1.
In particular,
(2)
if f € Winp, then (™ € LP and ||f™™Dop)'||, < N/2||¢[| 491 f ™ |lp.
Also, letting p = s = 1 in (1) we have that if f € AC, then

Var(f o p) = f01|(fo¢p)’l < Nfo1 |f'| = NVar f. Examples of the
form o(z) = sin® nwz show that N is the best bound.
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THEOREM 3. Let m be a positive integer and 1 < p < oco. If
@ :[0,1] = [0,1],0 € Wi 00 N CL, o is of N-bounded variation for
some positive integer N and u € Wy, o, then the map uC, : f(z) —
u(z) f(p(z)) vs a bounded linear map on Wy, p.

PROOF. Suppose ¢ and u satisfy the hypotheses. We remark that
the added assumption that ¢ € C! is needed only when m = 1. Since
© is absolutely continuous and of N-bounded variation, C,, : f(z) —
f(p(z)) maps AC into itself by Theorem 1. Thus if f € W,y , then also
£, f",...,f™m=1 €AC and consequently fop, flop,...,fm Doy e
AC.

We next show that if f € Wy, then (f o ), (f o 9)”,
o, (fop)™m—1) € AC. We separate the cases m = 1,2,3 from the
rest. For m > 1, we have just seen that fop € AC. If m > 2,
then (f o) = f'(p)Y’ € AC since f' o p € AC and ¢’ € AC,
and if m > 3, then (f o p)” = f"(p)(¢")? + f'(p)¢” € AC since
f'op, ¢, f op," € AC. Further, for m > 3, it follows by induction
that for s=3,...,m—1,

s—1

(fop)® = F(©)p® + 3 f® (@) Prs(e, 0", ..., 0 D)
3) Pt

+ 1O (p)(¢')",

where P s(t1,...,ts—1) is a polynomial function for s > 3,k =
2,...,8 — 1. Since each term on the right hand side of equation (3)
is also a combination of absolutely continuous functions, we can con-
clude that (f o p)(®) € AC for s =3,...,m —1,m > 3.

We now show that (f o p)(™) € L? for each m. First, for m > 3, we
have

(f 0 0)™(z) =f'((2)) '™ (z)

m—1
(4) + Y f®(p(@)Pesm(e - - -, 0™ V) (2)
k=2

+ £ (p(z))¢' (z)™ a.e. when p(z) # 0,
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and
(f o)™ (z) =f'(p(2))p™ (z)
m—1
+ 3 P (@) Pem(es .., 0™ D) ()

k=2
a.e. when ¢'(z) =0.

We observe that each term in the right hand sides of these equations

is in LP-the first term in both equations is in L? since f' o ¢ € AC

and (™) € L, and the last term in the first equation is in L? since

f('”)(so(-’v))w'(w) = (fim=D o p)'(z) € L by (2). When m = 1 and
=2,(f o p)(™ € LP for similar reasons.

Thus, if f € Winp, then (f o p)®) € AC,s = 0,...,m — 1, and
(fop)™ € LP. That is, the map C,, f(z) (<p(z)) is a linear map
of Wy, p into itself. It is easy to show using the closed graph theorem,
for example, that C,, is bounded.

Finally, if u € Wy, o0, then uf € Wy, ,, for all f e Wm.p- Indeed if
[ € Wi, p, then uf € AC. Also, (uf)zs) = Y=ol u(’“gf(s —k) and
if s =0,1,...,m — 1 each term in the right hand sum is absolutely
continuous, while if s = m, then

(uf)m) =um f 4 (T)um—n N (’;)um—z) I
m )y fim=1) (m)
+o (m_ 1)uf +uf

which is a sum of functions in LP.

Therefore, if ¢ : [0,1] — [0,1],0 € Wy, NCY, e is of N-bounded
variation for some positive integer IV, and if u € Wy, o, then uC,
f(z) — u(z)f(p(z)) is a linear operator on Wy, , which is clearly
bounded.

Before continuing it will be convenient for later use to write equations
(3) and (4) in matrix form as follows:

fop
oo
op
(5) (f o p)III

(fo w)‘""
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1 0 0 0 0 0 fop
0 o' 0 0 0 0 flop
0 (P” ((p/)z 0 . 0 0 fl/ op
0 90/” P2,3 ( ¢/)3 0 0 f”' op
0 So(m) P2,m PS,m P4,m ce (‘P')m f(m) op

We now turn to the main result that with these conditions the map
uC,, is compact on Wy, p, if and only if up’ = 0. The first step is the
following lemma. See Singh (7] for a related result.

LEMMA 4. Let1 < p < oo. Letu € L®,p € AC,p : [0,1] — [0,1]
and suppose uC, : f(z) — u(z) f(p(z)) is a bounded linear operator on
LP. If {z|¢'(z) ezists and u(z)¢'(z) # 0} has positive measure, then
uCy 18 not a compact operator on LP.

PROOF. Let X = [0,1]. For each measurable subset e C X, let m(e)
denote the measure of e. Then it is well known [6, p. 261] that, for
almost all z € ¢,

lim m(eN(z — h,z + h))

h—0 2h =1

An z for which this limit equals 1 is called a point of density of e. Also
since p € AC, ¢’(z) exists for almost all z € X.

Now assume uC), is a compact operator on L? and suppose {z|¢'(z)
exists and u(z)p’(z) # 0} has positive measure. Then there exists
6 > 0 so that E = {z||u(z)| > 6,¢'(z) exists and u(z)p'(z) # 0}
has positive measure. Let z, € E be a point of density of E.
For each positive integer n let E, = (z, — 1/n,z, + 1/n) and let
fn = Yo(En)/(m(p(Ey,)) P, where 1 denotes the characteristic
function of F. Then

allo = ( /. I——m(ifgj")’)l,,,l”)l/p 1

Since uC,, is compact on LP there exists g € L? and a subsequence
{fr.} with uCy fn, — g in LP. Therefore

(/ [ue WE"*) ‘j)(f,),? g(z)‘pdz)—>0,
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and so

u(z) P
v (/%0"‘(¢(E..k)) |W - 9(56)‘ dx) -0

and

(%) ( / |g(z)|pdw) Lo
X\ 1 (p(Eny))

Since En, | {zo}, (x+) implies [y\ 1 (,((z,)y) |9(2)IPdz = 0 or

g(z) = 0 a.e. when p(z) # o(z,).
Then (*) implies

u(z)
— — dz—0
/ ™1 (0(En, \{20})) lm(ﬁP(Enk I/P‘

and, since E,, \{Zo} C 0 1 (©(En,\{Z0})),

(
/E,,,c\<zo}| By b

Therefore
(Bn, \{z.)nE | M(0 ( )1/”

But on E, |u(z)| > 6. Consequently

(z) (En\{zo}) N E)
/Enk\{zo})ﬁE} (o :E:,, ‘/”l & (m m(so(énk)) )

which together with (* * ) gives

m((En\Mz})NE)
m(e(En,)) '

(% * %) Ida:—-»O

m((zo—h,z,+h)NE)
2h

But z, € E is a point of density of E, so that limy_,¢
=1 Hence hmh_.o m{(zo=h2o th\{2.NOE) — j and since En, \{zo} =

(To — 771 To+ 7 )\{zo}, we ha’\lre
(% * %) klifﬂc m((Enk\{zxo}) NE) -1

nk
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Further, since ¢'(zo) exists, lim;—.z, |(©(z) — ©(20))/(z — z5) —
©'(z,)| = 0. Fix € > 0. There exists h > 0 so that |p(z) — p(z,)| <
(I¢'(xo)| + €) |z — zo| when |z — x| < h. Therefore, if 1/nx < h
and y1,9s € En,, then |o(y1) — o(z0)] < (¢ (z)| +¢) lys — 2o, and
lo(y2) — (o)l < (I¢'(0)| + €)ly2 — zo| and thus |p(y1) — ©(y2)] <
(16" (20)1 + &) (I — 2ol + ly2 = 7o) < 2(1/(ni) (|¢'(2o)| +¢). Hence,
if 1/ny < h, then m(o(Ey,)) < (2/nk) (I¢'(20)| + €) or 1/(m(p(En,)))
nk/(2(l¢'(zo) + €)). Therefore

M((En,\M%o}) N E) _ m((En, \{2o}) N E)

m(o(Bn)) > 2fmllp @) E)
Thus
o m((Ea\Mz)NE) | m(Ea Mz )NE) 1
O L T me(Ba)) e Z(p)l+e) | WG e

by (* * *x). But 1/(|¢'(z5)| +€) > 0.

This contradiction shows that the assumption that uC,, is a compact
operator on L? is false. That is, if {z|¢'(z) exists and u(z)¢’(z) # 0}
has positive measure, then the weighted composition operator uC, on
LP is not compact.

We now have all the ingredients to prove the main theorem.

THEOREM 5. Suppose m 13 a positive integer, 1 < p < oo,u €
W0, @ : [0,1] = [0,1],0 € Wi,0o N C! and ¢ is of N—bounded
variation for some positive integer N. Then the weighted composition
operator uC,, : f(z) — u(z)f(p(z)) is compact on Wy, , if ard only if
up' =0.

PROOF. Assume uC, is compact on Wy, ,. We will show that
umt1 (o) 3m(m+1) O is then compact on LP from which it follows
from Lemma 4 that up’ = 0. To this end, let f, € LP with
|| fnllp < 1 and let Fr(z) = [T &'+ [im" fa(t)dtdtm—, - ..dt;. Then
Fo(z), Fl.(z),..., ,(.m_l)(:c) are absolutely continuous and, almost ev-
erywhere, F,Sm)(a:) = fu(z) € LP. Thus each F, € Wp,p. Also
| Fallwn,, < (m+ 1)2/P for each n.
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Since uC,, is compact on Wy, ,, there exists a subsequence {Fy,}
and an element G € W, , with u(z)F,, (¢(z)) — G(z) in Wy, ,. That
is, (uFy, (¢))®) = G©) s =0,1,...,m in LP-norm. Expanding, we
obtain

S
(A) Z(;)u(j)(Fnk (@)D GO, s=0,1,...,min LP
7=0

We note that, formally, (Fp, (v)) — (£)1) when u(z) # 0. Also, if we
define G;(z) by G;(z) = w/*1(£€))(z) when u(z) # 0 and G;(z) =0
when u(z) =0, then G,(z) € L?,j =0,1,--- ,m.

In matrix form, equations (A) become

(B)
u 0 0 0 - 0 (Frn, op)
o u 0 0 S (Fn, 0 )
u” (3 u 0 <o 0 (Fpy, 0 0)”
ulm) (T)u(m—l) (f;)u(m—ﬂ (?)u(m—S) e w (Fp, o )™
G
GI
— GII
G(m)
which is equivalent by row operations to
vw 0 0 0 0 (Fp, 0 9) Go
0 «w 0 O 0 (Fn, 0 0) Gi
@ [0 0w 8 0 || Enoo) | |G
0 0 0 wut 0 (Fp,0o0)" Gs |’
0 0 0 0 - ymt! (Fp, 0 )™ Gm

where the G;’s are the functions defined above.
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[« 0 0 O --- 0 1 0 0 0
0 «2 0 0 - 0 0 o 0 0
0 0 « 0 0 0 ¢ (¥)2 o
0 0 0 wut 0 0 " P3 (¢)P3

Lo 0 0 0 - umt! 0 o™ Py, Py

[ Fnk op GO
F'/'/‘ op G,

F,’zk °op | _, Ga
Fliop G3
.F,&'") op Gm
or
[ u 0 0 0 0
0 ulp 0 0 0
0 USQD” U3(§0’)2 0 0
0 u4¢m u4P2,3 u4(tp')3 0
- 0. um+1<p(m) um+1P2 um+1]33’m um+1((pl)m
[ Fﬂg ° SO GO
F,l“: op Gl
F!! op Go
F:':'Z op - Gs
LFY o Gm
which is now equivalent to
M u 0 0 0 0
0 u?y 0 0 0
0 0 uB(p)3 0 0
0 0 0 ut(yp')®
L 0 0 0 0 um+1((p/)%m(m+1)
[ Fnk o p GO
ne ©P 2
Flop |7 |65 |
LF{M op Gom

S o oo

(" )™
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where each G on the right side is a combination of the G;,0 < j <s,
multiplied by combinations of ¢©(*) and u’, and thus G are in L?.

In particular, um+1(p/)3mm+D)F™(,) — G* in LP norm. But
F{™ (y) = fn,(y) a.e. and so we have that u™+1 (/) imm+1) 5, () —
G, in LP. That is, given an arbitrary bounded sequence {f,} in L?, we
can find an element G%, in L? with u™t1(p/)2m(m+1 £, (p) — GZ,.
Thus the operator u™*1(p')3™(m+1)C_ is compact on L?. By Lemma
4, we have umt1(p/)3m(m+1) = ae. Since u and ¢’ are continuous,
up' =0.

Before proving the converse we note that if h € Wy, , and ||A||w,, , <
1, then ||h||oo < 2. Indeed, for such b € Wy, p, ||h||p < 1 and ||A'||, < 1.
By Holder’s inequality LP C L1, ||h||1 < ||h|l, < Land ||R/||1 < ||W]], <
1; hence Varh = [} [I'| < 1. Now if ||Allco > 2, then |h(zo)| > 2 for
some zo. But Varh < 1 implies |h(z)| > 1 for all z since |h(z,)| > 2
and |h(z)| < 1 implies 1 < |h(z,)| — |h(z)| < |h(z,) — h(z)| < Varh.
However if |h(z)| > 1 for all z, then fol |h] > 1, contradicting ||h||; < 1.

Now assume up’ = 0. Since ¢ € C!, p is constant on each subinterval
on which u(z) # 0. Moreover, (up')’ = u'¢'+up” = 0. Then, since p is
a constant on each subinterval where u(z) # 0, it follows that up” =0
and hence v/’ = 0. Thus ¢ is a constant on each subinterval on which
v/(z) # 0. Continuing, we have that up' = u'¢’ = --- = um~ Dy’ = 0.

Let E = U:’:ol{zlu(s)(z) # 0}. Then FE is an open subset of [0, 1]
and thus E = U;(a;, b;), a union of disjoint open intervals (where one
of the intervals may be [0,b;) and another (a;,1].) Let ¢(z) = ¢; on
(@s,b;).

To show that uC, is compact on Wp,p, let f, € Wy, p with
[|fallW,, < 1. We will prove that there exists an element g € Wy,
and a subsequence {fy, } with uCy fn, — g in Wy, p.

We construct the subsequence {f,, } as follows. On the interval
(a1,61), {fu(())} = {fn(c1)} is a bounded sequence of complex num-
bers, and so there is a subsequence { f1 } of { f»} and a number 4; € C
with f1 n(c1) — A1. For (ag,bs), we find similarly A; € C and a sub-
sequence {f2n} of {fin} With f2 ,(c2) = A2. Continuing in this way,
by induction we obtain, for each positive integer 7, a complex number
A; and a subsequence {f;n} of {fj—1,n} With f;n(c;) — A;. We then
define fn, = fik for each positive integer £ and note that this con-
struction implies that f,, (c;) — A; for all j.

Let g(z) = Aju(z) when z € (a;,b;) and g(z) =0 when z ¢ E =
U(ai, b;). That is, if u(z),u'(z),...,u(™ 1 (z) do not all vanish, we
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let g(z) = Aju(z) when z € (ay,b;), while if u(z) = u'(z) = ---
um=1)(z) = 0 we let g(z) = 0.
The following then hold
(i) If z € E, then z € (a;,b;) for some 7, so that g(z) = A;u(z)
and hence ¢(®)(z) = 4;u(®)(z),s = 0,1,...,m — 1. Clearly |¢g(*)(z)| <
21ul®)(z)| for z € E,s = 0,1,...,m — 1, since || fn,||oo < 2-

(ii) If z & E, then g(z) = ¢'(z) = --- = g™ V(z) = 0. Indeed, if
z & E, then g(z) = 0 by definition. Also, for s = 1,2,...,m — 1, if
g(z)=---=g(6=(z) =0 for all z ¢ E and if z, & E, then

(s—1) _ o(s—1) (s—1)
t—z, t—z, t—z,l t—1zx,
u(s—l)(t)
i —_— = (s) =
< t1_1’111102 ry— 2|u'®(z,)| = 0.

Therefore, g{*)(z,) exists and equals 0. Hence g,¢’,.. .,9(™=1) vanish
off E.

(iii) If z, ¢ E and u(™(z,) = 0, a proof similar to (ii) shows that
9(™ (z,) = 0.

The preceding two statements assert that if z &€ E, then u(z) =
u(z) == u™ () = 0,9(z) = ¢'(z) = --- = g™~V (z) = 0 and

if ¢ E and u(™)(z) = 0, then ¢{™)(z) = 0.
(iv) {z ¢ Elu™)(z) exists and u(™ (z) # 0} is countable. For
suppose z, & E and u(™)(z,) # 0. Then

(m-1) _ o(m-1)
lim u (1’) u (10)

IT—To T — T

= u(m)(xo) # 0.

Since u(m~1(z,) = 0, there exists § > 0 so that |u(™~V(z)| >
L ulm) (z,)||z — 20| for 0 < |z — zo| < 6. Therefore |u(™=1)(z)| > 0 for
T,—6 <z <z and z, < z< 7o+ 6, and so (z, — 6,z,) C U(as, b;)
and (z,,z, + 6) C U(ai,b;). Since {(ai,b;)} are disjoint, z, is one
of the b;’s and one of the a;’s. Hence {z ¢ E|u(™(z) exists and
u(™)(z) # 0} C {a1,as,...,b1,ba,...} which is clearly countable.
v)
[0,1\E = {z & E[u™(z) = ¢"™ (z) = 0}
U {z & E|u'™ () does not exist }
U{z & E|ul™ (z) # 0}.
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The last two sets on the right hand side have measure 0.

With these facts we now show that g € Wy, , and that uCy fn, — g
in W p-

First we show that g, ¢/, ..., ¢(™~1) € AC. To this end fix an integer s
between 0 and m — 1. Let € > 0. Since u(®) € AC, there exists § > 0 so
that if {(zx,yx)}7—, is a finite collection of non—-overlapping intervals
with 3°p_ (yk — zx) < 6, then Y, [ul® (i) — u(®) (zx)| < /2.

There are two types of intervals (zx, yx). One where zj and y; belong
to the same subinterval of £ and a second where z; and y, do not lie
in the same subinterval of E. In the case [zk,yx] C (a;,b;) C E, let
2k = %(zk + yk), while if zx and yx do not lie in the same subinterval
of E, let zx be any point in [z, yx] which lies in the complement of E.
Then in both cases

199 (k) — 9 (z&)] < 19 (k) — 9% (20)| + 192 (2k) — 9 (k).
If [z, yx] C (aj,b;) for some j, then
109 (i) = 0 (@)1 < 1451 (10 ) — u (z0)] + [0 (zx) — 0 (z0)])
< 2(Ju (g) = u ()| + u® (1) = u @0)]),
and in the second case

19 (y) — 9 (@6)| < 19°) (k) = 9 ()| + 191 (2x) — ') (k)|
< 2(Ju (gr) = ) (z)| + [0 (25) = ul (1))

since g(® (2x) = u(®)(2x) = 0.
Therefore if Y ;_,(yx — zk) < 6, then certainly the finite collection
of non—overlapping intervals {(z,zx)} U {2k, yx)} that has just been

constructed satisfies 3 5., ((yk —2k) + (2 —2k)) <6 s0

n
> 19 (k) — ¢ (k)|
k=1

Z (1 (yr) — u® (26)] + [0 (2x) — ul (2x)]) < 2_ =¢
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Since ¢ > 0 was arbitrary, we have that ¢¢®) € ACfors =0,1,...,m—1.
Next, for s =0,1,...,m — 1, we write

1
/o I(UCgofnk)(s) —g(® P =/E |(ucpfnk)(s) - g(s)|p
[ W)@ = g
[0,1\E
On [0,1\E, (uCpfn,) ) (z) = 37_0(})u) (2)(fnr(p(2)))"7) = 0
since u(")(z) = 0 when z ¢ E and r = 0,1,...,m — 1. Moreover,

forz & E,g(z) = ¢'(z) = --- = g™ V() = 0 by (ii). Therefore
1
| 106Gt = g9 = [ [t = gOp

b;
= Z / u) () fu, (i) — Aiu'®) (z)[Pdz.

Let € > 0. Choose N; so large that .. v, fa'_' [ul®) (z)|Pdz < €P/8P,
s=0,1,. — 1. Then choose N3 so that

&
;) — Ai] < , k2 Ngyi=1,...,N;.
60 A < ey 2 M 1
Then

/ |uc@gnk)<3>—g<s>|"—2 / |0 (2) fne (e1) — 1) (2) Ad]?

+ 5 [ WO el - @)

>N,

<3 / 1) (@)P | f (e3) — AsPPdz
=1

+ > / [ul®) (z)[P4Pdz.

>N,

Hence

1 1/p
(/ (uapfn,,)(s) — g(8)|p)
0

b Pdz 4PeP\ 1/p
< &) ()P €
< (Z / @ e + )

)P = 21/p k> N,.

< (22,,
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Thus (uCyp fn, ) — ¢ in L?,s=0,1,...,m — 1.

Finally, essentially the same proof works to show that ¢(™) € L? and
(uCp frn, )™ — g(™) in LP. The key observation is that (v) implies
m([0, 1\E) = m({z & Elul™ (z) = g™ (z) = 0}).

Thus we have shown that if up’ = 0 and f, € Wy, p with || fnllw,,, <
1, then there exists a subsequence { f,, } and an element g € W, , with
uCy fn, — 9 in Wi, . That is, up' = 0 implies uC,, is a compact op-
erator on Wy, p.

Before commenting on the spectra of weighted composition operators
we recall several definitions. If X is a set and ¢ : X — X, then ¢,
denotes the nth iterate of ©, i.e., po(x) = z and pn(z) = P(Pn-1(z))
forn > 0,z € X. Also if o : X — X, then a point ¢ in X is called
a fixed point of @ of order n if n is a positive integer, ,(c) = ¢ and
or(c)#ec,k=1,...,n—1.

In [5] it was shown that if X is a compact Hausdorff space, u,p €
C(X),p : X — X, then a necessary and sufficient condition that
T : f(z) — u(z)f(p(z)) be a compact operator on C(X) is that for
each connected component C of {z|u(z) # 0} there exists an open set
V O C such that ¢ is constant on V. Further, for such a compact
operator T, a(T)\{0} = {A\|A"™ = u(c)...u(pn-1(c)) for some positive
integer n and some fixed point ¢ of ¢ of order n}.

The techniques that were used in proving the results in [5] about
the spectra can be carried over essentially unchanged to our situation.
Specifically, using these techniques one can prove the following theorem.

THEOREM 6. Suppose m s a positive integer, 1 < p < oo,u €
Win,00,@ ¢ [0,1] = [0,1],0 € Wi,00 N C and is of N—bounded varia-
tion for some positive integer N. If the weighted composition operator
uCy 18 compact on W, p, then o(uCp) = {A|A" = u(c) ... u(pn-1(c))
for some positive integer n and some fized point ¢ of o of order n}U{0}.
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