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APPROXIMATION OF ZOLOTAREV TYPE
WERNER HAUSSMANN AND KARL ZELLER

1. Introduction. We consider generalized Zolotarev polynomials
which minimize the expression

sup 'axm+k+l +.’L‘m+1+p($)l
z€[-1,1]

where a € R,m,k € Z,k > 0,m > 0, and where p is a polynomial of
degree < m. Thus, the two highest terms (a and 1) are prescribed (with
a gap of length k between these terms). Their structure is quite com-
plicated, hence we exhibit approximations which can replace the gen-
eralized Zolotarev polynomials for many purposes. Our investigations
are based on complex approximation and related to the Carathéodory-
Fejér method. Therefore, we first treat complex variable approxima-
tion problems (approximation by a modified finite Laurent series on
the unit circle), thereby extending investigations by Al’per [2]-and
Rivlin [13]. Further we determine the Caratheéodory-Fejér approxi-
mant to the function az* + 1, and then we truncate the corresponding
Caratheédory-Fejér series in a modified way in order to get bounds for
the generalized Zolotarev polynomials.

2. Complex approximation. For -1 < b < 1, and ¢ :=
—b/(1 — b?), we consider the functions

and -
H(z) = Mt G(Zk) - azm+l+k + anzm+l—kn

n=0
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(where k,m € Z, and k > 0,m > 0), and approximate them in the
sense of the Chebyshev norm on the unit circle, i.e.,

IlF|| := sup |F(2)],

|z|=1

from the subspace

m+2
b

z

m+3’ P

P(m + 2,00) := span(z mtd ).
The following result extends investigations by Al'per [2] and Rivlin
[13]; see also Klotz [9] and Trefethen [16].

LEMMA 1. The unique best Chebyshev approrimant to H from
P(m + 2,00) on |z| = 1 is given by P* = 0.

PROOF . Suppose there exists a (nontrivial) P € P(m + 2, 00) with
l1H - Pl <[H|| (70).

Then H and P have the same winding number (of the image curve with
respect to zero; cf. Henrici [8, p. 277]). This is a consequence of an
extended version of Rouché’s theorem, see, e.g., Saks-Zygmund [14, p.
193] (also a direct proof can be given by the usual homotopy method for
the corresponding integral). We see easily that H has winding number
m + 1 while P as a non-zero member of P(m + 2,00) has a winding
number > m + 2. This contradiction shows that P* = 0 is proximinal.

Now suppose that a certain P € P(m + 2,00) gives a best approxi-
mation to H:

|H — P|| = [|H]|.

Since |H(z)| = ||H|| for all |z| = 1 (note that G is a Blaschke function),
by the strict convexity of the disk,

H(z) - %P(z) <||H|| if P(z) £0.

Hence one would obtain an approximation better than allowed if P has
no zeros (on |z| = 1); a better approximation also could be achieved
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in the case where P has only a finite number of zeros (this is shown
by employing a suitable correction polynomial which improves the
approximation at these critical points). Thus P has an infinite number
of zeros, assuring P = 0 and unicity.

Next we consider the polynomials P, € P(m + 1 — k(r — 1), 00), for
(r=0,1,2,...) given by

P.(z):=H(z) - b"z7* . H(2)
r—1

— azm+l+k + § bnzm+1—kn _ abrzm-f—l—k(r—l)‘

n=0

Thus P, is a modified partial sum of the Laurent series for H: the last
coefficient is replaced by

br—l

r—1 T _ 3r—1 _

PROPOSITION 2. The best Chebyshev approzimant to H on |z| =1
from P(j,00), where

m+1—-kr<j<m+1-k(r—1,) forr >0,

m+1<yj, forr=0

is given by P, (and uniquely determined). Further, we have

I
1) L
Note that, for r = 0, we have P, = 0.

The proof is an easy adaptation of Lemma 1. In order to get (1), we
observe that

|H ~ Pr|| = sup |b"2"*"H(z)|
!

z|=1
1 1 - b2*
_ r—kr _m+1 .
= s b2 T
_ 1o

T 102
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3. Carathéodory-Fejér approximants. The functions G and
H introduced in §2 can be considered from the point of view of
Carathéodory-Fejér approximation (see, e.g., Gutknecht-Trefethen [6,
Theorem 1.1], and also Carathéodory-Fejér [4] and Schur [15]). Indeed,
the unique Carathéodory-Fejér approximant to az + 1 (for a # 0) is
given by the series

N 1 -1+ 4a?
nglb z (whereb: —Zai)'

Then the Hankel matrix belonging to this problem is

()

with largest eigenvalue (in absolute value)

1 1
A==+ -v1+4a%= .
s TVt T TR
Hence among all expansions with leading coefficients a and 1,G(z)
yields the minimal norm on |z| = 1, namely (1 — b?)~! (see also

Gutknecht - Trefethen [6]). This minimum property can be extended
as follows:

Let us determine the Carathéodory-Fejér approximant to the function
az* + 1(k € N). Here we have

PROPOSITION 3. Let —1 < b < 1,a := —b/(1 —b?), and k € N. Then
the unique Carathéodory-Fejér approzimant to az* + 1 is given by

[o o}

Z b"Z_kn.

n=1

PROOF . The corresponding Hankel matrix to this problem is

10 - - -0 a
00 - - - a 0
0 a - 00
a 0 - 00
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with spectral radius /2 + 1/2(1 + 4a®) 2 = 1/(1 — b?). Since G(z*) has
modulus 1/(1 — 4?), the proposition is settled, by the unicity of the
Carathéodory-Fejér approximant. 0

4. Polynomials of Zolotarev type. We consider the Zolotarev
polynomials in the following way: Given @ € R, and m = 0,1,2,...,
then

Zo = Zamy2 = aTy2+ Ty + q,

where ¢* is the uniquely determined algebraic polynomial of degree
< m such that

“Za.m+2”oo < ||‘1Tm+2 + Trng1 + 4l

for all polynomials ¢ of degree < m, where || - || is the sup-norm on
[1,1].

In general, the Zolotarev polynomials are rather complicated to
describe explicitly (for their connection with elliptic functions, cf.
Achieser [1], Carlson-Todd [5] and the literature quoted there). Thus
good approximants to Z, ,,+2 are of interest.

In [7] we proved the inclusion

1— b2m+2 1+ b2m+2

T < Zam+2llo < T

@) 1

forb=(1-(1+ 4a2)1/2)/2a (if @ # 0) using a modified truncation of
the series given by the function H (for k = 1). We mention that some
other estimates are due to Bernstein [3] and Reddy [11], see also [7].

Motivated by the observations in §3, estimates can be given for the
following generalized Zolotarev polynomials:

Let a € R,k € N, then consider the minimum problem

laTms14k + Tmtr + P*lloo < llaTms14k + Trnt1 + Plloo

for all p € P,, (polynomials of degree < m).

The unique solution aTy, 414k + Tins1 + p* (with p* € P,,) is called
a generalized Zolotarev polynomial. We have the following estimates:
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PROPOSITION 4. Let —1 < b< 1,a := —b/(1—b?), and k € N. Then

1 — [pl*+!
1- 62

1+ ‘b|s+l

S IIaTm+l+k + Tm+1 +p*”oo S 1— b2

for s € N such that2m+1 -k <ks <2m+ 1.

PROOF . Determine s > 1 such that 2m+1 -k < ks <2m + 1, and
consider

Pyi(2) = H(z) = 0" 27 *CHDH(2)

s
— azm+l+k + § bnzm-l—l—kn _ abs+12m+1—ks

n=0

with ||Peyr|] < (1 4+ [p]*1)/(1 - b?).

Now
laTm+14k + Tms1 + 2"l

s
< sup azm+l+k + Zm+1 + Z bnzm+l—kn _ abs+lzm+l—ks
lz|=1 n=1

1 + |b|s+1

<||Psya]] < ,
<Pl € 45

hence the upper bound is settled.

(Note that Re(} "5 _, bmzmt1=kn _ gpstlym+l=ks) isin P,,.)

In order to get the lower bound, we observe that the graph of H
has winding number m + 1 with respect to the origin; further we have
H(1)=(1-b%*)""!and H(-1) = (-1)™*'(1-b?)"!. Hence there exist
m+ 2 points —1 =x9 < 27 < -+ < Tpyy1 = 1 such that for h = ReH
we have

hzy) = (1) 14 bl = (~1)™1#(1 - b)) 0<p<m+1).

Proposition 2 yields ||h — RePst1||oo < ||H — Poga|| = |51/ (1 - b?),
hence (with g = Re P;y,)

l9(2)| 2 [~(zu)] = [1h = glloo > (1= [B]**1)/(1 - b%)
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for 0 < u < m + 1. Now the de la Vallée-Poussin principle completes
the proof. o

REMARKS.
(i) Obviously, (2) is achieved from Proposition 4 for k£ = 1.

(ii) With the aid of strong unicity constants one can get bounds for
[[(@Tm+14+% + Tnt1 + p*) — RePsyi|oo-

(iii) Modified considerations lead to the best approximation of (real)
functions like z — (z — ¢)7!(c > 1) as well as ¢ — (c — )%, see
Meinardus [10], Achieser [1] and Rivlin [12].
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