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CONVERGENCE AND GIBBS PHENOMENON OF
PERIODIC WAVELET FRAME SERIES

ZHIHUA ZHANG

ABSTRACT. In this paper, we give integral representations
of partial sums of the periodic wavelet frame series and then,
based on it, we study convergence and the Gibbs phenomenon
of the periodic wavelet frame series.

1. Introduction. It is well known that {e?™"*} is an orthonormal
basis for L2[0,1]. The convergence of the Fourier series

1
che%rint, Cpn = / f(t)e—27rint dt, f c L2[0, 1]7
n 0

has been systematically studied [4, 5].

If {mn} = {2™/2(2™ - —n)}mnez, is an orthonormal basis for
L%*(R), then {t, } is called a wavelet basis. From 1986 to present,
many wavelet bases have been constructed. The convergence of the
wavelet series

> enatinnlh enn= [ fOTnaOdt ] IX(R),

was studied deeply [6, 8, 10]. Meyer [7] first constructed periodic
wavelet bases. Skopina [9] discussed the convergence of the periodic
wavelet series.

Wavelet frames are a generalization of wavelet bases. Recently,
periodic wavelet frames were constructed [11]. In this paper, we
will research convergence and the Gibbs phenomenon of the periodic
wavelet frame series.
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A common way to research convergence of various series is to express
the partial sums of these series in the following form

Su(fiz) = / F() K (t, ) dt,

where the kernel functions K, (¢, z) are estimated easily and then, using
these integral representations, discuss whether S, (f;z) converges to
f(z). In this paper, along this line, I am devoted to constructions
of kernel functions of the periodic wavelet frame series. From our
construction, one sees that it is very difficult to give appropriate integral
representations for periodic wavelet frame series. On the other hand,
we prove that the kernel function is a reproducing kernel of the space of
band-limited functions. Based on this, we show that a kind of periodic
wavelet frame series exhibits the Gibbs phenomenon.

2. Frames, wavelet frames, and periodic wavelet frames. Asa
generalization of orthonormal bases, Duffin and Schaeffer [3] introduced
first the concept of frames.

Let {f.} be a sequence in Hilbert space H. If there exist A, B > 0
such that

AFIP < DI £l < BIIf|)? for any f € H,

then {f,} is called a frame for H [1, 2]. Hereafter, >, = > ,., and
{fa}t ={fatnez.

If {f.} is an orthonormal basis of H, then {f,} is a frame for H.
Conversely, it is not true.

Let {fn} and {fn} be two frames for H. If for any f € H, the

following reconstruction formula

F=Y"(F Fa)fn =Y (Fs fn) Fus

n

holds, then {f,,} and {f,} are called a pair of dual frames for H [1, 2],
and the series

S (Fifa)fn and Y (£, fa)fn

n

is called the frame series for f € H.
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Definition 2.1. (i) Let ¢ € L?(R) and ¥, = 2™/%(2™ - —n),
m,n € Z. If {¢mn} is a frame for L%(R), then {¢, .} is called a
wavelet frame for L?(R). If two wavelet frames are a pair of dual

frames for L?(R), then they are called a pair of dual wavelet frames for
L?*(R) [2].

(ii) Let Y577 = > ¥Yma(- +1), m = 0,1,...;n = 0,...,2™ — L.
If {1, vber (m = 0,1,...5n =0,...,2™ — 1)} is a frame for L?[0,1],
then we call it a periodic wavelet frame. If two periodic wavelet frames
are a pair of dual frames for L?[0,1], then we call them a pair of dual
periodic wavelet frames.

Below we state the constructions of the pairs of dual periodic wavelet
frames given by the paper [11].

Suppose that ¢ € L?(R) and the Fourier transform zz satisfies that
¥ € C%*(R) and

(2.1) supp  C [=m, 7]\ (=m.m), 0<n< g,

(2.2) D(w) =Y [$(2"w)]* > 0,w € R\ {0}.

Hereafter, C*(R) consists of the functions whose derivatives of order A
are continuous on R.

—

Again suppose that J € L*(R) and the Fourier transform zZ satisfy
that

23) Hey= 5wz, J0)=0.
Then we have that [11]

(2.4) GeCAR) and (@),  B(@)=O((1+][z)).

Proposition 2.2 [11]. Let ¢ and ¢ satisfy (2.1)—(2.3). Denote
Yo = 27227 —n), P = 272PQ2™ - —n), m,n€E Z

Then {¢Ymn} and {Jmm} are a pair of dual wavelet frames for L?(R).
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Proposition 2.3 [11]. Let ¢ and ¢ satisfy (2.1)—(2.3). Denote

(25) Y2 =D P+, GET =D Ppn(+l), m,neZ
l l

and
=1, go=1 my, = PP Nmn:~p”
(26) 9o ) 9o ) gam 4 ¢m7n gom 4 m,n
m=20,1,...;n=0,1,...,2™ — 1.

Then {gx}§° and {gx }§° are a pair of dual periodic wavelet frames where
both g and gj are trigonometric polynomials.

Let f € L[0,1] and {gx}, {gx} be stated as in (2.6). In this paper,
we research the convergence and Gibbs phenomenon of the periodic
wavelet frame series

(2.7) chgk(ax), where ¢y, :/0 F()g,(t) dt.

Similarly, we can consider the other periodic wavelet frame series
~ 1 _
> heo @egk(z), where dj = fo F(t)g,(t) dt.

3. Integral representations of partial sums. Now we give
integral representations of the partial sums of the periodic wavelet
frame series (2.7). Integral representations play a central role in the
research of convergence and the Gibbs phenomenon.

Let f € L[0,1]. Denote the partial sums of the series (2.7) of f:
v 1 _
Sy(f;z) = chgk(:v), where ¢;, = / F(®)g,(t) dt.
k=0 0

Then, for v =2M +j, M >0; 0 < j <2M — 1, we have
(3.1)

M-12™-1 j
Su(f; ) = cogo(z) + Z Z cam tngam1n(T) + Z CoM 4 nGan 11 ()
m=0 n=0 n=0

::A1+A2+A37 VZ]-
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Define f* as a 1-periodic function satisfying f*(z) = f(z), z € [0, 1).
So, for any [ € Z,

FF)=ft—1), 1<t<i+1.

Below we give integral representations of Ay, A, and Ag, respectively.

Lemma 3.1. Forz € R, M >0, and j =0,1,...,2M — 1, we have
(1) A2 = X020 Jp 1O X G (8) (@) dt, and
(i) As = [oF*O) Xncon () Var,n(t) brsn(@) dt, where ar(j) =
{2Mi+k: k=0,1,...,5; 1€ Z}.

Proof. Since 9(z), ¥(z) = O((1 + |z|)~2), by (2.5)=(2.7), we have
2m—1

Z Cam tng2m 40 (T)

n=0

—9m 2:;01 /0 1 FX(t) (; DR (E+1) n)> (lz Y™z + 1) — n)) dt
=2m 2§1 > /lf*(t) (Z DEME+T +1) — )2z + 1) — n)>dt
m:_o1 [ l

=20 53 [ FORC D) -+ ) -y

e /R £(0) < 3P — (27 - n)>dt.

From this and (3.1), we get (i). Similarly, we can obtain (ii). Lemma
3.1 is proved. ]

In order to give an appropriate integral representation of A;, we need
to define two functions of A and h.

Definition 3.2. Define h € L?(R) to be such that

hw) = 55 S IEP, w0, a0 =1
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where D(w) is stated in (2.2). Define h € L%(R) as

= 1

h(w) = E/Ra(w — u)X[— (37 /4),(3n/4)) (u) du,

where A7, 3 is the characteristic function of [a, b] and

alt) = {e'n2/(7r216t2) t| < /4 . / o(w) dw
0 t| > w/4, R '

Lemma 3.3. The functions h and h satisfy the following:
(i) supph C [ (/2), (7/2)], h(w) = 1, w € (~n,7), h € C2(R).

~

(ii) supp h C [, 7], h(w) = 1, w € [=(x/2), (x/2)], h € C=(R).
(iii) h(t) = O((1L+ |t])~2), k(t) = O((1 + |t|)~*) for any s > 0.

Here 7 is stated in (2.1).

Proof. By (2.1) and (2.2), we have > . % (2mw)|? =0, w € (—n,7)
and -

ST Emw)? =Y [9(@™w)? = D(w),w € (=n,1) \ {0}

m>0

From this and Definition 3.2, we get Tt(w) =1, w € (—n,n). Since
supp Y C [—m, ], we have supp h C [—(7/2), (7/2)], and for 0 < /2 <
|w| < r, the following formulas hold.

Y lEmw) = Yo WEre)P

m>0 0<m<log, (2w /n)

and

D(w) = > [ (2mw) .

log, (n/7)<m<log, (27 /n)

Noticing that r can be an arbitrarily large number, by 12 € C*(R), it
follows from (2.2) and Definition 3.2 that h € C% (R\ [—(n/2), (n/2)]).
Noticing that h(w) =1, w € (—n,n), we have h € C*(R). (i) follows.
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By the definition of %, we get (ii). By he C%(R) and h € C*(R),
we get (iii). Lemma 3.3 is proved. O

Lemma 3.4. A; = [, f*(t)>, h(t —n)h(z —n)dt.
Proof. By Poisson’s summation formula [7], we have

hPeT (x Z h(z+1) = Zﬁ@lm)e%m.
k

But by Lemma 3.3 (ii), we have %(Qkﬂ') =0,k #0,and h(0) = 1. So
hPe"(z) = 1. Similarly, by Lemma 3.3 (i), we have h?¢"(z) = 1. From
this and go(x) = go(x) = 1, we have

Al = Cogo( ) = CohPET , Co = / f per t.

Since h(z), h(z) = O((1+|z|) 2), similar to the argument of Lemma 3.1,

we have
A = /01 f*(t)(ZZ(tH)) <Zh(m+ l’)> dt
l 14
_ /R £ ;Z(t ~ n)h(z — n) dt.

Lemma 3.4 is proved. ]

Denote A, , := 2™/2h(2™ - —n), Emm := 2m/2R(2™ . —n), m, n € Z.
Define kernel functions as

(3.2) Ky (t,z) = Zth Y (z), M >0;t, z€R,

(3.3) HGUM(J)

M>0; j=0,1,...,2M —1: t,z € R

where o (5) = {2MI+k: k=0,1,...,5; 1 € Z}.
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With the help of the above kernel functions, we will give simple and
clear integral representations of partial sums of the periodic wavelet
frame series (2.7).

Theorem 3.5. Let f € L[0,1], and let f* be a 1-periodic function
and f*(x) = f(z), x € [0,1]. Then, for v = 2M + 5 M > 0;
j=0,...,2M —1,

x):/f*(t)KM,j(t,x)dt and /KM,j(t,x)dtzl, z€R.
R R

Proof. By (3.1), S,.(f;x) = Ay + Ay + A3, v = 2M + j. From Lemmas
3.1 and 3.4, it follows that

(3.4) A+ Ay = / fr (&) La(t,z) dt
R
where
M-1
(3.5) Zhon hon(z) + Z Zd’m,n )mn ()
m=0 n

Below we prove a

Claim. Ly (t,x) = Ky (t,2) (M > 0) almost everywhere.

For this purpose, we only need to prove that for any v € L?(R) and
r € R,

(3.6) (v Lu (7)) = (v, Knm (-, 2))-
Hereafter, (-,-) is the inner product of the space L?(R).

Using the Parseval equality of the Fourier transform, we have

1

1 ,\’:’\7 —m/2= = —-m —i127 " nw
3 ) = 52 [ 2R @ )

(77 zZm,n) = o

Using the inversion formula of the Fourier transform, we have

1

bmn(w) = 5

/2 m/2 zxww(Q m ) —127 M nw dw.
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Since supp 121\, suppi C [, m], the above formulas can be rewritten
in the forms

_ 1 U .
(0 Tmn) = 57 [ #a(w)e " d
7r —T
and
bma(@) = = [ Do) d
m,nm—2ﬂ_ . 2\Ww)e w,
where

~

®y(w) = 2™ 232 W) (w) and Py(w) = 222" (w).

Again, by the Parseval equality of the Fourier series, we obtain that for
z € R,

~ 1 T
>0 G Vomn(e) = o [ Brlw)afw) do

—T

1 ™

(3.7) = 27 12" 9052 )b (w) Y (w) dw
T™J 7
1 TTwo Tro—m = —m
=5 [ €)Y (202 w) dw.
T™JR
Take ny > ny > 1. Since |[Ym.nllr2(r) = |[¥|lL2(R), We have
na o . nz o
> D@ <l 3 Falol])
n=mni LZ(R) n=ni

Again, by (2.4), we see that for x € R, the series ) %mn(:c)zzmn is
convergent in the norm L?(R). From this and (3.7),
(3.8)

(77 Zam,n(x)am,n) = Z(%"Zm,n)wm,n(x)

= L [ )@ )b ) do.
T JR
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Similar to the argument of (3.8), we obtain by Lemma 3.3 (iii) that
A T 1 1w N = —-m
(’772hm,n($)hm,n) = g‘/ € ( )h( )h(2 w) dw.

By Lemma 3.3 (i)—(ii), we know that z(w) =1, w € [—(7/2),(7/2)]
and supp h C [—(7/2), (7/2)], so we have

(3.10) ﬁ(w)f(w) =h(w), weR.

By (2.3) and (2.2), we have

Again, noticing that D(2™w) = D(w) (by (2.2)), it follows from
Definition 3.2 and (2.3) that

N PP o NS w
)—me D@w) —n%jow@ J$(2"w), w#0.
By (3.10), we have
(3.11) E(w)f(w) => J(z*mw)f(rmw), w # 0.
m<0

From this and (3.9), we get
(3.12)

(o SFont@on) = 5. [ e @( X v maie ) o

m<0

By (3.8), (3.12), and (3.5), we have

0 Taulso) = g [ =5 X D i ) do

m<M
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Again, by (3.11), we get

i)
[\]
|
E
N
S
&
2
)

T 1 TTwoS
O Tu2) = 51 [ e300
From this, (3.9) and (3.2), we have
(’Y: K x4 = (77 Zth hM n) = (’77 ZM(7Qj))7

i.e., (3.6) holds. The claim follows, i.e.,

(3.13)  Ku(t,x) = Zh()n Yhon(@) + DY mn () mn(@).
From this claim and (3.4), we get
R

By Lemma 3.1 (ii):

a5= [ e ( S Trta®sale ))

nEaM )

Finally by (3.1) and (3.3), we get
(3.14) S, (f;z) = / FOKng o) dt, v—2M 4]
R

Now let f(t) =1,0 <t < 1. By Lemma 3.1 and (2.3), we get

M-1

-2y ([ natt1at) o)
2 Y S GO bn@) = 0

m=0 n
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Similarly, we have A3 = 0. By (3.1) and g9 = go = 1, we get

Su(L;z) = A1 = cogo(x) = (/Oljo(t) dt) go(x) = 1.

From this and (3.14), we have [ Ky ;(t, ) dt = 1,z € R. Theorem 3.5
is proved. ]

We give the following corollary which is used in the discussion of the
Gibbs phenomenon.

Corollary 3.6. Under the conditions of Theorem 3.5, for M > 0,

(3.15)  Spw (f5) /f \Ku(t,z)dt zeR
and
(3.16) /KM(t,a:)dtzl, z € R.

R

Proof. By Theorem 3.5, we know that, for M > 0,
(3.17)

Soma_y(fs @) = Som o _1)(f;2) / [r®)Kpom o (t, ) dt.
By (3.3) and o (2M — 1) = Z, we have Ky om 4 (t,x) = Kp(t, z) +

>on ZMm(t)wM’n(a:). Again, by (3.13), we obtain that

M =
KM oM _ 1 t :E Zhon h()n )+ Z Zwm,n(t)¢m,n(m)
m=0 n
= KM+1(t,Q}‘).

From this and (3.17), we obtain that for M > 1, (3.15) holds. By (3.1)
and Lemma 3.4,

So(f;z) = cogo(x) = A1 = /f thfn (z —n)dt.
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Again, by (3.2), we know that for M = 0, (3.15) holds. Taking f =1
in (3.15), we get (3.16).

4. Convergence and Gibbs phenomenon. Based on integral
representations of the kernel functions, we will discuss convergence and
the Gibbs phenomenon of periodic wavelet frame series.

4.1 Convergence of the periodic wavelet frame series. First,
we give estimates of the kernel functions.

Lemma 4.1. Let the kernel functions Kp(t,z) and Ky j(t,x
be stated in (3.2) and (3.3), respectively. Then, for M > 0, j =
0,...,2M — 1, we have

(i) Km(t,z) = 02M)(1+2M|t — z])~2 and
(ii) K, j(t,z) = 0(2M)(1 4+ 2M|t — z|) 2

Proof. We first prove that

(4.1) Pu(t,2)i= > Garn(®)darn(@) = 0@M)(1+2" [t - 2|)72,

n€onm ()

where o/(j) is stated in Lemma 3.1.

From [Py(t,2)] < X, [Wan(O)¥an(@)] = Qu(t,z) and (x),
P(x) = O((1 + |x])~2), we have
(4.2)

Qo(t,2)] <D [$(t—n)d(z—n)| = O(1) Y (1+[t—n[)~>(1+|z—n|)~>.

n

For |t + z| <1 and n € Z, by a known inequality [8, page 79],

1+t =n))(A+ |z —nf) = 2(1+ [t —2|)(1+ |/t — 2| = 2|n]])

> =

and (4.2), we know that, for |t + z| < 1,

|Qo(t, )| = O((1+|t—a|) %) D (L+|lt—z|-2lnl))~* = O((L+]t—=|)?).

n
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Since Qo(t + I,z +1) = Qo(t,x), t,z € R, | € Z, we obtain that for
t, x € R,

Qo(t,z) = O((1 + |t — 2])72).

Again, by Qur(t, ) = 2M Qo (2M¢,2M ), we get (4.1).

Since Kp(t,z) = anMn(t)th(m) and h(a:),ﬁ(:c) = O((1 +
|z|)~2), similar to the argument of (4.1), we get (i). Combining (i
with (4.1), by (3.3), we get (ii). Lemma 4.1 is proved. O

Now we discuss the uniform convergence and convergence in the norm
of L?[0, 1] as well as the almost everywhere convergence of the periodic
wavelet frame series (2.7).

Theorem 4.2. Let f € L[0,1], and let f* be a 1-periodic function
and f*(x) = f(z), z € [0,1).

(i) If f* € C(a,b), then the series (2.7) converges to f* uniformly
on every closed interval in (a,b).

(i) If f € L?[0,1], 1 < p < oo, then the series (2.7) converges to f
in the norm of LP[0,1].

(iii) If f € LP[0,1], 1 < p < oo, then the series (2.7) converges to f*
almost everywhere on R.

Proof. (i) By the assumption, f* is continuous in (a,b). Take
[a1,b1] C (a,b). For any € > 0, there exists a & > 0 such that
[f (@) — f*(x)] < e x € [a1,b1], |t — x| < . By Theorem 3.5, we
obtain that for = € [a1,b1], v = 2™ + j,

z+0
Su(fax) - f*(x) s KMJ(t,x) dt
x4+
(43) 7 KD (O - £ @) dt
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For z € [a1, b1], we have

T+
L) < / AP0 = 1@ Kt de < e / \Kar (£, )| .
r— R
By Lemma 4.1,

I = 0(2M¢) / (142t — z))~2 dt = 0(5)/(1 FIE)"2dt = O(e).

Hereafter, the bounds in the terms “O” are independent of x, M, j.

By Lemma 4.1 and Theorem 3.5, for = € [ay, b1], we have
I, = f*(x)/ K j(t,z) dt — f*(x)/ K j(t,xz)dt
R |[t—z|>6

= F (@) +0(2" max |f*(a:)|>/|t R

z€[a1,b1]

where

oM (1+2Mufxn”dn:0u)/‘ (1+[¢]) 2
[t|>2M§

2|5
=o0(1), M — co.
Hence, I = f*(z) + o(1), M — oo, uniformly for z € [a1,b;] and
j=0,...,2M —1,

By the hypothesis f € L[0, 1], for any « € R, we have
(4.4)

I, = 0(2M) / [ (+ £)](1+ 2M]¢]) 2

It/>6
oo

—0(2) (/5+Z /<|t|<l+1>'f*(“”“”M'”2

o ([ 018) b+ e ) e

Summarizing the above results, by (4.3), we conclude that the series
(2.7) converges uniformly to f* on [a1,b1], so we get (i).
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(ii) By Theorem 3.5 and Lemma 4.1, we get

S.(fi2) — @) = 00) [ | (@270~ pa)0+ 1) 2
Using Minkowski’s inequality, we get
(4.5)
19, () = fllrpo,) = O1) /R 17%C-+27M8) = f*lLojo, (1 + [¢]) 72 dt
Since f € LP[0,1] and f* is 1-periodic and f*(t) = f(¢), t € [0,1), we

have
. * (0, —M _px —
i L4270 S o = 0

and
£+ 2728 — fllep, < 2011l Lego,-

From this and (4.5), we get ||S,(f) — fllzrjo,;; = o(1), v — oo. (ii)
follows.

. . : 5 | pw
(iii) Let 2 be a Lebesgue point of f*, i.e., lims_,o(1/0) [“5|f*(z +
t) — f*(z)| dt = 0. Denote

t
d) = |f @40 f@) ad Q)= [ als)ds
0
Then for € > 0, there exists a > 0 such that
(4.6) Q)] <elt], 0< [t <4

By Theorem 3.5 and Lemma 4.1, we obtain that, for v = 2M + j,

Su(f32) = F@I < [ 10570 = 1 @) K (t.2)
- o) (/M o)
(@ +t) — f*(z)|(1+2Mt) 2
=:J1 + Jo.

Using integration by parts, we obtain by (4.6) that, for M > log, 1/4,

J1 = 0(e) + 0(2*M) s Q) (1 +2Mt)=3dt = O(e).
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For Js, we have

Jo = 0(2M) fr(z+0)|(1+ 2Mt) 2 dt
|t|>5

+0@2M)|f*(z) (1+2Mt]) 2 dt = Joy + Joo.

|
B

Similar to the argument of (4.4), we have Jo; = o(1). On the other
hand,

Jon — 0(1)/ (1+]¢)2dt = o(1), M — oo,
[t|>2M§

So J2 = o(1). Hence, series (2.7) converges to f at z. Since f € L”[0,1],
1 < p < o0, almost all points are the Lebesgue points of f*, so we get
(iii). Theorem 4.2 is proved. ]

Corollary 4.3. If f € C[0,1] and f(0) = f(1), then series (2.7)
converges uniformly to f on [0,1].

4.2. Gibbs phenomenon of periodic wavelet frame series.
Now we discuss the Gibbs phenomenon of periodic wavelet frame series
(2.7). For convenience, we assume that 1 is a real-valued even function

on R. From Definition 3.2, we know that h, h and E, h are all real-
valued even functions, so the corresponding kernel function

(4.7) Ko(t,x) = > h(t — n)h(z —n)
is a real-valued function.

Theorem 4.4. Let a real-valued function f € L[0,1] and f* be a 1-
periodic function on R and f*(t) = f(t), t € [0,1]. Let f* be continuous
in 0 < |z| <e and f*(0+) — f*(0—) = 2d > 0.

(i) If, for some a > 0, fi)oo Ky(t,a)dt <0, then

limsup S, (f; (a/v + 1)) > f*(0+).

V—r0o0
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(i) If, for some a <0, [;° Ko(t,a)dt <0, then

liuniior.}fs,,(f*; (a/v+1)) < f*(0-).

Namely, in the two cases, the periodic wavelet frame series (2.7)
exhibits the Gibbs phenomenon at the origin.

Proof. Let 7* be a 1-periodic function on R and 7*(z) = sgnz (|z| <

(1/2)),

(4.8) F(z) = f*(z) —dr*(z) = #0,

and F(0) = 1/2(f*(0+) + f*(0—)). Then F is continuous in (—¢,¢).
Hence, by Theorem 4.2 (i), we know that lim, .., S, (F;z) = F(z)

uniformly on [—(¢/2), (¢/2)]. Specially, for any a € R,
(4.9) lim Som_1(F;27Ma) = F(0).
M —ro00

By Corollary 3.6, we have

Sonr_q (7527 Ma) = </ +/ >T*(t)KM(t,2_Ma) dt
lt]<1/2 J]t[=1/2
=: Tl +T2

Since |7*(t)| =1 (t # 0), by Lemma 4.1,
T :0(1)/ (L+]t —al)2dt = o(1).
zan

By (3.2),

K (t,2 Ma) =2 " h(2Mt — n)h(a — n) = 22 Ko(2Mt, a).

So we have

oM—1 0

Ko(t, a) dt — / Ko(t, a) dt.

_oM-1

n- [
0



PERIODIC WAVELET FRAME SERIES 1391

By Corollary 3.6, we get [, Ko(t,a)dt = 1. So we have
0
n :/ Ko(t, a) dt—2/ Ko(t,a) dt + o(1)
R —o0

0
-1 2/ Ko(t, a)dt + o(1).
Now if, for some a > 0, f_ooo Ko(t,a)dt = —6 < 0, then we have
T =1+25+0(1). So we get
Son_1(7%;27Ma) =14 26 + o(1).
Again by (4.8) and (4.9),

Son_1(f;27Ma) = Sym_1 (F;27Ma) + dSpm_1 (7727 a)
— F(0) + d(1+ 26) + o1).

Hence limp; o Sov_1(f;27Ma) > F(0) +d = f*(0+), (i) follows.
Similarly, we get (ii). Theorem 4.4 is proved. o

Below we discuss when 1 belongs to which class of functions, hypoth-
esis (i) or (ii) in Theorem 4.4 is fulfilled. First, we prove that Ky (¢, z)
is a reproducing kernel of a space of band-limited functions.

Lemma 4.5. Let u € L?(R) be a real-valued function. If suppu C
[—n,7n] (n is stated in (2.1)), then

/ u(z)Ko(t,z) de = u(t) almost everywhere t € R.
R

Proof. Denote v(t) := [pu(z)Ko(t,z)dr. Since the function
Ko(t,z) <, |h(t —n)h(z —n)| and

S (it - )| /R h(z - n)u(e)| de < Cllull 2kl z2 ()

. Z(l +1]t—n|)"2 < oo (Cis a constant),

n
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we obtain that, for almost every ¢t € R,
(410)  o(t) = 3 anh(t - n), <an - / w(@)h(z - n) d:v).
n R

Since @ = u, by Plancherel’s theorem and supp @ C [—7, 7], we get

an = / u(z)h(z —n)de = 1 p(w)e” ™ dw,
R

=5 »

where p(w) = w(w)h(w) € L*[-m, 7).
On the other hand, by the inversion formula of the Fourier transform
and suppﬁ C [—m, 7], we obtain that, for almost every t € R,

~ 1 (7 . =
h(t—n) = %/ q(w)e ™ dw, where g(w) = h(w)e™™ € L?[—x, ).

—T

So a,, and h(t—n) are Fourier coefficients of p(w) and q(w), respectively.

Using the Parseval equality in the Fourier series, we have

TS 2r J_,

;En%(t —n)= 2i /7r P(w)g(w) dw L[ ﬂ(w)ﬁ(w)ﬁ(w)e“w dw.

Since u and h are both real-valued functions, we know that a,, is real.
By (4.10) and suppu C [—n, 7], we have

~

/ ! (w)h(w)h(w)e'™ dw.

-n

1
T or

v(t)
By Lemma 3.3, we have h(w)h(w) = 1, w € (—n,n). Again, by
suppu C [-7, 7], we get
1 n ~ itw 1 -~ itw
v(t) = — t(w)e™dw=— [ u(w)e™ dw=u(t) a.e. t € R.
2w R

:271' —

Lemma 4.5 is proved. O

Lemma 4.6. ((z) := [, Ko(t,x)sgntdt is a bounded continuous
function on R.
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Proof. By (4.7) and h(t), h(t) = O((1 + |t|)~2), we have
((z) = zn:bnh(x —n), where b, = /Rﬁ(t —n)sgntdt
and
|| < /R h(®)|dt =O(1),  |h(x—n)| = O((1+ |z —n])™>).

So ¢(z) = O(1) and the series ) b,h(x — n) uniformly converges
on each closed interval in R. Again, since suppﬁ is bounded, we get
h € C(R). Therefore, the sum ((z) of the series ) b,g(x —n) is
continuous on R. Lemma 4.6 is proved.

So far, we always assume that ¢ € C?(R), and we know that
Ko(t,z) = O((1 + |t — z|)~?) (by Lemma 4.1). Now we assume that
¢ € C*(R). Similarly, we can obtain that

(4.11) Ko(t,z) =O((1 + |t —z|)™?).

Lemma 4.7. Let ¢ be a real-valued even function on R and 12 €
C*(R). Then either there exists an a > 0 such that ono Ko(t,a)dt <0
or there exists an a < 0 such that [~ Ko(t,a)dt < 0.

Proof. We take a real-valued differentiable function g € L N L*°(R)
such that supp g is bounded and ¢’ € L*(R), ¢(0) # 0, ¢'(0) # 0. For
example, we may take g(t) = (sin(t — (7/2))/(t — (7/2)))2.

Here g € L N L*°(R) implies g € L?(R).
Let gar(t) = g(27Mt). Then gpr € L?(R), and for a large M > 0,

supp ga C [—7, 7] (n is stated in (2.1)). By Lemma 4.5,

(4.12) / g (2)Ko(t,z) de = gp(t) almost everywhere ¢ € R.
R

Let

(4.13) B(z) =sgnz — ((z),
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where ((z) is stated in Lemma 4.6. Then B(x) is a bounded function
and is continuous at x # 0.

Since gps € L(R) and Lemma 4.1, using the Fubini theorem, we get

/RQM(H«“)/B(H«“)dx:/RgM(a:)sgnwda:

_ /R < /R g (2) Kot 2) da:) sgn ¢ ds.

Again by (4.12), we obtain that, for a large M,
(4.14) / gu(2)B(z) dz = 0,
R
By (4.13) and [}, Ko(t,z)dt = 1, we get

B(z) =2 Ky(t,z)dt, x>0,
(4.15) /*°°

=— - K d .
B@)==2 [ Kalta)dt, =<0
Since 1) € C*(R), by (4.11) and (4.15), we have
(4.16) Blz) =0((1+ |z|)~ x #0.

%),
Again since limpyoo gm () = ¢g(0) # 0 and g € L™(R), in (4.14),
letting M — oo, we get [, B(x)dx = 0. From this and (4.14), we have

(4.17) /R (%W)xﬂ(w) dz = 0.

Here, the absolute value of the integrand < ||¢’||L=|zB(z)|, © # 0. By
(4.16), we have z0(x) € L(R). Since

z|

A}gnoo gM(ZCQ);/IiM(O) — 4(0) £0,

letting M — oo in (4.17), we get

(4.18) /Rac,B(ac) dr = 0.
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Below we prove that there exists a point a € R such that af8(a) < 0.

If it is not true, then we have z3(z) > 0 for all z € R. From this and
(4.18), it follows that B(x) = 0 for all  # 0 since B(x) is continuous
at  # 0. Again, by (4.13), we have ((z) = sgnz, « # 0. However, by
Lemma 4.6, {(x) is continuous at « = 0. This is a contradiction.

From this, we see that either there exists an a > 0 such that 8(a) < 0
or there exists an a < 0 such that 8(a) > 0. Again, by (4.15), we get
Lemma 4.7.

Combining Theorem 4.4 with Lemma 4.7, we get the following

Theorem 4.8. Suppose that ¢ is a real-valued even function on R
and 1 € C*(R). Let a real-valued function f € L[0,1] and f* be a 1-
periodic function on R and f*(t) = f(t), t € [0,1]. If f* is continuous
in 0 < |z| < e and f*(0+)— f*(0—) = 2d > 0, then the periodic wavelet
frame series (2.7) exhibits the Gibbs phenomenon at the origin.

Acknowledgments. The author sincerely thanks the referee and
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