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THE MAHLER MEASURE OF LINEAR FORMS
AS SPECIAL VALUES OF SOLUTIONS OF
ALGEBRAIC DIFFERENTIAL EQUATIONS

R. TOLEDANO

ABSTRACT. We prove that for each n > 4 there is an

analytic function Fp(z) satisfying an algebraic differential
equation of degree n + 1 such that the logarithmic Mahler
measure of the linear form L,, = 1+ - -+, can be essentially
computed as the evaluation of F,(z) at z = n~1. We show
that the coefficients of the series representing Fj,(z) can be
computed recursively using the nth symmetric power of a
second order linear algebraic differential equation, and we give
an estimate on the growth of these coeflicients.

1. Introduction and definitions. Let I denote the unit in-
terval [0,1]. Given a Laurent polynomial in several variables P €
Clzi, ..., zF] the so called Mahler’s measure of P is defined as

M(P)=em"),
where

m(P) :/ log |P(e*™, ..., e*™n)|dx; ... dx,,

is the logarithmic Mahler’s measure of P.

Let us consider the linear form
L,=z1+ - +x,.

We will show here that for each n > 4 there is an analytic function
F,(z) satisfying an algebraic differential equation such that

(1.1) F,(n™') =m(Ly,) — logvn + /2.
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This will be achieved by showing that

nm

(12) m(L,) = log Vit — v/2+ 3 ),

where the coefficients ¢,,(n) are rational numbers satisfying a recur-
rence relation with integer coefficients.

As was pointed out in [9], one of the main interests in formulas like
(1.2) lies in the possibility of a numerical computation of the Mahler
measure of a linear form in a simple way to a higher degree of accuracy.

This paper will be mainly concerned with the problem of getting a
good estimate of the error term in the series appearing in (1.2). We
will show that ¢, (n) = O(n™m 5/4), see Theorem 2 below, predicting
that the series in (1.2) converges rather slowly which is close to what
is obtained numerically. On the other hand, the coeflicients ¢,,(n) are
easy to compute because, as will be shown in the proof of Corollary 1,
they satisfy a recurrence relation that can be explicitly computed for
each n > 4. This is always a desirable property which was not possible
to achieve in the method developed in [9] to compute numerical approx-
imations of m (L, ) using Bessel functions. That method, though faster
than the present, requires much more complexity in the computations
because of the use of numerical integration involving Bessel functions
over intervals of increasing length. Following the referee’s suggestion,
we have included the explicit recurrence formulas for the cases n = 5
and n = 6 and a small table of values of ¢,,(n) in the last section.

The numerical computation of m(Ly,,) to a high degree of accuracy is
of great interest when looking for relations between the Mahler measure
of linear forms and special values of L-functions such as the well-
known examples found by Smyth (see [1] for the cases n = 3 and
n = 4). Recently, Rodriguez-Villegas kindly informed me that, based
on numerical evidence, there is a relation between m(Ls) and m(Lg)
and special values of L-functions associated to certain modular forms.

Finally, we would like to say that, in view of Corollary 1, there seems
to be a rather good alternative way of computing m(L,,) using rational
approximations to solutions of algebraic differential equations, but that
will be the subject of a forthcoming work.
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2. Statements of the main results. Let L,,(z) and Jo(z) denote
the mth Laguerre polynomial and the Bessel function of first kind of
order zero, respectively.

Theorem 1. Let n > 4 be an integer. Then

(2.1) m(Ly) = log vn — % . mz:; CT:LEnn)’
where , o
em(n) = — m(”)(;n* iy

and by, (n) is the mth coefficient of the Taylor expansion at the origin of
the function €"* Ji(2y/x). Here ~y is the Euler constant. More precisely,

bm(n): Z Lml(l)”‘Lmn(l)’

myl- my!
mel,, ! "

where

Im:{m:(ml,...,mn)EN"/imJ-:m},

Jj=1

Theorem 2. For each n > 1, the following estimate

nm
(2.2 em(m)] < 022,
holds for m > 2 where
V8 |L12(1
o= SBILLO g oyap5.

4

Corollary 1. For each n > 1, the coefficients c,(n) satisfy a
recurrence relation with coefficients given by polynomials with integer
coefficients. Also, for each n > 1, the series

F,.(z) = Z em(n)z™,

m=2
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defines an analytic function in a disk centered at the origin. Fach
function F, satisfies a linear algebraic homogeneous differential equa-
tion which is the nth symmetric power of the following second order
algebraic differential equation:

Dy :=zy" + (1 —22)y + 2y =0.

3. Proof of Theorem 1. We begin with the function
on(x) = |{(21,-.. ,2n) € I™/|*™ ™ ... 4 &2™%n| < g},

which gives the probability that the length of the sum of n unit vectors
randomly distributed in the unit circle is less than z. We have that

(3.1) m(Ly,) = /0" log z dpy, ().

In his research on the problem of Pearson’s random walks Kluyver
[5] proved that

on(z) =z / ) (at) dr,

where J;(z) denotes the Bessel function of first kind of order one.

Using the differential equation satisfied by Jy(z), it is easy to compute
the derivative of ¢, (z) which is

(3.2) () =T ¢n(2),

where

bn(z) = / £T7 () o (ct) dt.
0
However, differentiation with respect to = of the integral

/ " er () (at) dt,

is justified only if n > 4, see [5] for details. Therefore, we can use
formula (3.2) for ¢, (z) only when n > 4.
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Using (3.1) we get the following formula which will be used later: For
n > 4, we have

(3.3) m(Ly,) = /Ooomlog:vqbn(a:) dx.

This function ¢, (z) was an object of considerable research and its
behavior for large n was studied, among others, by Pearson and
Rayleigh. Pearson, see [2] for details, derives an asymptotic expansion
of ¢, (z) in terms of n showing that

2efzz/n <

/0 LI () o) dt 28 ) Ln(a ).

The above expansion will be very useful for our purposes and we will
prove it below giving the coefficients a,,(n) in a more explicit way.

Now let us write
et I (2Vt) = Z b (n) ",
and consider the function ¢, (z). We have

bn(z) = /0 L () o (at) dt
=2 / h J(2Vt) Jo(2zV/t) dt
_9 / T Inovi)ertem Jo(22vE) dt

—2Y buln) / " tment o (207 dt.

m=0 0

Now, recalling an integral representation of the Laguerre polynomials,
[8, formula 5.4.1],

1 o0
e "Ly (x) = m/0 t™e "t Jo(2V/xt) dt,
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we have that

2
o —n mle 2 /n
‘/0' t"e tJ()(QCE\/E) = W Lm(il?Z/n),
therefore,
o2/ = b (n)m!
(3.4) bn(x) =207/ Z oAl L, (2%/n),

m=0

which is Pearson’s formula. From (3.3) and (3.4) we have

m(L,) = /000 zlogx ¢, () dx

= %/ log(nz) ¢n(v/nz) dx
0
= nl(jlgn/ ¢n(\/nx)+g/ log « ¢ (v/nz) dz
0 0
3.5 1 °
(3.5) = 51ogn~|— %/ logxgi)n(\/nl') dx
0
1 1 o b N

= 510gn+ 57;%/0 e “logx Ly, (z) dx

1 Y - cm(n)

= 2lognf 5 +mZ=2 e
where

— 1)

(3.6) em(n) = =2 (2’” V' form > 2.

Here we have used that [9]

A e og x m(m) T = 71/m ifm>1,

and that
bo(n) =1 and bi(n) =0.
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The last assertion follows from the formula

bm(n) = Z Lml(l) — Lmn(l)

)
mel,,

where
I, = {m:(ml,... M) EN"/Zm] —m}
j=1

which is obtained using the generating series

eJo

4. Proof of Theorem 2. For the functions Jy(z) and Yp(z), we
have [8, Theorem 7.31.2] the following estimates

(4.1)  sup{e'?|Jo(x)[}, igpo{w”z Yo(@)I} < (2/m)*/2.

z>0
For the Laguerre polynomials, the following estimate [8, formula 7.21.3]
(4.2) e 2| Ly ()] <1,

holds for all z > 0 and m € N.
Lemma 1. Let —1 <r <0 and m € N. Let M, defined by
M =sup {e_t2/2 |Lin(t?)| :m" <t < 1}.
Then the estimate

M < 42 2 (14r1)/4> m-Gren/a,

(e s

holds for all =1 < r <0 and m € N.
Proof. Let > 0. We have ([8, formula 8.64.3] for a = 0)

t
(4.3) e ©/2L,,(t%) = Jo(2NY2¢) — g/ F(z,t)e 223 L, (%) da
0
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where
F(z,t) = J0(2N1/2t)Y0(2N1/2$) _ Y0(2N1/2t)J0(2N1/2x),

and N =m+1/2.

Let us consider
(4.4)

t m” t
/ F(z, t)e_zz/zzv?’Lm(xz) dx = / +/ F(z, t)e_m2/2x3Lm(m2) dx
0 0 m”

=1 + I,

From (4.1) we have that

2
1/2 «__
T ‘F(x7t)| — ’/T(Nt)l/2’
and since N > m and m" < t < 1, we see that (Nt)~1/2 < m~(r+1)/2,

Using the above estimates and (4.2), we have that

2 m' 4
Ll< —2 5/2 4 = m6r=1)/2

Similarly,

2M” ¢ 4MT 4M?
I < —2—m _ 5/2 qp <« Zom gy —(r+1)/2 « Z0m
Bl < 7(INt)1/2 /mrx ST - n

because 7 > —1. From (4.1), (4.3) and the above estimates, we have
that the following inequality
1 2 2
- < (6r—1)/2 “ T
iaNTAgiE T 7™ + o My,
2

1 —@ri1)/4 | 2 (6r-1)/2 r
< VAL SO/ 2

e—t2/2 |Lm(t2)| <

holds for m” <t < 1. Therefore,

2 2
T —(2r+1)/4 <, (6r—1)/2 “oagr
Mm<—7r1/2m +7m +7Mm,

and the conclusion of the lemma readily follows. O
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We now use the above lemma to prove an estimate for the alternating
sequence

Lm(l):i (’;:) (_kll)k, m=0,1,2....

k=0

This sequence has been an object of some research, see [3, 4] for details.
In [3] the authors show that

Lm(1) = e m™Y4sin(2mY? + ¢3) + o(m™Y*) as m — oo

for some (unspecified) positive constants ¢; and co. Here we get the
following estimate.

Lemma 2. Let L,,(1) be the mth Laguerre polynomial evaluated at
1. Then

sup { (m+1/2) 4L ()]} = (25/2)!/%] Las (1)

Proof. If m = 0, it is easy to check that (1/2)Y%|Lo(1)| <
(25/2)'/4| L15(1)|. Let us suppose now that m € N. Taking t = 1
in (4.3), we have that

1
e V2L (1) = Jy(2NY/?) — g/ F(z,1)e /223 L,, (2?) dz,
0

where N = m + 1/2 and F(z,t) is the same function defined in the
previous lemma. Let —1 < r < 0. Splitting the above integral into two

parts, one from 0 to m” and the other from m” to 1, and using the
estimates that we found in the proof of the previous lemma, we get

1 2 2
—1/2 r/2 T
e V2 Ln(1)] < SN/ TN ™ 2+ TN1/2 M,
1 2 r/2

< JANL/A ToNiz ™

2 72
4 (14r—1)/4 )\, —(2r+1)/4
+7z\71/2<5\/E+5’T‘ )m '
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Choosing r = —1/14 we have that
(m+1/2)Y/*|Lin(1)] < o (m),

where

261/2
Tlm +1/2)Ami/A

o(m) = (e/m)"/? +

2 4 el/2
+ <5ﬁ + 35m1/2> (m + 1/2)Am3ia”

Now o(m) is a decreasing function of m so that it is easy to verify that
o(m) < 0.933027... if m > 49000. For 0 < m < 49000 we compute
the values of (m + 1/2)Y/4|L,,(1)| and find that its highest value is
0.933028..., and it is reached at m = 12. ]

Now we are in a position to prove Theorem 2. Recall that

" L, (1

mel,,

where .
I, = {m:(ml,... , M) EN”/jZlmj:m}.

For each vector m appearing in the above formula for b,,(n), the values
of Ly, (1) are either 1 or 0 for m; = 0, 1, respectively, so that we just
need to estimate the product

H ‘Lmj(l)‘a

where k is the number of components m; in m such that m; > 2. If
k = 1, then the only nonzero component in m has value m so that,
from Lemma 2 we have

L ()] < v/25/2|Liz(1)] (m +1/2)71/*

(45) < /252 |L1a(1)| m~ Y4,
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Assume now that £ > 2 and consider the following elementary inequal-
ity: let ai,...,ar be k positive integers such that each a; > b > 0.
Then

k
(4.6) Ha]+1 b—l Za]

Applying (4.6) to the case a; = 2m; with m; > 2 such that mq +---+
my = m we have that for & > 2,

k k
1
H(mj +1/2) = 9k H(2m3 +1)
j=1 j=1
gt & 2k m,
> 2k3 sz? 2
j=1
Therefore,
k
(4.7) H +1/2) 4 < VB2 M Ay /A,

On the other hand, from Lemma 2 we have that

|Lm; (1)] < 3/25/2 | L12(1)] (my +1/2) /2,
The above estimate, together with (4.7), implies that for k& > 2,
k k
H 1)] < (\/25 |L12(1 ) [T(m;+1/2) /4
(4.8) = 5
< YBakm-11,

where
a = \/ |L12 ‘ ~ 0.7845.

Since 0 < a < 1 and k > 2, we can say that

k
(4.9) I 1Lm, (1)] < V8a2m /4
j=1
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It is easy to check that v/8a? > {/25/2|L12(1)|, so that using (4.5)
and (4.9) we have, for any vector m € I,,,, that

C

1_[1 ‘Lm](l)‘ S m1/47
J:

where ¢ = v/8a? = 5/2 v/8|L12(1)|?. Hence,

T'L—l Lm ].
by < 32 Lzt ems Dl

myl- my!
mel,, ! "

cn™

c 1
< E = )
ml/4 myl-om,! ml/iml
mel,,

and (2.2) follows because

b (n)(m — 1)!'

em(n) = — 5

5. Proof of Corollary 1. Estimate (2.2) implies that for n > 1
the series F),(z) defines an analytic function in a disk with center the
origin and radius at least n~!. In order to show that F), satisfies a
linear homogeneous differential equation with coefficients in Z[z], we
will show that for each n > 2 and m > 2 arbitrary but fixed we can
find an integer k = k(n) > 1 and a linear form L(zo,...,2;) with
coefficients in Z[m] such that L(c,,(n), ... , ¢myr(n)) = 0. This implies
that we can compute the coefficients ¢,,(n) in a recursive way using
the form L from which we can read off an algebraic linear differential
equation satisfied by F,(z).

Now we show how to construct a linear form L(zy, ... ,z;) with co-
efficients in Z[m] with the above property. Notice that the function
e?Jo(2+/z) satisfies a homogeneous linear differential equation with co-
efficients in Z[z] because Jy(2+/z) does. More precisely, y = e*Jy(2+/2)
satisfies

(5.1) Dy :=zy" + (1 —22)y + 2y =0.

Now we can find, in a finite number of steps, the ordinary differen-
tial equation (with coefficients in Z[z]) satisfied by the nth power of
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e*Jo(2y/z), from which we can read off the recurrence satisfied by the
coefficients by, (n). Such a differential equation is simply the nth sym-
metric power of D denoted by Sym™ (D) and can be computed using,
for instance, the DEtools package in Maple. It is known [6] that the
nth symmetric power of a second order linear differential equation al-
ways produces a linear differential equation of order n + 1 so that we
can say that for each n > 2 the recurrence satisfied by the coeflicients
bm(n) is given by an expression (of at most n + 1 terms) of the form

k
Py(m) b 5(n) = 0,
j=0
where each P; € Z[z], k = k(n) < n+1, is a positive integer and m > 0
is an integer arbitrary but fixed. Then, for any 0 < j < n and any
m > 2 fixed, we have

Pym) (= o) = = Py (m) (= 1)l b5 ).
Therefore,
k n
> Py s s ) = S B0

:0,

so that the recurrence satisfied by the coefficients c,,(n) with m > 2
arbitrary but fixed is

k
(5.2) ZQj(m)cm+j(n) =0,
where

_p(s (m+k—-1)! »
(5.3) Qj(z) = Pj( )—(mﬂ.f ! Z[2].

This shows that the required linear form is
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k
L(zp,...,2) = ZQj(m)zj,
j=0
and the corollary is proved. ]

6. Recurrence formulas for n =5 and n = 6. For n = 5,

5

— 4] _
Cm+1 = Z m Cm—j,
Jj=0

go = 30m® + 40m® + 30m* + 12m> + 2m?,
g1 = —375m® + 1075m° — 1334m* + 914m?> — 331m? + 51m,
g2 = 2500m°® — 16500m° + 43590m* — 57990m3> + 38840m>

— 10440m,

g3 = —9375m5 + 92500m° — 357100m* + 673850m> — 618725m?
+ 218850m

qa = 18750m® — 237500m> + 1156250m* — 2687500m> + 2950000m>
— 1200000m,

g5 = —15625m5 + 234375m° — 1328125m* + 3515625m> — 4281250m>
+ 1875000m.

For n =6,

6
— 95 _
Cm+1 = Z W Cm—j,
7=0

qo = 42m™ + 70m® 4+ 70mS + 42m* + 14m> + 2m?,

g1 = —756m" + 2436m® — 3724m® + 3388m* — 1832m?> + 560m>
—72m,

g2 = 7560m” — 57960m° + 187992m° — 331416m* + 334224m>
— 182160m? 4 41760m,

g3 = —45360m” + 529200m% — 2549232m° + 6494256m* — 9209376m>
+ 6859296m2 — 2078784m,
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qa = 163296m” — 2485728m5 + 15392160m° — 49502880m*
+ 86776704m> — 77922432m? + 27578880,

g5 = —326592m" + 5987520m° — 44089920m° + 166017600m*
— 334430208m3 + 337478400m? — 130636800m,

g6 = 279936m" — 5878656m5 + 48988800m° — 205752960m*
+ 454616064m> — 493807104m? + 201553920m.

TABLE 1. Values of the coefficients ¢ (n) for 2 < m < 10 and n = 5,6,7, 8.

n=>5 n==6 n=7 n=2_8
— 5 — 3 - —
c2 =3 c2 =3 c2 =g ca =1
co =3 o = 2 o =1 co =3
95 75 217 37
ca=—¢g1 4= —355 ca = —%5 g =—%
_ _ 193 _ 213 _ 2051 _ 1372
% = 730 =3 ¢ = BEY €= ""75
_ 3305 _ 569 _ 1729 _ 181
€6 = 576 €6 = ~ 144 €6 = 1728 €6 =
18495 _ 53051 _ 171419 _ 83812
€7 = T392 €7 = T490 €7 = TRa0 €7 = T915
_ 1620475 _ 2560001 __ 74803267 _ 4551053
€8 = “6144 €8 = T5120 €8 = 792160 €8 = 73840
co — 44157415 co — 5586503 co = — 27774509 ¢ — — 137253407
= 81648 = T13608 = 58320 = 51030
1o — _ 2564608651 | . _ 5455012667 | . _ _ 25628788717 | . _ _ 59833271
10 = 1612800 10 = 672000 10 = 1152000 10 = 1260
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