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TRIGONOMETRIC QUASI-GREEDY BASES
FOR L(T;w)

MORTEN NIELSEN

ABSTRACT. We give a complete characterization of 2m-
periodic weights w for which the usual trigonometric system
forms a quasi-greedy basis for L?(T;w), i.e., bases for which
simple thresholding approximants converge in norm. The
characterization implies that this can happen only for p = 2
and whenever the system forms a quasi-greedy basis, the basis
must actually be a Riesz basis.

1. Introduction. Let B = {e,}nen be a bounded Schauder
basis for a Banach space X, i.e., a basis for which 0 < inf, ||e,||x <
sup,, |len|lx < co. An approximation algorithm associated with B is a
sequence {A,}5° ; of (possibly nonlinear) maps A, : X — X such that
for € X, A, () is a linear combination of at most n elements from B.
We say that the algorithm is convergent if lim, o ||z — A (2)||x =0
for every x € X. For a Schauder basis there is a natural convergent
approximation algorithm. Suppose the dual system to B is given by
{€}}ren. Then the linear approximation algorithm is given by the
partial sums S, (z) = > r_, ex(@)ex.

Another quite natural approximation algorithm is the greedy approx-
imation algorithm where the partial sums are obtained by thresholding
the expansion coefficients. Greedy approximation algorithms are often
applied successfully in applications such as denoising and compression
using wavelets, see e.g., [3, 4]. The algorithm is defined as follows. For
each element © € X, we define the greedy ordering of the coefficients
as the map p : N — N with p(N) 2 {j : ej(z) # 0} such that, for
j < k, we have either |e} (z)| < |e; ;) (@)] or |e} ;) (z)] = lej ;) ()]
and p(k) > p(j). Then the greedy m-term approximant to x is given
by Qm(x) = >y e;(j)(ac)ep‘(j)‘. The question is whether the g.r.eedy
algorithm is convergent. This is clearly the case for an unconditional
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basis where the expansion z = Y -, ef(z)e), converges regardless of
the ordering. However, Temlyakov and Konyagin [7] showed that the
greedy algorithm may also converge for certain conditional bases. This
led them to define so-called quasi-greedy bases, see [7].

Definition 1.1. A bounded Schauder basis for a Banach space X is
called quasi-greedy if there exists a constant C' such that |G, (2)]|x <
Cl|z||x for z € X and m € N.

It was proved by Wojtaszczyk that a Schauder basis is quasi-greedy
exactly when the greedy approximation algorithm is convergent.

Theorem 1.2 [13]. A bounded Schauder basis for a Banach space
X is quasi-greedy if and only if lim,, o ||z — Gm(2)||x = 0 for every
element ¢ € X.

In this note we consider the standard trigonometric system 7 :=
{(2m)~2e**Y ez on T := [—m, 7). As is very well known, T is an
unconditional (orthonormal) basis for L?(T) and it is immediate that
the greedy algorithm converges. However, we are not so fortunate when
we consider 7 in LP(T), p # 2. It was proved by Temlyakov [11] that
T fails to be a quasi-greedy basis for LP(T), 1 < p < oo, p # 2.
This negative result was also proved independently by Cérdoba and
Ferndndez for 1 < p < 2, see [2]. So we have to look for spaces other
than LP(T) if we want to extend the positive result for 7 in L?(T).
Konyagin and Temlyakov [8, 9] have considered sufficient conditions
on individual L?(T)-functions that guarantee norm-convergence of the
greedy algorithm.

Another possible path forward is to consider the weighted space

P (Tu) = {11 — Cilfl = [ 1OPud < oo},

—T

1 <p<oo,

where w is a nonnegative 2w-periodic weight. For a suitable choice of
weight, we can make LP(T;w) larger or smaller than LP(T). The dual
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system to T in LP(T;w) for a positive weight w is (at least formally)

{ 1 ezkz }00
Verw(t) )
and the expansion relative to this system is

f= % > ' Ftw(t) Teiktw(t) dt e*t = % > (f,ehyet,

kezY T keZ

where (-,-) is the standard inner product on L?(T). Thus, the greedy
algorithm for 7 in LP(T;w) coincides with the usual greedy algorithm
for the trigonometric system. Our main result in Section 3 gives a
complete characterization of the nonnegative weights w on T := [—, )
such that 7 forms a quasi-greedy basis LP(T;w). The characterizing
condition is rather restrictive: we must have p = 2, and for p = 2, T
forms a quasi-greedy basis L?(T;w) if and only if there exists C' > 0
such that C~1 < w(t) < C. As a consequence, we can conclude
that 7 is a quasi-greedy basis L?(T;w) if and only if 7 is a Riesz
basis for L?(T;w). This is perhaps surprising since a priori, the Riesz
basis property is much more restrictive than the quasi-greedy one. In
Section 2 we characterize the weights w such that 7 is a Schauder basis
for L?(T;w). This characterization, and our main result in Section 3,
is given in terms of the so-called Muckenhoupt As-condition. Finally,
we consider an application to polynomial weights in Section 4.

2. Trigonometric Schauder bases for LP(T;w). In this section
we give a characterization of when the trigonometric system forms a
Schauder basis for LP('T;w). We need to have a Schauder basis in order
for thresholding to make sense. The result is a direct consequence of
the celebrated result by Hunt, Muckenhoupt, and Wheeden [6].

Let us first fix the notation. Let eg(t) := (2m)~Y/2¢*, and let
T = {en, }32, be the “natural” ordering of the trigonometric system
given by the enumeration {ns}3>, = {0,—-1,1,-2,2,...}. We wish to
consider both the symmetric partial sum operator

N

Tn(f)= Y (frex)en,

k=—N
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where (-,-) is the standard inner product on L2(7), and the partial

sum operator
N

Sn(f) = Z<f’ €ny,)Eny, -
k=1
We need the Muckenhoupt A,-condition. We use the convention that
0-00=0.

Definition 2.1. A nonnegative 27-periodic function w is called an
Ap-weight, 1 < p < oo, if there exists a constant K < oo such that for
every interval I C R,

1

(o) 3 fr0) o

The family of all A,-weights is denoted A, (T).

The two trivial Ap,-weights, w = 0 and w = oo, are not interesting
from our point of view since the associated L? (T, w) is either trivial or
far too large to be useful. We therefore exclude the trivial weights, and
notice that all the remaining Ap,-weights satisfy 0 < w(t) < oo almost
everywhere, and one easily verifies that w,w /(=1 € LY(T). The
following theorem is proved in [6].

Theorem 2.2 [6]. Let w be a nonnegative 2m-periodic weight and
constder formally T : LP(T;w) — LP(T;w), 1 < p < co. Let || Tn||p,w
denote the corresponding operator norm. Then supy ||In||pw < oo if
and only if w € Ap(T).

We now consider the following equivalent version, which gives a nice
characterization of when 7 forms a Schauder basis for LP(T; w).

Proposition 2.3. Let w be a nonnegative 27 -periodic weight on T.
Then T is a Schauder basis for LP(T;w), 1 < p < oo, if and only if
w € A,(T).

Proof. First, suppose w € A,(T). Then 0 < w(t) < oo almost
everywhere and 7 spans a dense subset of LP(T;w). The natural
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biorthogonal system to T is given by {w(t) 'en, }3°; where we notice
that w(t) le,, € LY(T;w), 1/p+ 1/q = 1. The partial sum operator
is given by

N

Sv(f) =S [ F OO Tem Bwt) dten, =3 (Fremens
k=1Y"T

k=1

so, in particular, Sony1 = T for N > 1. Also,
Sont2 = TN + (f, €nonsis)Cnonias
with
I(f: €nanv2)enman izl < Cl{fw P w™ Peny ) < C'lIf lpyws

where we used that w,w %P € L'(T). Hence, by this observation
and Theorem 2.2, we obtain supy ||Sn||p,w < o0, and it follows that
T is a Schauder basis for L?(T;w). Next, suppose 7 is a Schauder
basis for LP(T;w). Let {dx}32,; C LY(T;w) denote the unique dual
(biorthogonal) system. We claim that dy, = w™'e,,. To verify the

claim, notice that

Cj’k = /7‘— dk(t)mw(t) dt = 0.k,

where (cjx); are nothing but the Fourier coefficients of di(t)w(t) €
LY(T). Thus, di(t)w(t) = en,(t) almost everywhere. In particular,
since |dg (t)| < oo almost everywhere, 0 < w(¢) < co almost everywhere,
and di(t) = w(t) ten, (t). We have Sy(f) = Zk]\;l(f, €ny)€ny,- The
fact that 7 is a Schauder basis now gives

SUp || T [|p,w < sup [|Sn[lp,w < oo,
N N

and we use Theorem 2.2 to conclude that w € A,(T). o

Remark 2.4. We can move the trigonometric Schauder basis in
LP(T;w) to LP(T) using the isometric isomorphism U : LP(T;w) —
LP(T) defined by U(f) = w'/?f. Thus,

w l/pe an enk(t)
{w(t) Tbk(t)}kGN d {w(t)l/p }keN
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form a biorthogonal Schauder basis system in LP(T) whenever w €

A, (T).

3. Trigonometric quasi-greedy bases for LP(T;w). Proposi-
tion 2.3 tells us that 7 is a Schauder basis for LP(T;w) if and only if
w € A,(T). In this section we prove the main result of this note: 7
can be quasi-greedy in L?(T;w) only for p = 2, and we characterize
the weights w € A3 (T) for which T is quasi-greedy in L?(T;w). First,
we need to recall some basic property of quasi-greedy bases.

The first result we state is due to Wojtaszczyk [13], see also [5]. It
shows that quasi-greedy bases are unconditional for constant coeffi-
cients.

Lemma 3.1. Suppose {b;}ren is a quasi-greedy basis in a Banach
space X. Then there exist constants 0 < c¢; < ca < oo such that for
every choice of signs €, = £1 and any finite subset A C N, we have

(3.1) eal Dbkl <D enbill < el Db

keA kcA kecA

We can use Lemma 3.1 together with some basic facts about the
geometry of LP(T;w) to prove the following result.

Proposition 3.2. Suppose that the trigonometric system T =
{en, }ken s quasi-greedy in LP(T;w) for some 1 < p < oco. Then
there exist constants 0 < ¢; < co < 00 such that for any € = {ek }ren €
{~1,1}N and any finite subset A C N,

(3:2) el AP < || 3 erene o) < colAl
kcA

Proof. First we consider the case 1 < p < 2. Let rq,7,... be the
Rademacher functions on [0, 1] defined by 74 (t) = sign (sin(2¥t)), and
take any finite subset of integers A = {ki,ks,... ,kn} C N. Put
Dy = leil €k, €ny, - Using Lemma 3.1, and the fact that LP(T;w) has
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cotype 2, see, e.g., [12, Chapter 3], we obtain
1 N

105y = || S|

0 Wp=1 LP(Tjw)

N 1/2
> O(Z e, ||ip(T;w>) = N2,

n=1

Now suppose 2 > p < co. Then LP(T;w) has type 2 ([12, Chapter 3]),
and using Lemma 3.1, we get the estimate

1 N
105y = [ | Sornens, | du
0 ln=1 LP(T;w)
N 1/2
<O(( X lem Bacran) = NV
n=1

The above estimates give |[Dy||2(r;) < N¥/2 For 1 < p < 2, we
notice that
IDN e (rw) < IIDw |22 (r0) < N2,

and (3.2) holds in the range 1 < p < 2. For 2 < p < 0o, we use
N2 < | Dl p2(tsw) < [IDw 2w (i)

to reach the conclusion. O

A sequence {b,}nen in a Banach space X is called democratic if
there exists a D such that for any finite subsets A, B C N with the

same cardinality |A| = |B|, we have
so| <o|¥a
kea X keB X

For any democratic sequence, we can define the fundamental function

(3.3) ¢(n):=  sup
ACN:|A|<n

€k
keA

X
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Proposition 3.2 shows that whenever 7 is a quasi-greedy basis for
L?(T;w), T is democratic with fundamental function ¢(n) =< n'/2.
For such bases, it is possible to prove a strong version of the Hausdorff-
Young inequality. Let us introduce some notation.

For a sequence {a,, }52; we denote by {a}} a nonincreasing rearrange-
ment of the sequence {|a,|}. Then we define the Lorentz norms

oo
{an}l2.co = supn*/2a;, and [[{a }lo, := 3 n~2al,.
n

n=1

The following important theorem was proved in [13].

Theorem 3.3 [13]. Let B = {by}ren be a democratic quasi-greedy
basis for a Banach space X. Suppose that the fundamental function
(3.3) associated with B satisfies ¢(n) < n'/2. Then there exist constants
0 < ¢1 < cg < 00 such that for any coefficients {ax}

Z akbk

keN

< cof{artl2,1-
X

cil{ar}l2,00 <

Remark 3.4. Of special interest to us is the fact that ||-||2,1 and ||-]|2,0
assign (approximately) the same norm to flat sequence. More precisely,
for B = {bx}ren a quasi-greedy basis satisfying the hypothesis of
Theorem 3.3, there exist c1,co > 0 such that for any unimodular
sequence {ak}ken, A C N (i.e., |ax| =1 for k € A), we have

Zakbk

keA

S C2|A|1/27
X

(3.4) a|AlY? <

since ||{ak}renllza = |[{ar}trenll2,00 < |A[/2. The estimate (3.4) will
be used below to prove our main result, Theorem 3.5.

Theorem 3.5. Let w be a nonnegative 2m-periodic weight. Suppose
T is a quasi-greedy basis for LP(T;w), 1 < p < oco. Thenp =2, w €
Ay, and there exists a positive constant C' such that C~' < w(t) < C
almost everywhere.
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Proof. Suppose T is a quasi-greedy basis for LP(T;w). Then,
in particular, 7 is a Schauder basis for L?(T;w) and w € A, by
Proposition 2.3. Now we use the Dirichlet kernel Dy := Eszl €ny,
to study w(t). For each u € T, we have e,, (t — u) = ey, (t)en, (—u)
with |ep, (—u)| = 1, and we obtain

Dyn(t—u) = Zenk(—u)enk (t).
k=1

Now the estimate (3.4) gives uniformly in v,
™ 2
ciN < / w(t) dt < 3N,

Zenk (t—w)

k=1

SO

1
. 2 < —
(35) i</ 5

Notice that 1/N| Zszl €n, (t —u)|? is an approximation to the identity
at the point u. Thus, whenever u € T is a Lebesgue point of w € L*(T),
we obtain

2
w(t) dt < c3.

Zenk (t—w)

2
1
e <w(u) = J\}gnoo N w(t)dt < c3.

Z en, (t —u)
k=1

We conclude that ¢? < w(t) < c3 almost everywhere. Now suppose
p # 2. By Proposition 3.2, | Dx||Lr(T:w) < N'/2, and it follows from
Holder’s inequality that

_ 2
N2 =Dyl < IDNITIDNIE" 1<p<2,  6=>-1,

or

NY2 < ||Dyll2 < IIDN|FIDN ™% 2 <p < oo,
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In both cases we can conclude that |[Dy|lpi(ry) =< N2 since

|Dn || p2(T;w) < NY/2. However, this is a contradiction since we have
the well-known estimate of the Lebesgue constant for 7,

DN Lt (T50) X |1 Dn ||z () < Clog(N),

where we used ¢? < w(t) < cZ almost everywhere. Thus, 7 quasi-
greedy implies that p = 2, w € A(T) and ¢? < w(t) < c3 almost
everywhere. ]

Theorem 3.5 shows that the class of weights w € A3(T) such that T is
a quasi-greedy basis for L2(T;w) is very restrictive. In fact, the are no
conditional quasi-greedy bases for L?(T;w) as the following corollary
shows.

Corollary 3.6. Let w be a positive 2w -periodic weight for which T is
a quasi-greedy basis for L*(T;w). Then T is a Riesz basis for L*(T;w).

Proof. Suppose T is a quasi-greedy basis for L?(T;w). According to
Theorem 3.5, there exists a C' > 0 such that C~! < w(t) < C almost
everywere. Hence, for any finite sequence {ay }k,

C’fl/ Zakenk(t) dtg/ Zakenk(t)
Tk Tk

<C Zakenk (t)
.

In particular, || >, aren, |5, < [[{ar}x/[72, which shows that T is a
Riesz basis for L?(T;w). O

2 2

w(t) dt

2
dt.

4. An application. Here we consider an application for general
polynomial weights of the results obtained in the previous two sections.

Proposition 4.1. Let P be a polynomial of degree n with |P(—)| =
|P(7)|. For —1/n < p < 1/n, T is a Schauder basis for L*(T;|P|*).
For such a weight |P|*, T is a quasi-greedy (and thus Riesz) basis for
L?(T;|P|*) if and only if P has no zeros on T.
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Proof. Stein and Ricci [10] proved that for n € N and 0 < p < 1/n
there exists a uniform constant ¢ := ¢(n, u) such that

/11 |P(t)] 7 dt < c</11 1P(4)] dt> o

where P is any polynomial of degree n. It follows by Hélder’s inequality
that

/ 11 PP / ) dt>" . </ |P(t)|”dt>_l,

which together with the fact that the class of polynomials of degree n
is invariant under any dilation and translation, proves that |P|* is in
A2(T) for —1/n < p < 1/n, provided |P(—mn)| = |P(w)|. Thus, for
—1/n < p < 1/n, T is a Schauder basis for L?(T;|P|*). Obviously
|P|# is bounded on [—m, 7] so T is a quasi-greedy (and thus a Riesz)
basis for L?(T;|P|*) if and only if P has no zeros on T. O

Example 4.2. This is the famous example by Babenko of a condi-
tional Schauder basis for L?(T) [1]. Using Remark 2.4 and Proposi-
tion 4.1, we see that the system {|t|%e,,, } 32, forms a Schauder basis for
L?(T) for 0 < a < 1/2 since, according to Proposition 4.1, [t|* € Ay
for —1 < p < 1. The basis is conditional since ¢ has a zero on T.
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