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MULTIPLE POSITIVE SOLUTIONS FOR

A SECOND ORDER STURM-LIOUVILLE

BOUNDARY VALUE PROBLEM WITH A
p-LAPLACIAN VIA VARIATIONAL METHODS

YU TIAN AND WEIGAO GE

ABSTRACT. In this paper, we investigate the positive
solutions of a second order Sturm-Liouville boundary value
problem with a p-Laplacian. By using critical point theory the
existence results of multiple positive solutions are obtained.

1. Introduction. In recent years, a great deal of work has been done
in the study of the existence of multiple positive solutions for two-point
boundary value problems, by which a number of physical and biological
phenomena are described. For the background and results, we refer the
reader to the monograph by Agarwal, Mawhin, Rabinowitz et al. and
some recent contributions such as [2, 6, 7, 11, 13, 14, 15].

Various fixed point theorems are applied to get interesting results,
see for example, [6, 7, 11, 13 and the references therein]. Among
them, the Krasnosel’skii’s fixed point theorem, the Leggett-Williams
fixed point theorem, a five functionals fixed point theorem, and the
fixed point theorem in cones are very frequently used.

By using the fixed point theorem in cones, Agarwal et al. [1], Anu-
radha, Hai and Shivagi [3], Erbe and Wang [11] and Ge and Ren [12]
have studied the existence of positive solutions for the second-order
Sturm-Liouville boundary value problem

1y { OO+ 27000) 0 te o,
’ a1z(0) — B1p(0)z'(0) = 0 = asx(1) + Bop(1)z'(1).

2000 AMS Mathematics subject classification. Primary 34B15, 58 E30.
Keywords and phrases. Sturm-Liouville boundary value problem, variational

methods, mountain pass theorem.
This research supported by grant 10371006 from National Natural Sciences Foun-

dation of P.R. China and grant 20050007011 from Foundation for PhD Specialities
of Educational Department of P.R. China, Tianyuan Fund of Mathematics in China

(10726038).
The first author is the corresponding author.
Received by the editors on April 17, 2006, and in revised form on June 16, 2006.

DOI:10.1216/RMJ-2009-39-1-325 Copyright (©2009 Rocky Mountain Mathematics Consortium

325




326 SECOND ORDER STURM-LIOUVILLE BVP SOLUTIONS

By using critical point theory, Averna [4, 5], Bonanno [8, 9], Ricceri
[16, 17] have studied the existence of multiple solutions for the equation

(®p(2'()))" + Af(t,x(t)) =0, te[0,1],

where ®,(z) = |z|P~ 2z, p > 1, with the Dirichlet, Neumann and mixed
boundary conditions. In [19], Tian and Ge have studied the boundary
value problem with a p-Laplacian

(OO +o02,(2(0) =M. £ o)
(12) { 2'(a) - fala) = A, Aa!(b) + oa(b) = B.

By using the three-critical-point theorem [4], the existence of three
solutions was obtained.

On the other hand, to the best of our knowledge, few authors have
studied the existence of multiple positive solutions for second order
Sturm-Liouville boundary value problems by using variational methods.
As a result, the goal of this paper is to fill the gap in this area.

Motivated by the above results, in this paper we study the existence
of multiple positive solutions for the following second order Sturm-
Liouville boundary value problem (BVP) with a p-Laplacian

(o) (& (1)) + 5(5)2, () = F(t.2(8)) 1t € [ab],
(13) { 2'(a) — fa(a) = A, ~a'(b) + ox(b) = B,

where p > 1, ®,(z) := |z|P7%z, p,s € L>®[a,b] with essinf, ,7p > 0
and essinff, ;5 > 0, 0 < p(a), p(b) < 00, A <0, B>0, o, 3,7,0 >0,
f € C([a,b] x [0,4+00), [0, +0)), f(t,0) Z 0 for ¢ € [a,b].

Our aim of this paper is to apply critical point theory to problem (1.3)
and to prove the existence of two positive solutions. The character
of this paper is as follows: we impose some new conditions on the
nonlinearity term f, which are different from those in [1, 3, 11, 12,
19]. Moreover, the conditions on f are easily verified.

In this paper, we assume that the following conditions hold:

(C1) there exist u > p, h € C([a,b] x [0,400),[0,+)), | €
C(la,b], (0,+00)), mingeq 4] I[(t) > 0 such that

ft,2) = 1) @u(z) + h(t, 2);
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(C2) there exist ¢ € L([a,b],[0,+0c0)), d € C([a,b],[0,+0)) such
that
h(t,z) < c(t) + d(t)®p(x).

2. Related lemmas. To begin with, we introduce some notations.
Here, and in the sequel, we assume that, [a, b] is a compact real interval,
X is a Sobolev space W1?([a,b]) equipped with the norm

]l = (/:p(t)lw'(t)l” +s(t)]z(O)[? dt>1/p,

which is clearly equivalent to the usual one; F' is the real function

13
F(t,€) = / f(t,2) dz

We denote [|z]o := max,e[q [2(t)| to be the norm in C°([a,d]).
Moreover, ||| .- stands for the norm in L"([a,b]), r € [1,4+0].

Definition 2.1. A function z € X is said to be a classical solution
of BVP (1.3) if x satisfies the equation in (1.3) for all ¢ € [a,b] and
the boundary condition of (1.3). Moreover, z is said to be a positive
classical solution of BVP (1.3) if z(¢t) > 0, z(t) £ 0, t € [a, b].

Lemma 2.1. For z € X, let 2t = max{+xz,0}. Then the following
six properties hold:

(i)zeX =zt 2z~ €X;

(ii) z =2

(i) [l* ] x < [lellx;

(iv) if (z,,) uniformly converges to x in C([a,b]), then (z;}) uniformly
converges to & in C([a, b]);

(v) 2 (0 (1) = 0, (&Y () () (£) = 0 for t € [a,B];

(Vi) p(2)at = |27 P, Bp(z)2™ = [z [P

7.’.87;

Lemma 2.2. If z € C([a,b]) is a classical solution of BVP
s

la
(2.1) {—<p<> (@ (1)) + s(O)®,(2(t) = f(t,at(t) t€ [ab],
. '(a) — Bz(a) = A, ~2'(b) +oz(b) = B,
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then z(t) > 0, z(t) £ 0, t € [a,b] and hence it is a positive classical
solution of BVP (1.3).

Proof. If z € C([a,b]) is a classical solution of BVP (2.1), by
Lemma 2.1 we have
(2.2)

b
0= / [(p()2p(a" (1)) — s(t)p((t)) + f(t, 2 (1))] x 27 (t) dt
= p(t)@p(a' (1))~ (t)]q

b
*/ [p(t) @y (' (1)) (z)' (t) + s(t)Rp((t))z (t)] dt

b
4 / F(t a8 (t) dt
)

2 o002, (2220 Yo 0) - plaje, (20D Yo (o

b
+/ [p®)I(z7) @ + s@)]z ()] dt

o) B ;fac(b) ““ Bz (b) +,ya(x(b))
z(a)|P 2 —Az(a z (a))?
b ol | L2 A B F
> [lz~ [I%,

so 2~ (t) = 0 for t € [a,b], that is z(t) > 0 for ¢ € [a,b]. If 2(¢) = 0 for
t € [a,b], the fact f(¢,0) Z 0 for ¢ € [a, b] gives a contradiction. O

Remark 2.1. By Lemma 2.2, in order to find the positive classical
solutions of BVP (1.3), it suffices to get classical solutions of (2.1).

For each z € X, put

(2.3)
_lzl% | ap() | B=ox(b)|” | ap(a)
sp(m)'_erUp‘ ol ‘Jrﬁp

b
[ Fea @) g0 @)

p

A+ Bz(a)

(0%
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Clearly, ¢ is a Gateaux differentiable functional whose Gateaux deriva-
tive at the point z € X is the functional ¢'(z) € X*, given by

<¢mxw=/’Mn%mw»wo+dw%@@mwnﬁ
B — oz(b)
— p(0)@, ([ 22222 ()
» (=)
b
—/f@ﬁwwwﬁ

for every v € X. By [19], ¢’ : X — X* is continuous and the critical
point of the functional ¢ is just the solution of BVP (2.1).

Lemma 2.3. For z € X, then ||z]| < Al|z||x, where

A =219 x max 1 , (b—a)'/t ;
(b—a)'/? (essinfl, ) 5) 1/p (essinfi, 4 p)l/p

here 1/p+1/q = 1.

Proof. For z € X, it follows from the mean value theorem that

1 b
= 0) do
or) = 5= [ =(0)
for some 7 € [a, b]. Hence, for t € [a, b], using the Holder inequality,

mm=xm+[kwM4

1 b b
< [ k@l + [ o) as

w—@”@(éﬂmmwwfw

IN
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+ (b a)l/q</ab |m’(6)|pd0> v

1/p
S (e:s o ([ seto o)
P ewera)

(ess inf[g 4 p)

< 2Y4 max 1 7p
(b —a)l/? (essinfy, 5y s) "

(b—a)l/a
O e,

(ess infg ) p)

which completes the proof. ]

Lemma 2.4 [20, Theorem 38.A]. For the functional F : M C X —
[—00, +00] with M # &, min,ecpr F(u) = a has a solution in case the
following hold:

(i) X is a real reflexive Banach space;

(ii) M is bounded and weak sequentially closed, i.e., by definition,
for each sequence (uy) in M such that u, — u as n — oo, we always
have u € M;

(iii) F is weak sequentially lower semi-continuous on M.

Lemma 2.5 [10]. Let E be a Banach space and ¢ € C(E,R)
satisfy the Palais-Smale condition. Assume there exist xo,z1 € E and
a bounded open neighborhood Q2 of xg such that 1 € E\ Q and

max{p(zo), p(z1)} < Jof p(z).
Let
I'={h|h:[0,1] — E is continuous and h(0) = xo, h(1) = z1}
and

= inf h(s)).
“T iy o)
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Then c s a critical value of ¢, that is, there exists x* € E such that
¢'(z*) = © and p(z*) = ¢, where ¢ > max{p(zo), p(z1)}.

Lemma 2.6. Suppose that (C1) and (C2) hold. Furthermore, we
assume

(C3)

|‘|d||oo < o *p.
essinfy, ) s L

Then the functional ¢ satisfies the Palais-Smale condition, i.e., every
sequence {x,} in X satisfying o(x,) is bounded and ¢'(z,) — 0 has a
convergent subsequence.

Proof. First we prove that (z,) is a bounded sequence in X. By
Lemma 2.1 and (2.4), we have

(2.5)
(¢ (zn), s

b
= [T ) w2 O+ 50y )z (011 () ()
3 B — oz, (b) -
p(b)fbp(i,y ) ()

oy, (I ) )

b
= [ o0l @ — stoles OF - 7t @) ()
- s, (2270 Yo

v

" p(a)@p(w)xn (a)

“llo5 1 - /ft:v o (0

—oz,(b)]”
Y

—p(b) ‘
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A+ Bxp(a)?

(07

+ p(a)

<l I

Set w, = z,/||z, ||x. Dividing ||z, ||x on both sides of the above
inequality, we have

ez 1% < = (¢ (zn), wy) — 0 as n — oo.
So x;; = 0in X. Now we shall show that (x;') is bounded.
Let H(t,z) = [; h(t,7)dr and

() = M75;b) ‘B — (?yxn(b) N uag;a)

+ o, (2= o)

- slayp, (A o),
By (2.3) and (2.4), we have

A+ Bz, (a)l?

(07

I
EH%II’E} =l I = pe(zn) — (¢ (2n), 277) — J(@n)

b
(2.6) b [ Bt (0) - 16,00, () de

y (C1), (C2) and Lemma 2.3, one has

b
p / — 1(t,0)ay (1) dt

-/ bf(t,:c:(t))x:(t) at
<u/ H
w/ [c<t>w:(t>+ d;)| HoP

+ ,U'HdHoo +
< u Allx + ——2 =5
—= ||CHLl || n||X . essi f[a,b] SH ||
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We compute

) — oy | B0z (®) |7 Barf(b) — owa(b)af (b)
Han) = =002 2
4 pla) | A Bom(@) [ Avt (@) + Ban @) (a)
(2.8) _ wp(b) ‘B — oz, (b)[° pap(a) | A+ Brn(a)|”
op v Bp a
P Y
+ p(a)AS; — ) | At Ben(a) g,

Substituting (2.7) and (2.8) into (2.6), in view of Lemma 2.1 (ii), one
has

(% - 1) 3 1% < pe(an) — (¢ (zn), 230)

+ p(b)B(Qlu' _p) ‘B — an(b) 2 :c;‘;(b)
(2.9) Avp " v _
A2 A+
plldlloo

+pllel Al llx + s 1% -

p-essinfj, p s

Suppose that (x;}) is unbounded. Passing to a subsequence, we may
assume, if necessary, that ||z;"||x — oo as n — oco. Dividing both sides
of (2.9) by ||z} ||%, denoting w;l = z;} /||z;}||x, we have

e G (¢ (zn), w,)

P ekl el
p—2
p0)BCn—p) | B=oan(®)"* .
(2.10) vpllen | g "
p(@)Alp —2p) | A+ Ban(@) 2 Ly
apllai I « "
Ll Allellx | pldl

loally  pressinfiys’
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Since ¢(zy,) is bounded and ¢'(z,) — 0, z,, — 0in X, letting n — oo,
we have

o mldl

D ~ p-essinfi, s’

which contradicts (C3). Therefore, (x,) is bounded in X.

From the reflexivity of X, we may extract a weakly convergent
subsequence that, for simplicity, we call (z,), , — z. In what follows
we will show that (z,) strongly converges to z. By (2.4) we have

(2.11) (p'(zn) — ¢'(2), 20 — z)
b
=/ p(1)[®p (27, (1)) — @p(a’ (1)) % (2, (t) — 2'(2))
+5()[@p(zn(t) — Pp(2(t))] X (zn(t) — 2(t)) dt

- U (00) — S ()] (an(t) — () d
- o) [, (P2 a (ET) o a0 - a0

+ pla) [@(@) - @(@)] x (an(a) - 2(a)).

By x, — z in X, we have (x,) uniformly converges to = in C([a, b]).

So

(2.12) / [tz () = F(t, 27 ())](2n(t) — x(t)) dt — O,

zn(b) = z(b), zn(a) = z(a) as n — oco.
By ¢'(z,) — 0 and z,, — z, we have

(2.13) (' (z) — ' (z), 2, — ) — 0 as n — co.
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By (2.2) of [18], there exist cp,d, > 0 such that

(2.14) /abp(t)[q’p(U'(t)) — @, (v'(8))] x (W'(t) — (1))
+ 5(8)[®p(u(t)) — Pp(v(t))] x (u(t) —v(t)) dt
ep o [o(O) |/ (£) — v (D) + s(8) u(t) — v(t)[7] dt,
if p>2
dy [ (p(B)]' (£) = 0" (8)2)/ (|’ ()] + [v't) [*P)
+(s(®)|u(t) = (@) /((Jut)] + [o(t)])>)] dt,

if 1<p<2.

v

If p > 2, then (2.11), (2.12), (2.13) and (2.14) yield that ||z, —z|x — 0
in X.

If 1 < p < 2, then by Hélder’s inequality, for u,v € X, we obtain

(2.15) / p(0)]u!(t) — o ()P dt
" ) — v OF L\
= </ (O] + [ D)2 7 dt)
< ([ ool + vy a)
b p(t)ul (1) — vt
= </ (W@ + @)
b
x ( [ oty + o) dt)
< 2<p_1><2_p>/2< /b (p<t>|u'<t> — P dt)””

o/ (£)] + [v (£)])2~
x (|[ullx + o]l x) @ PP/2,

(2—-p)/2

)|2 p/2
) dt) o(p—1)(2—p) /2

-P

(2—p)/2
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Similarly,
(2.16) / s(t)ut) — v(O)|P dt

b 2 p/2
(p—1)(2—p)/2 s(t)|u(t) — v(t)
=2 (/ (Ju(t)] + |v(t>>“dt>

x (|[ullx + [|v]|x) @PP/2
So (2.14), (2.15) and (2.16) yield

b
(2.17) / p(1)[@p(7, (2)) — Lp(a’ (1)) (2o () — 2'())
+5()[@p(zn(t)) — p(2(2))](zn(t) — z(t)) di
) — x(

; 0 OF ) (0
2a, | [”‘” T Ol + 200 D) + o))
dp
2 WD [z x + 2]l )27

) { (/b p(t)[),(8) — ' () dt) 2/p
) ( /“b s(lea(t) — (O dt) m}

N d e —alk
= 2((p—1)(2—p))/p max{2(2/1’)*1, 1} (lznllx + ||$\|X)2*p'

Then (2.11)—(2.13) and (2.17) yield that ||z, — z||lx — 0 in X as
1< p < 2, that is, (z,,) strongly converges to x in X. O

dt

3. Main results.

Theorem 3.1. Suppose that (C1)-(C3) hold. Furthermore, we
assume (C4) that there exists Ry > 0 such that

1 10 (b — a) A" R
I

— | Rb >
p p-essinfj, s 0

+ llellzr AR

pO)BI” . pla)|Al”
opy?~t  Ppart’
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Then problem (1.3) has at least two positive classical solutions xg, z*
with ||$0||X < Ry.

Proof. We complete the proof by three steps:

Step 1. By Lemma 2.6 the functional ¢ satisfies the Palais-Smale
condition.

Step 2. We shall show that there exists an R > 0 such that the
functional ¢ has a local minimum z¢ € Bg := {z € X : ||z||x < R}.

Let R > 0 which will be determined later. First we claim that Bg
is bounded and weak sequentially closed. In fact, let (u,) C Bpr and
(up) = uasn — 00, by the Mazur theorem [14], there exists a sequence
of convex combinations

n n
vn:Zanjuj, Zanj:l, ap; 20, jJEN
j=1 j=1

such that v, — u in X. Since Bpg is a closed convex set, (v,) C Bgr
and u € Br. Now we claim that ¢ has a minimum zy € Br. We will
show that ¢ is weak sequentially lower semi-continuous on Bg. For
this, let

1

w%@——;é%dﬂﬂ%ﬂp+dﬂM@Vﬂﬁ

and

b
Ga) =~ [ [Pt @) - (f(6,0)2~(0)] ds

+7M®‘B—0ﬂ®p A+ Bx(a)
op ¥ @

p

ap(a)
- Bp

?

then ¢(z) = ¢'(z) + ¢?(x). By x,, — = on X we have (z,,) uniformly
converges to z in C([a,b]). So ¢? is weak sequentially continuous.
Clearly ¢! is continuous which, together with the convexity of ¢!, we
have that ¢! is weak sequentially lower semi-continuous. Therefore,
¢ is weak sequentially lower semi-continuous on Bp. Besides, X is a
reflexive Banach space, By is a bounded and weak sequentially closed
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set, so our claim follows from Lemma 2.4. Without loss of generality,
we assume that ¢(z9) = min 5 _¢(z). Now we will show that

(3.1) plao) < Inf p(x).

If this is true, the result of Step 2 holds.
In fact, for any « € dBg, we have by (2.3), (C1) and Lemma 2.3,

o(z) > % —/ Ft, " (t)) dt

P STI() |zt (8)|# d(t)|zt (t) P
SRy ) [CLaCTpR AR Gl P
p a K p
R |llleo(b—a)
> — = |l=ll% — llellzl#floo
p H
1]l o0 P
p-essinf[a,b]sHmHX
R |[Uleo(b—a)
= AFlelx = llell Allz]lx
1]l p
p-essinf[ayb]stHX
P U] oo (b —
R et ) pup o AR
p p
ldlse o
p-essinfl, ) s
So
RP Uoo(b— d|l oo
inf o) > = =O= D e joan- Il p.
z€IBR P I p-essinfp, ) s

Noticing o(z0) < ¢(0) = (p(b)|BP)/(opy*™") + (p(a)|A[P)/(BpaP~"),
by (C4) there exists an Ry > 0 such that ¢(z) > ¢(0) > ¢(xp) for any
x € OBR,. So (3.1) holds and zy € Bg,.

Step 3. We shall show that there exists an @, with ||z1]| > Rg such
that p(z1) < inficomp, P(2).
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Let €(t) =1 € X, X > 0. Then

3P

b b
P(Xe) = %/ s(t)dt—/ F(t,\)dt

+’yp(b)‘B—aXp+ap(a) A+ BX|
op gl Bp o
3P b b TH
X s(t) dt—/ UULS H(t,X)] dt
(3‘2) p a _a llj/ B
4 vp(b) | B —oX|” N ap(a) | A+ BX|"
ap Bp a
P b by TH
< A_/ s(t)dt—/ LN
P Ja a H©
vp(b) ‘B—pr_i_ap(a) A+8x|°
op v Bp a |-
Since p > p, we have lims ©(Xe) = —oco. So there exists a

sufficiently large Ao > 0 with |[Age|| > Rg such that o(A€) <
infreopy, (). Therefore, let x1 = A€ and ¢(z1) < infreony, ().

Lemma 2.5 now gives the critical value

= inf h(t
c ,llrel“ren{oaﬁ}so( (t),

where
F={h|h:[0,1] — E is continuous and h(0) = zp,h(1) = 21},

that is, there exists an z* € X such that ¢'(z*) = 0. Therefore, xg
and z* are two critical points of ¢, ||zo||x < Ry, and hence they are
classical solutions of (2.1). Lemma 2.2 means zy and z* are positive
classical solutions of problem (1.3). o

Corollary 3.2. Suppose that (C1) holds. Moreover, we assume

(C2') there exist 0 < s < p, ¢ € L'([a,b],[0,+00)) and d €
C([a,b],[0,4+00)) such that

h(t, z) < c(t) + d(t) s (2);
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(C4') there exists an Ry > 0 such that

1 ||oo(b — a)AFRE d||so
_Rg > || || ( a) 0 + HCHLlARO + || || Rs
P L p-essinfp, ) s
p()IBP . pla)lAlP
opyP=t  Bpar=t’

Then problem (1.3) has at least two positive classical solutions xy and
x* with ||zo]|x < Ro.

Corollary 3.3. Suppose that (C1) and (C2') hold. Moreover, we
assume

(C5) there exists an Ry > 0 such that

S
0

1 oo (b — a)AFRE dl| o
_Rg > || || ( a’) 0 + ||C||L1ARO + ” ||

p © p-essinfl, ) s
Then problem (1.3) with A = B =0 has at least two positive solutions
xg and x*.

Example 3.1. Consider the following second-order boundary value
problem
(3.3)
—(®3(2")) + @3(x) = (1 +1¢)/(48)®5(x) + A(t?/8) + A(t/5)23(x)
t €[0,1]
42'(0) — z(0) = -1
8z'(1) + z(1) = 2.

Corresponding to (1.3), p = 3, « = 4, 8 =1, v = 8, 0 = 1,
1(t) = (1 +1)/48, c(t) = A(t*/8), d(t) = A(t/5),

ft,z)= 14—;75'?5@) + A [— + —<I>3(a:)] .

Clearly, f(¢,0) = A(t3/8) £ 0. f(t,z) satisfies the conditions (C1)(C2).
By computing, let Ry = 1; (C3) and (C4) are satisfied. By Theorem 3.1,
BVP (3.3) has at least two positive solutions for A € (0,1). o
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