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ON INFINITE MODULES M
OVER A DEDEKIND DOMAIN FOR WHICH N = M
FOR EVERY SUBMODULE N OF CARDINALITY |M|

GREG OMAN

ABSTRACT. Let R be a commutative ring with identity,
and let M be an infinite unitary R-module. Let us call M
congruent if and only if every submodule of M of the same
cardinality as M is isomorphic to M. In [7], Scott classified all
congruent Abelian groups, i.e., congruent Z-modules. In this
paper, we extend his result to classify all congruent modules
over an arbitrary Dedekind domain. As a consequence, we get
a complete description of the Jénsson modules of a Dedekind
domain.

1. Preliminaries. In this section, we acquaint the reader with
the fundamental definitions and propositions needed to prove our
classification theorem. Every ring is assumed to be commutative with
identity and every module is assumed to be unitary. We begin by giving
a list of the many equivalent definitions of a Dedekind domain.

Proposition 1. Let R be a domain. The following are equivalent:
(i) R is a Dedekind domain.
(ii) Every ideal of R is projective.

(iii) R is Noetherian and, for every nonzero prime ideal P of R, Rp
is a discrete rank-one valuation domain.

(iv) R is Noetherian, integrally closed, and all nonzero prime ideals
are mazimal.

(v) Every nonzero ideal of R 1is uniquely the finite product of prime
ideals.

We state the following two important results about submodules of
free modules over a Dedekind domain:

Received by the editors on July 7, 2005, and in revised form on May 30, 2006.
DOI:10.1216/RMJ-2009-39-1-259 Copyright (©2009 Rocky Mountain Mathematics Consortium

259



260 GREG OMAN

Proposition 2. Suppose that D is a Dedekind domain and that F' is
a free D-module. Then every submodule of F is a direct sum of ideals
of D.

Proof. See [1, page 352] for a proof of this result. o

Proposition 3 (Kaplansky). Let D be a Dedekind domain, and let
M be a D-module which is the direct sum of an infinite number of ideals
of D. Then M is free.

Of course if M is a finite sum, then M need not be free. To see
this, choose any Dedekind domain D which is not a PID (for example,
Z[+/10]) and take an ideal I which requires two generators. Clearly T
is not a free D-module.

Definition 1. Let R be a ring, P a nonzero prime ideal of R, and M
an R-module. The P-component of M is defined to be the collection
of all elements of M which are annihilated by some power of P.

The P-component of M is a submodule of M. Further, we recall the
following well-known result:

Proposition 4. Every torsion module over a Dedekind domain D
s a direct sum of its P-components, where P ranges over the nonzero
prime ideals of D.

We now recall the definition of independence for a subset S of an
R-module M:

Definition 2. Let M be an R-module. A subset S of M — {0} is
said to be independent if and only if for any distinct my,... ,mg € S
and r1,...,7t € R:

rimy +---+remp =0

implies that each r;m; = 0.
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Suppose that S := {s; : i € I'} is an independent set in M. It is easy
to see that the submodule generated by S is isomorphic to GscsRs.
Further, if {r; : i € I'} is a subset of R, and for each i, r;s; # 0, then
{ris; : i € I'} is also independent and the mapping s; — r;s; is injective.

Definition 3. Let R be a ring, and let M be an infinite R-module.
If |M| > |R|, then M is said to be large (or more precisely, R-large).

We will make use of the following result of Smith and Wiegold:

Proposition 5. Let R be a Noetherian ring, and let M be an
infinite, large R-module. Then M possesses an independent subset S
with |S| = |M]|.

Proof. This result is proved in [8]. O
We use this result to obtain the following corollary:

Corollary 1. Let R be a Dedekind domain, and let M be an infinite,
large R-module. Then M possesses an independent set S with |S| = |M]|
in which all torsion elements of S have prime annihilators in R.

Proof. By the previous proposition, there exists an independent
set S with |S'| = |M|. We will define a function ¢ on S’ as
follows: if s € S’ is not a torsion element, then we define ¢(s) := s.
Otherwise, the annihilator of s can be expressed as P"* --- P, where
the P;’s are distinct nonzero prime ideals of R. Then we choose any
x € PP 'Py2... PP which is not in P]"* (we can clearly do this
since each P; is invertible and since nonzero prime ideals are maximal),
and let ¢(s) = zs. Note that P; clearly annihilates xs. We now let
S := {p(s) : s € §'}. From the comments following Definition 2, it
suffices to show that xs # 0 if s is a torsion element and z is chosen as
above. If s = 0, then we have that x € P --- P;'* C P/", and thus
x € P["*, a contradiction to the way = was chosen. This completes the
proof. i
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Definition 4. Let D be a domain, P a prime ideal of D, and F
the quotient field of D. The P-component of the D-module F/D is
called the quasi-cyclic module of type P and is denoted by C'(P*°). If
P = (p), this module is often denoted simply by C(p>).

We list the following useful results about quasi-cyclic modules over
PID’s to be used in the next section:

Proposition 6. Let R be a PID, and let p be a prime element of R.
Let M be an R-module, and suppose that there exist cq,ca,...Cp,..
in M such that the ¢; generate M, ¢y # 0, and pc; = 0, pcy = ¢y,
pes = cg, ete. Then M = C(p™).

Proof. See [2, pages 23-25]. o

Proposition 7. Let p be a prime of the PID R. For each positive
integer n, let S, be the submodule of C(p>) generated by 1/p™. We
have the following:

(1) Sl C 52 C 53
(ii) M s the union of the Sy ’s.

(iii R/(p™) for each positive integer n.

) S
(iv) The S, are the only nonzero proper submodules of C(p®).
Proof. See [1, page 265]. O
The following result is well known:

Proposition 8. Let M be an R-module, J a mazximal ideal of R,
and suppose that the annihilator of every element of M is equal to
some power of J (in which case M is said to be J-primary). Then
M has a canonical module structure over the localization Rjy given by
r/s-m = (rm/s), where (rm/s) is equal to the unique m' € M with
sm' = rm.
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2. The classification theorem. In this section, we provide a
complete description of the infinite modules M over a Dedekind domain
D with the property that every submodule of the same cardinality as
M is isomorphic to M. We begin with some preliminary lemmas.

Lemma 1. Let D be a domain, and let M be a mazimal ideal of D.
There is a Dpr-module isomorphism from C (M) into C(MDS33).

Proof. By definition, C(M*°) is M-primary, and so has the canon-
ical module structure over Dj,; as given by Proposition 8. Note
trivially that the quotient field of D is the same as the quotient
field of Dps. Thus, we define a mapping by z/y (mod D) — z/y
(mod Djy). Note that if n is a positive integer and M™(z/y) C D, then
(MDyp)"(z/y) C Dpr. Hence, the mapping is well-defined. The map-
ping is trivially a Dj;-module homomorphism. We simply must check
that the mapping is one-to-one. Hence, we suppose that (z/y) € Dy
and that M™(z/y) C D for some positive integer n. We must show
that (z/y) € D. This is equivalent to showing that the ideal quotient
[(y) : (z)] is all of D. As (z/y) € Dy, there is some s € D — M with
s € [(y) : (z)]. Further, as M"(z/y) C D, we have M™ C [(y) : (z)].
As (M™,s) = D, we see that D = [(y) : (x)], which is what we needed
to show. This completes the proof. O

Lemma 2. Let D be a Dedekind domain, and suppose that P 1is
a nonzero prime ideal of D. Then the quasi-cyclic module C(P>) is
infinite.

Proof. Let p be a nonzero element of P, and let n be a positive integer.
Consider the element 1/p™ (mod D) of F/D. As D is Dedekind, we
have that (p") = P*Q;---Q, where k > n, » > 0, and the Q; are
nonzero prime ideals of D different from P. Choose z € Q1 ---Q, — P
(in case r = 0, choose ¢ P). Consider the element z/p™ (mod D).
By our selection of z, we have that z/p™ (mod D) is annihilated by
P*, and thus z/p" (mod D) € C(P>). Suppose now that i < n. If
x/p" (mod D) is annihilated by the ideal P!, then p‘z = p"d for some
d € D. But this implies that € P, a contradiction. Hence, for each
n € N, there is an element y € C'(P>°) not annihilated by P™. Clearly
this implies that C'(P*°) is infinite. O
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Lemma 3. Let R be a domain, = an element of R. Then for each
positive integer n, we have |R/(z™)| = |R/(x)|™.

Proof. We prove this by induction on N. The case where n = 1 is
trivial. Thus we assume the result is true for some positive integer n.
Define a mapping ¢ : R/(z"!) — R/(z") by (z"T1) + 7 — (z") +r.
This map is clearly well-defined and surjective. The kernel K is easily
seen to be {(z"*1) +rz" : r € R}. From the fundamental theorem of
ring homomorphisms, we have that |R/(z"*1)| = |K||R/(z™)|. By the
inductive hypothesis, |R/(z")| = |R/(z)|™. We will be done if we can
show that |K| = |R/(x)|. This is easy: the map (z)+7 + (") +ra™
is a bijection between K and R/(z). This completes the proof. o

Lemma 4. Let M be an infinite R-module, and let r € R, n € N.
Suppose that ™ annihilates M. Let M|r] denote the submodule of M
consisting of the elements of M annihilated by r. Then |M|[r]| = |M]|.

Proof. We prove this by induction on N. The case when n = 1
is trivially true. Thus we assume the lemma is true for some n € N.
Suppose that M is an infinite R-module r € R, n € N, and suppose that
r"*1 annihilates M. We have that M/M|r] = rM. Hence we get that
|M| = |rM||M][r]|. As M is infinite, it follows that either |M[r]| = | M|
or [rM| = |M|. If |[M[r]| = |M|, then we have what we want and
we are done. Otherwise |[rM| = |M|. Recall that "' annihilates
M, and therefore r™ annihilates 7M. By the inductive hypothesis, we
have that |(rM)[r]| = |rM| = |M|. Clearly (rM)[r] C M[r], and thus
|M[r]| = |M]|. This completes the proof. o

Lemma 5. Suppose that M is a J-primary D-module for some
mazimal ideal J of D. Then M s a JD j-primary D j-module, and the
set of elements of M annihilated by J as a D-module is precisely the
set of elements of M annihilated by JDj as a D j-module.

Proof. The proof is trivial and is left to the reader. O

Our next lemma follows trivially from basic set theory. The proof is
omitted.
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Lemma 6. Suppose that R is a ring and |R| = k. Then for
any nonzero cardinal A, if at least one of Kk or X is infinite, then
| & R| = max(k, \).

Finally, we are in a position to prove our main theorem:

Theorem 1 (Classification of congruent modules over a Dedekind
domain). Let D be a Dedekind domain, and let M be an infinite D-
module. Then M is congruent if and only if one of the following holds:

(1) M = ®,.D where & > |D| is an infinite cardinal.
(2)

(3) M = D/P where P is a nonzero prime ideal of D.

(4) M = ®.,D/P where P is a nonzero prime ideal of D and
k > |D/P| is an infinite cardinal.

(5) M = C(P>°) where P is a nonzero prime ideal of D such that the
residue field D/P is finite.

M = D and D is a principal ideal domain.

Proof. Let D be a Dedekind domain, and suppose that M is an
infinite D-module. We first show that each of the modules in families
(1)—(5) is congruent.

Suppose first that M = @,D where x > |D| is an infinite cardinal.
By Lemma 6, we see that |M| = k. Suppose that N is a submodule
of cardinality k. By Proposition 2, NV is a direct sum of ideals of D,
say N 2 @;crJ;. As D is a domain, |J;| = |D| for each i, and thus
|N| = | ®ier Ji| = | ®icr D| = max(|D|,|I|) = k. As k > |D|, we must
have |I| = k. In particular, N is isomorphic to an infinite direct sum of
ideals of D. By Proposition 3, N is free and is thus isomorphic to M.

Next assume that M = D and D is a PID. We must show that D
is a congruent D-module. This is trivial. If I is any ideal of D with
|I| = | D], then I is principal and generated by a nonzero element « € D.
The mapping d — dx is clearly an isomorphism between D and I.

Suppose that M = D /P where P is a nonzero prime ideal of D. Then
D/P is a field, and so is trivially congruent.
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Now suppose that M = @,D/P where P is a nonzero prime ideal
of D and k > |D/P| is an infinite cardinal. It clearly suffices to show
that @®,D/P is a congruent D/P-module. But this is easy. D/P is a
field, and ®,D/P is a vector space of infinite dimension £ > |D/P]|
over D/P. Tt follows from Lemma 6 that ©,D/P has cardinality x.
If N is any submodule of size k, then N is free. It follows again from
Lemma 6 that N has dimension  and is thus isomorphic to &,D/P.

Lastly, suppose that M = C(P*°) where P is a nonzero prime ideal
of D such that D/P is finite. Let R = Dp. Then P extends to a
principal ideal in R; denote it by (p). It is well known that Dp/PDp is
isomorphic (as a ring) to the quotient field of D/P, which is D/P since
P is maximal (see [3, page 57] for example). In particular, we get that
R/(p) is finite. Proposition 7 parts (iii) and (iv) along with Lemma 3
implies that every proper submodule of the R-module C(p*°) is finite.
By Lemma 1, there is an R-module isomorphism from C(P*°) into
C(p®). As C'(P*) is infinite (Lemma 2), we see that this isomorphism
is surjective, and thus as R-modules, we get C(P*>°) = C(p>). In
particular, all proper R-submodules of C'(P*°) are finite. But the R-
submodules of C'(P>°) are the same as the D-submodules of C'(P>).
Thus, C(P) is congruent and the proof that the modules in (1)—(5)
are congruent is complete.

Conversely, suppose that M is an infinite congruent D-module. We
will show that M belongs to one of the above families. We distinguish
two cases:

Case 1. M is a large D-module. Let |M| = & > |D|. By Corollary 1,
M possesses an independent set S with |S| = |M| in which all torsion
elements have prime annihilators in R. Let F be the submodule of
M generated by the nontorsion elements of S, and for each nonzero
prime ideal P of D, let Mp be the submodule of M generated by the
elements of S with annihilator P. Then as M is congruent, we see that
M = Fo[®pMp]. If |F| = &, then we have that M = F. In particular,
F is a free D-module of cardinality x > |D|. Hence M = &,D, and M
belongs to family (1). Otherwise ®pMp has cardinality x and we get
M = &pMp. Fix any nonzero prime ideal Py with Mp, # 0. We claim
that Mp, has cardinality x. If not, then ®p.p,Mp has cardinality x
and thus M = ®p.p,Mp, which is absurd. Hence, we obtain that
M = Mp for some nonzero prime ideal P. By definition of Mp, we
have that every element of Mp is annihilated by P. Thus Mp has
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a canonical vector space structure over the field D/P. As Mp has
cardinality x > |D| > |D/P|, it follows that Mp = &,D/P as a D/P-
vector space, and hence as a D-module, and M belongs to family (4).

Case 2. |M]| < |D|. Suppose first that M is not a torsion module.
Let m € M have annihilator (0). Then the mapping d — dm is
injective, and we see that |M| = |D| and by the condition on M,
M 2 (m) = D. Thus M = D, and D is a congruent D-module. If I is
any nonzero ideal of D, then |I| = |D|, and so I = D. In particular, I
is principal and so D is a principal ideal domain. Thus, M belongs to
family (2).

Thus, we assume that M is a torsion module. By Proposition 4, M is
a direct sum of its P components as P ranges over the nonzero prime
ideals of D. The same reasoning applied in Case 1 can be applied here,
and we conclude that M is P-primary for some nonzero prime ideal
P of D. Let M[P] denote the submodule of elements of M which are
annihilated by P. We now distinguish two subcases:

Subcase 1. |M[P]| = |M|. The condition on M then implies that
M = MIP], and so as in Case 1, we see that M = &,D/P for some
cardinal k. If k is finite, then it is clear that the congruence of M implies
that k = 1, and M belongs to family (3). Otherwise, « is infinite, and
we have that |[M| = | &, D/P| = max(k,|D/P|). If k < |D/P|, then
|M| = |D/P|, and the condition on M implies that M = D/P, which
is absurd. Thus, we are forced to conclude that k > |D/P|, and so M
belongs to family (4).

Subcase 2. |M[P]| < |M|. Now let R = Dp, and let (p) = PDp.
Lemma 5 says that the set M[P] (viewing M as a D-module) is the
same as the set M[p] (viewing M as an R-module), and M is a p-
primary R-module. Thus, we view M now as a module over the PID
R, and we have that |[M[p]| < |M|. For each positive integer n, we
let M, be the collection of elements of M annihilated by p™. Clearly,
M; € My C M3 C ..., and M is the union of the M,’s as n ranges
over the positive integers. We claim that M [p] = M, is finite. Suppose
by way of contradiction that this is not the case. We claim that this
forces some M, to have greater cardinality than M|[p]. Otherwise, by
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elementary set theory, we have that |M| = | U, M,| < Rg - |[M[p]| =
| M [p]|, contradicting that |M[p]| < |M|. So we conclude that some M,
has greater cardinality than M[p]. Recall that our assumption (by way
of contradiction) is that M|p] is infinite. Hence, M, is also infinite.
Let |M,| = & > |M[p]|. By Lemma 4, there are x elements of M
annihilated by p, i.e., |M[p]| > &, contradicting that x > |M|p]|. Thus,
finally, we conclude that M|[p] is finite. It follows again by Lemma 4
that each M, must also be finite. As M is infinite, it follows that each
M, is finite and nonempty. It is easy to see that My C My C Ms... .

Next we form a graph with the vertex set V' equal to the elements of
M. We draw an edge from v to w if and only if pw = v and w # 0.
As each M, is finite and nonempty and M is infinite, it is easy to see
that this defines an infinite, finitely branching tree (with 0 as the base
node). By Konig’s Lemma, there exists an infinite path (0, vy, va,...).
Thus, by definition, we obtain v; # 0 and pv; = 0, pvy = vy, etc. Let
M’ be the R-submodule of M generated by the v;. By Proposition 6,
we see that M’ = C(p™>). As M is countable, the congruence of M
implies that M = C(p™) as an R-module. Recall that M|[p] is finite,
and thus by Proposition 7 and Lemma 3 (along with the simple fact
that M[p] = S1), we see that every proper submodule of C(p*) is
finite. In particular, R/(p) is finite. By Lemma 1, we have an R-
module isomorphism of C'(P*°) into C'(p*>°). Since C(P*°) is infinite
(Lemma 2), we see that this isomorphism is onto C(p™), and thus
C(P*) = C(p*™) as R-modules. Recall that M = C(p>) as an R-
module. Hence, M = C(P*°) as an R-module, and hence also as a
D-module. As D/P = R/(p), the residue field D/P is finite, and we
see that M belongs to family (5). The proof is complete. o

3. Some consequences.

Definition 5. Let M be an infinite module over the ring R. M is
called a J6nsson module provided every proper submodule of M has
smaller cardinality than M.

In [4], Gilmer and Heinzer classify the countable Jénsson modules
over an arbitrary Priifer domain. Noting that a Jénsson module is
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clearly congruent, we are able to obtain a classification of all Jénsson
modules over an arbitrary Dedekind domain:

Corollary 2. Let D be a Dedekind domain, and let M be an infinite
D-module. Then M is a Jonsson module if and only if one of the
following holds:

(1) M 2D and D is a field.
(2) M = D/P for some nonzero prime ideal P of D.

(3) M = C(P*) for some nonzero prime ideal P of D and D/P is
finite.

Proof. As noted, M is trivially congruent. A quick glance at our
classification theorem reveals that M must belong to family (2), (3),
or (5). As we’ve seen, the modules in families (3) and (5) are Jénsson
modules. Thus, suppose that M = D and D is a PID. Note that if x
is any nonzero element of D, then |(x)| = |D|. By the condition on D,
this forces (z) = D, and so D is a field. This completes the proof. i

We immediately obtain the following corollary:

Corollary 3. Suppose that D is a Dedekind domain that is not a
field but which contains an infinite field F'. Then the Jonsson modules
over D are precisely the modules D /P where P is a nonzero prime ideal
of D.

Proof. Clearly it suffices to show that D/P is infinite for every
nonzero prime ideal P of D. Let P be such an ideal. The mapping
¢ : F — D/P defined by ¢(z) := P+ is clearly injective. Thus, D/P
is infinite and the proof is complete. a

For example, if F' is an infinite field, then the Jénsson modules over
F[X] are precisely the F[X]-modules F[X]/(p(X)), where p(X) is an
irreducible polynomial in F[X].
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As a final application, we show that an uncountable Jénsson group
(the definition is the obvious one) G has the property that its derived
subgroup G’ coincides with G. This shows that G is in some sense
highly nonabelian.

Proposition 9 Let G be an uncountable Jonsson group with derived
subgroup G'. Then G' = G.

Proof. Let G’ be the derived subgroup of G. Suppose G # G'. Then
G’ has smaller cardinality than G. It follows that G/G’ is Abelian and
of the same cardinality as G. Let ¢ : G — G/G’ be the canonical map.
If H is a proper subgroup of G/G’, then ¢~ ![H] is a proper subgroup of
G, and thus H has smaller cardinality than |G| = |G/G’|. Thus, G/G’
is an uncountable Jénsson Z-module. This contradicts Corollary 2.
Thus, we are forced to conclude that G = G’. This completes the
proof. ]
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