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SUBGROUPS OF PURE BRAID GROUPS
GENERATED BY POWERS OF DEHN TWISTS

STEPHEN P. HUMPHRIES

ABSTRACT. Let B;, be the group of braids on n strings,
and let P, be the corresponding pure braid group. In this
paper we consider subgroups of B, generated by powers of
Dehn twists. For example, let A1z, A13,...,An—_1,n be the
standard Dehn twist generators for P, and consider subgroups
of the form <AZ” }; we give conditions guaranteeing that such a
subgroup has finite index in P,. We then consider subgroups
obtained by adding in powers of other Dehn twists. In the
cases considered the finite index property is characterized in
terms of certain inequalities.

1. Introduction. The braid group B,, has the presentation

o o 0i0i410; = 04100541, 1 <1 <n —1;
b On—l oi0; = 0504, |i—j| >1 ’

This makes it clear that there is an epimorphism B, — S,,0; —
(i,i+1). The kernel of this map is P,,, the pure braid group of index n!.
It is well known [1] that P, is generated by elements A;;, 1 <i < j <mn,
where

Aij = O'i_l R 0']‘_712 U;}l O'? 0j-105-2"""04.

A presentation for P, with these generators is indicated in [1, 5, 7]. It
thus seems natural to investigate subgroups of the form

(1.1) H= (A7 |1<i<j<n),

which we call A;; subgroups. Other relevant results on properties of
Dehn twists and groups generated by Dehn twists can be found in
(4, 8].

For H as in (1.1) the criterion for [P, : H| to be finite is given in
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Theorem 1. Let €;; = ¢j; € Z>°. Then the following are equivalent:

(i) the Aij-subgroup H = (A7) has finite index in P,;

(ii) we have
(1) eij #0 forall 1 <i< j<n;and

(2) for all distinct 1 < 14,7,k <n we have min{e;j, e} = 1.
(iii) We have

(1) eij #0 forall 1 <i<j<n;and

(2) for all distinct 1 <1i,j,k < n we have

1 1 1
- 4= 4= >2
€ij Ejk  Eik

If H= (A‘E/) is of finite index in P,, then H is normal in P, with

,
H containing P, and the index is

[PnH]: H Eij-

1<i<j<n

The action of P, on the cosets of H gives the group P,/H =
Hi<j Zfz'j'

Recall that the braid group B, can be interpreted as the mapping
class group of the n-punctured disc D,, C R? [1], where the punctures
P1,---,Pn are on the z-axis. In this situation each o; is a positive half
twist [1] relative to a simple closed curve a; ;41 containing only the
puncture points p;, p;+1 in its interior. The curve a; ;41 is the boundary
of a tubular neighborhood of the horizontal line ¢; ;41 joining p;, pit1.
Each A;; is a Dehn twist [1] about a simple closed curve a;; containing
the puncture points p;, pj; here a;;, for |i — j| > 1, is the boundary of
a tubular neighborhood of a semi-circular arc ¢; ; joining p;, p; under
the z-axis.

Next we introduce some more elements of P,,. These are

Aij = (0i0i+1 e Ujfl) sz-(UiO'iJrl s O'jfl)_l.

Then the Aij are Dehn twists abiout curves a;; which are the reflections
of a;; in the z-axis. Note that A; ;41 = Aji41.
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We now investigate subgroups of the form (A5? Af;j ). For example,

7
for n = 3 we have subgroups of the form
H= H(a7 b, ¢, d) = < (1127 Ag?ﬂ Ai?n *’21(113>7

where a, b, C,d S Z=9 and Alg = A12A13A1_21 = A2_31A13A23.

The conditions a < b, ¢ < d can always be assumed since
H(a, b, c,d) =2 H(b, a, c,d) =2 H(a, b, d, ¢).

Conditions for [Ps : H(a,b, c,d)] to be finite are given in

Theorem 2. For a <b, ¢ <d, the subgroup H(a,b,c,d) has finite
index in P3 if and only if we have one of the following four distinct
cases:

(Da=b=1,c+d#0;

(2)a=1,b>1, ged(e,d) =1

B)a=2,b=2,c=1,d>0;

4Da=2,b>2c=1,d=1.
Equivalently, in the cases where abed # 0, the index [Ps : H]| is finite
if and only if

(1.2) 4+4+1+1+ 4 > 7
' a? b2 2 d? ged(c,d)? '

Each subgroup H(a,b,c,d) in case (3), except for H(2,2,1,1), is non-
normal; all of (1), (2) and (4) give normal subgroups.

Lastly the indices in the cases (1)—(4) above are, respectively,
(1) ged (e, d); (2) b; (3) 4d; (4) 2b.

If we have a subgroup of the form H = <A‘;J , Afj’i-f), then Theorem 2
gives necessary conditions for H to have finite index in P,,: for every

triple 1 <14 < j < k < n there is an epimorphism

Yije : Pn — P = (Aij, Ajk, Aix),
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where ;54,5 = id unless r,s € {i,7,k} and ;54,5 = Ay, for
r,s € {i,J,k}. Note that P;; = Ps;. Then, for this choice of i, j, k
the necessary condition is that [P; ;i : v;x(H)] is finite, this being
determined by the numbers a = €;5,b = €, ¢ = €ix,d = §;;;, satisfying
(1.2). It would be nice if the collection of all (3) such necessary
conditions was also sufficient; this we now show not to be the case:

Theorem 3. Let
H = <A%25 A%?ﬂ A§47 A13a A24a A147 A%E}; A§4, A%4> C Py.

Then for all 1 < i < j < k < 4 the index [Pk : Viji(H)] is finite,
however H has infinite index in Py.

All of the finite index subgroups H generated by Dehn twist powers
that we have considered thus far have had the property that the action
of P, on the cosets of H has given a finite solvable group. We show by
example that this is not always the case:

Example 4. Define the following elements of P; and note that each

of them is a Dehn twist, since they are all conjugates of 0% or o3.

2 2 -2, _ =2 2 2, _ 3.2 -3,
t1 =oi0501 % to = 0y “0507; t3 = 0507045 °;
-1_2 2 -2 22 -1 _—2, _ 2.

ty = 0] 050705 01 15 = 0501050, 05°; te = 07;
2 _—1, _ 1.2 2 -1 -2 _—1, _ 2.2 -2
ty = 010501 ; lg = 020 05010501 04 0105 ; tg=o0507105".

For £k =1,...,100 the P3; subgroups
(61, 83, 65, 1, 13, 13, 17, 13, t5)

have index 25k and for each such subgroup H the action of P3; on
the cosets of H gives a nonsolvable group (having As as one of its

composition factors). The proof is a computer calculation that we
made using MAGMA [2].
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2. Necessary conditions for Theorem 1. A presentation of
P, is given in [4, Lemma 4.1] or [7]. Note that the relations are all
commutators in the generators A;;. Thus, the abelianization P,/P}, is
a free abelian group of rank (}). Let

Ab: P, — P,/P, = 7(3),

be the abelianization map. If [P, : H]| < oo, then [Ab(P,) : Ab(H)] <
oo and so for all 1 < r < s < n there is m,s > 0 with Ab(A7r=) €
Ab(H). Now we have the direct product

Ab(P) = T[T Ab(Ay),

1<i<j<n

and since H = (Af]”> we see that Ab(H) = [[1;-;<, Ab(A?;ij). Tt
follows that e,5 # 0 for all r, s. This gives the first necessary condition

from Theorem 1.

Now suppose that there are distinct ¢, 7,k < n with ;5,5 > 2. We
will show that in this case [P, : H] is infinite. This will give the second
necessary condition from Theorem 1.

For any subset S C {1,2,...,n} there is a punctured disc Dg C D,,
unique up to isotopy, which contains only the punctures p;, i € S, and
only the a;; for ¢,j € S. There is a corresponding braid group B(S) =
B(Dg) which we can think of as a subgroup of B, = B({1,2,... ,n}).
Note that B(S) = Bjg|. Let P(S) denote the pure braid subgroup of
B(S). Then there is a projection 7g : P,, — P(S) which can be easily
described by saying that we fill in all the punctures p; where i ¢ S.
More formally: mg(A;;) = Ai; if 4,5 € S and otherwise mg(A4;;) = 1.
In particular, we have ¥ = (i k-

Returning to the situation above (where we have €;;, ¢, > 2) we let
S ={i,j,k} and notice that

ms(H) = (AZV, A5 A,

ij

Since P(S) = P({1,2,3}) = P; the second necessary condition will
follow from:
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Proposition 2.1. If a,b,c € N with at most one of a,b,c equal
to 1, then
H = < (1127 AI{?,? A§3> C P

s a free group of rank 3 and has infinite index in Ps.

Proof. First note that conjugating by o109 permutes Ajq, Aoz, A1
cyclically and so we may assume, without loss of generality, that
b,c > 1. We may also assume that a = 1, since the result for a = 1
implies the result for general a (since (A%, A%;, AS;) is a subgroup of
(Aq2, A%, AS3) and subgroups of free groups are free [7]).

It is well known that Ps has infinite cyclic center [3]. In fact from
the presentation for P; one easily sees that P3 = F; x Z where
Fy = (A3, Ass) is a free group of rank 2 [1, 5, 7]. Thus, the second
assertion of the above result is a consequence of the first, since any
subgroup of Pj of finite index would have nontrivial center.

Now a special case of the epimorphism ng : P, — P(S) is when

S ={1,2,... ,n—1}. In this situation we have the split exact sequence
(2.1) 1—F, 1 —P, —P,_1 —1,
where F,_1 = (A1, A2 pn,... ,Ap_1,n) is a free group of rank n — 1

and P,_; is naturally a subgroup of P, (this gives the splitting) [1].
Thus, there is an action (by conjugation) of P,_1 on F,_;. We apply
this in the situation where n = 3, so that P,_1 = P> = (A432) acts on
F2 = <I = A13, Yy = A23>. The action is:

(22)  Ap() = () le(zy),  Anl) = (@) y(y),

and since zy is fixed by this action we see that the action of (Ajs) is
just conjugation by powers of xy.

The proof of Proposition 2.1 will follow using a more general result:

Lemma 2.2. Fori,j=1,... ,n,i<j,letC;; = {ozijkAZ’ijkai_ji | i

€ P,} be a set of P,-conjugates of powers of A;;, and let d;; =
ged {eijnti. Let H < P, be the subgroup

If there are 1 < u < v < n such that dyy,,dy, > 1, then [P, : H|] = occ.
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Proof. In many of the results that we now prove, including Lemma
2.2, we will need the following result of elementary group theory:

Lemma 2.3. Let
1—N—G—Q—1
be a split exact sequence of groups, and let H be a subgroup of G. Then
[G : H] < oo if and only if
(i) [N : NN H] < o0; and
(ii) [Q : m(H)] < o0.

Proof. Elementary. n]

The idea for the proof of Lemma 2.2 will be to apply Lemma 2.3 to
the split short exact sequence (2.1). We will show that F,,_; N H has
infinite index in F,,.

First note [1, 5] that if ¢ € P,_1, i < n, then ¢ acts on A;, by
conjugation; we write this as ¢(A;,) = ¢Amd L.

Let us partition the C;; as follows:

Ci= | G, = |J €y

1<i<n 1<i<j<n
Thus, Cy C F,_1, Co C P,_1.
Now if w € F,,_1 N H, then we can write

w= 1A 24z Ir Ay Pry,

where ¢; € (C2) C P,—1, A; € C1 C F,,—1 for all i. Since w € F,,_1 we
see that ¢1¢9--- ¢,41 = id so that

w= 1A poAs- A, pr Pyt o
= ¢1 (Al) (¢1¢2) (Az) ce (¢1¢2 ce ¢r) (Ar) .

It follows that F,,_1 N H is generated by ¢(A) where ¢ € (Cs), A € C;.

(2.3)
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For u,v as in Lemma 2.2 we let N denote the normal closure in F,,_;
of

{Adun ATond U{Aj |1 <d<m, i#u,v}.

un n

From the above discussion it follows that ¢(A) € N for all ¢ € (Cy),
A € (. In particular we see that F,,_1 N H C N.

However, since dy,,d,, > 1 the subgroup N has infinite index in
F,,_4 since the quotient F,,_1/N = Zg, * Zg4,, is an infinite group in
these circumstances. Thus N, and so H, has infinite index in Fj,_1.
This concludes the proof of Lemma 2.2. i

Returning to the situation H = (Ajz, A%5, AS3), where b,c > 1, we
may apply Lemma 2.2 where u = 1, v = 2 and so conclude that H has
infinite index in Ps. m]

3. Sufficiency for Theorem 1. Suppose that H = (Af]”> satisfies
(1) and (2) of Theorem 1 (ii). We show that [P, : H] < co. Let

J={{i,j}]ei; #1}.

Let Ay = {A4;;|{3,j} € J}. Note that by (2) if z,y € J, z # y, then
zNy=@. For z = {i,j} € J we will let A, also denote A;;.

Proposition 3.1. The set
C (uy) = { 11 Af;},
xzeJ

where 0 < 0, < €z, is a set of coset representatives for H in P,. The
subgroup H is normal and

PTL/H = @i<jz€7;j'

Proof. Since we have the abelianization map Ab : P, — 7(5) it is
easy to see that the elements in C(e,,) determine different cosets of H.
In fact we have the following result:
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Lemma 3.2. If H is as in the above, then H is normal in P, and
H contains P,

Proof. We first show a) that each simple commutator A$; A% A;° A2

g irsttig

is in H for some choice of €, € {£1}. We then show b) that H is
normal in P,. The result will follow upon showing that a) and b)
imply that H contains P;.

Let © = {4,j}, y = {r, s} and for any two simple closed curves c,d
on D, let t(c,d) denote the geometric intersection number of ¢ and d.
Then there are three cases to be considered:

(i) z,y ¢ J.
(ii) x,y € J.
(i) z e J, ydJ.

(i) If z,y ¢ J, then (1) and (2) imply that A,, A, € H and so
A A AT AL € H.

(ii) If z,y € J and t(aij,ars) = 0, then we have A, A,A71A! =
1 € H and this does this case. If ¢(a;j, ars) # 0, then (2) implies that
t(aij, ars) = 4 and in this case we can assume that ¢ < r < j < s so that
Air, Arj, Ajs, Ais € H, by (2). In this situation the result now follows
from Lemma 3.3 (since it is sufficient to do the case i = 1, r =2, j = 3,
s =4).

Lemma 3.3. Let o = Ay} A13A04 AL Then

v € K = (Aya, Az, Azs, Ara).

Proof. Tt will suffice to show that xK = K. From [5, Lemma 4.2],
[1, 7] we find the following relation in Py:

_ _ _ _ _ -1
(31) A13 A24 A131 = (A341 A141 A34 A14) A24 (A341 A141 A34 A14) .

Then, using the fact that As3As4A34 commutes with Ags, Aoy, A34 and
that A14A24A12 commutes with A4, Asg, A1o we have:

K = A2_41 A13 A24 A1_31 K
11 14— -1
= Ay Asl AT Asg Avg Aoy (A3 AT Ass Al) K
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= Ay A3l AT Asi Avg A K

= Ayl Al AT Asa Avg (Ass A1 Avy) K
= A5 A3 AT Asy (Asg A Arg) A K
= A5l Al ATl Ay (Agy Azg Agg) K

= Ayl Ayl A (Agy Asg Ags) Asa K

= 142_41 A§41 A1_41 Ay K

= Ay Ayl ALl (Asg A Aw) K

= Ay A3 (Aas A1a An) AL K

= Ayl Asl A K

= A5 A3 (Aog Asy Ass) K

= A5 (Agy Azg Ags) A3l K

=K. a

Remark 3.4. Although the above is the most convenient proof of
the lemma, one can use the same calculation to obtain the following
expression for x = ay,'a13a24a75 as an element of K:

-1 -1 -1 -1 -1
34 023 A3y Qg3 Q34 A12 Q14 Ao (34 (23 A34
-1 -1 -1 -1 -1
Qg3 G34 012014 A9 A1y A34 Q14 A34.

Checking that this element is equal to x is a second, but messier proof
of Lemma 3.3.

This concludes the proof of case (ii).

(iii) Here we have t(a;j, ars) € {0,2,4}. Assume first that x € J, y ¢
J and that ¢(a;j,a,s) = 0. Then AmAyAglAgl = 1, showing that this
case follows.

The next possibility for (iii) is that ¢(a;;, ars) = 2. Then we may put
x={i,j}, y={r, s}, where i < j =r < s (any other case is similar).
It thus suffices to deal with the case i =1, j =2, s = 3. So by (2) we
see that {2,3},{1,3} ¢ J and so Aqg3, A13 € H.

Recall [1, 3] that the center of B, is the infinite cyclic group generated
by

Zn = (A12 A13 e Aln) (A23 A24 e A2n) e (An72.,n71 An72,n) Anfl,n-
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In the case n = 3 we have Z3 = A12A13423 = Ax3A15A13 and so we
have:

Ang Aoz Ajy Ay = (Agg AT A) Arg Aoz ATy (Ara Aus Ags) Ay
= A2_31 A1_31 Asz A1z € H,
as required.

Now assume that in (iii) we have ¢(a;;, a,s) = 4. Here we may assume
that ¢« < r < j < s. As in the above we may apply 7y; ;. and so
simplify to the situation where i =1, r =2, j =3, s =4. Now ¢;; > 1
together with (1) and (2) imply that we have e19 = €93 = €34 = €14 = 1.
Then K = (Ajs, Aos, Asq, A14) C H. The result now follows from
Lemma 3.3. This concludes the proof of cases (i), (ii), (iii).

We continue the proof of Lemma 3.2 by showing that H is normal in
P,. This is again accomplished by cases. Let x = {i,j}, y = {r, s}, our
goal being to show that A, Ay A7l A71AY A, € H. The cases are:

(1) =,y ¢ J;
2z ¢ J, yed;
B)xed yd¢J.
(4) z,y € J.

For (1) we have A,, A, € H and so A, AY Ay, A;1AY A, € H.
For (2) we have A, € H, Ay’ € H, s0 A, AP AL, AJYAY A, € H.

For (3) we have A5, Ay, € H. If v = y or a;; Na,s = &, then we
have A, Ay A7l = Ay, AJTAY A, = Ay € H, as required.

If we have (3) and ¢(ay,ay) = 2, then x Ny € {i,j} and again there
are subcases to check depending on the relative sizes of ,j,7,s. We
may clearly assume that i < j, r < s. We also have A, € H.

One subcase is where i = < j < s. Then {i,s} ¢ J so that A;; € H
and we have

A, Ay A;l = A'L'j A;g Al_jl = Aj_sl Ais Ajs € H,

AV A Ay = AN A Aij = Aig Aj A AT A € HL
Ifi<j=r<s, then A;s € H and we have

Aac Ay A;l = Aij Ajs A;l = Aj_sl Al_sl Ajs Ais Ajs € H;

AVA Ay =AM Aj Ay = A Aj A € HL
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All other cases are similar; this does case (3).

If we have (4), then by hypothesis (2) of Theorem 1 (ii) we see that
i, 4,7, s are distinct and that, by perhaps interchanging = and y, we may
assume i < r < j < s. (Here we are ignoring the trivial cases where
A, and A, commute.) In fact we simplify notation so as to assume
i=1,7=2j=3 5s=4. Now we have A, € H and hypothesis (2)
indicates that Aja, Aoz, Agy, A14 € H. Thus, using (3.1) we have

A A3 ATV = Ay A3 A
= (A3E AT} Ast Aa) A3 (A3) AT Ay Avy) ' e H.

For A;' Ay’ A, a similar argument works where we replace (3.1) by
(3.2) below. That (3.2) is true can be checked using any of the solutions
to the word problem for B,, [1, 2].

(32) Aps Agy Ars = (Arg Asg AT} Az Ay (Arg Agy AT A5

This completes the proof of the fact that H is normal in P,. To
conclude the proof of Lemma 3.2. we need:

Lemma 3.4. Let G be a group generated by a set X, and let N be
a normal subgroup such that for all x,y € X there are €,6 € {1,—1}
such that z5y° = °y=% € N. Then N contains the derived subgroup G'.

Proof. The proof will follow if we can show that for all u,v € G we
have uwvu~lv~1 € N. We do this by induction on n = |u| + |v|, where
|u| is the length of u as a word in the generators X.

The cases n = 0,1 are trivial, while the case n = 2 follows easily
from the hypothesis. So assume that n > 3, so that we have |u| > 1 or
|v| > 1.

We first however need to do the case |u| = 1 (so u = z € X),
where we induct on m = |v|. The case m = 1 is easy so assume that
v =yw, y € X where |w| < |u|. Then zwz~'w™! € N and we have

1,-1

uvu v :xywxfl

1 1, —1 71) ,

w71y71 = (xy:vi yil) (yazwxi w Y

and one sees that the two terms are each in N, since N is normal in G.
This does the case |u| = 1.
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So now we do the induction on n = |u| + |v|, where we can assume
that |u| > 1 so that u = zw where z € X and |w| < |u|. Then by
induction wvw 'v~!, vz~ v~ € N and

wut v = gwow e o = (xwvwil vt xil) (xvxil vil) R

which also belongs to N. o
This concludes the proof of Lemma 3.2. u]

From Lemma 3.2 we see that

[P, : H] = |Ab(P,) = Z(3) :Ab(H)] =11 =

xzeJ

Proposition 3.1, the sufficiency of the first statement of Theorem 1,
together with the rest of Theorem 1 now follow. O

4. The (A%, A, AS4, Ady) cases: Infinite index subgroups. In
this section we investigate the subgroup

H = H(aab’ (&) d) = <A(1127 ASS’ AiBa Alli3>a

where a,b,c,d € ZZ° and A3 = ab’a™' = AppA3AL = Ayl Az Ass.
We consider under what conditions [Ps : H] is infinite. First we have:

Lemma 4.1. For H as above the index [Ps : H| is infinite if either
(i) a=0 or (i) a,b,c,d > 1.

Proof. To prove Lemma 4.1 we apply Lemma 2.3 to (2.1) with n = 3,
so that N = Fy = (Ay3, Aas) and Q = (A;2). First we note that if
a = 0, then 7(H) = {id} which does not have finite index in (A412).
This finishes (i) of Lemma 4.1.

For (ii) assume that a,b,¢,d > 1. Let © = A3, y = Aoz, and let
K = { (ay) ™2 (ay) ", (ay) " y* (o),

(zy)™* y~ ety (2y) " |k € Z} :
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As in (2.3) we note that any element of F» N H has the form

Af3 wy A3 wa - - A5 we AT
where n; # 0,1 <7r,ny+no+---+n,41 = 0and w; € (z¢,y°,y~ Lady).
Then using (2.2) it follows that K is a generating set for Fo N H.

For any element u in a free group F we let #u denote the freely
reduced length of w.

Recall [6] that a subset U = {uy, us, ...} of a free group F' is Nielsen
reduced if we have:

(NR1) u; # 1 for all 4;
(NR2) if uf u$ # 1, then
# (uf ug) > max (#uf, #0°)
for e,6 € {£1};

(NR3) for all w;, u;, us such that us u? # 1 and u? u) # 1 we have

# (uf ug u)) > #u; — #ug + #up,
for e, 9, v € {£1}.

The key property of a Nielsen reduced set is indicated in

Lemma 4.2 [6, Proposition 2.5]. Any Nielsen reduced subset of a
free group F freely generates the subgroup that it generates.

Now one has:
Lemma 4.3. The set K is Nielsen reduced.

Proof. One checks the conditions (NR1), (NR2), (NR3) in the
definition. The condition (NR1) is clear. From the definition of K
we see that there are three types of elements which we denote

E=E (k)= (ay)" 2 (ay)" ", F=F(k) = (am)"" y*" (xy)""",
G =G (k) = (zy)™" y~'aFy (ay) .
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To check (NR2) there are now 9 cases. We indicate how to check some
of these, leaving the rest to the reader. Let u,v € K. If u and v have the
same type, then (NR2) is clear. If u and v do not have the same type,
then neither do v~! and u~! and checking the pair u,v (with product
uv) also checks the pair v™1 u™! (with product v=tu=t = (uv)™1).
Thus there are only three cases left to check.

If u= E(k), v=F(m) and k # m, then (NR2) is clear since a > 1.
If k = m, then (NR2) follows easily from the fact that b,¢ > 1.

If u = E(k), v=G(m) and k # m, then (NR2) is clear since a > 1.
If & = m, then (NR2) follows since ¢,d > 1.

The last case, u = F(k), v = G(m), is similar. This checks (NR2).

For (NR3) there are 27 cases for u,v,w € K. If u,v,w all have the
same type, then it is easy to see that (NR3) follows. Again the rest
of the cases may be partitioned as triples {(u, v, w), (wfl,vfl,ufl)},
leaving 12 cases to check. One now checks these cases. ]

Since K is an infinite set we see that F5 N H is a free group of infinite
rank and so cannot have finite index in F5. From Lemma 2.3 we see
that H has infinite index in P3. This completes the proof of Lemma 4.1.
[}

As indicated in Section 1, by symmetries of D3 we only have to
consider the cases where ¢ < b and ¢ < d. Then from Lemma 4.1
we now need only consider the situation where either a =1 or ¢ = 1.
By Theorem 1 we see that H has finite index if either (i) a = b= 1; or
(i) 1 € {a,b} N {c,d}.

Lemma 4.4. In the following cases H has infinite indez:
(1) a,b>2;
(2)a=2,b>2,c=1,d> 1.

Proof. (1) If a,b > 2 and c¢d = 0, then the result follows from
Theorem 1; so we may assume that ¢,d > 0. Then without loss we
may assume that ¢ = d = 1, as all other cases follow from this case
(these being subgroups of this case). The proof now follows the same
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pattern as for Lemma 4.1, namely, writing down the set K:

K= {(wy)ak x (zy)~", (2y)™* y £ (2y) ",

(zy) ™ y Loty (zy) " |k € Z} :

Unfortunately, K is not Nielsen reduced. Thus, we need to show that
K can be reduced to an infinite set which is Nielsen reduced. Thus, we
will produce from K an infinite sequence of elements U = (u1,ua, ... ,)
which will be Nielsen reduced and which generate the same subgroup
as does K (namely Fo N H).

We start by putting
Uy =, U2:$717 U3:yb7 Ug :yibv

-1..1 -1
Us =Yy Y, Us =Y

ur =y (y'ay) [(xy) “z(zy)*] (y "2 y)y™°
=y 27 (@)’ My () Py
2—a —1

us =27 [(2y) "y e y(ey) e =y (2y) e (2y)* Ty

-1
Ty,

)3—(1

Now using the above we define elements u; corresponding to other ele-
ments of K. For example, consider the elements Y}, = (zy) % z(2y)** €
K for k > 2 (the case k = 1 is given by u; above). Then the element
in U corresponding to Y will be

Uz U3 Us Y, Ug Ug

=" (y 'ay) (wy) " x (xy)" [(2y) " w(zy)™] (y a7 y)y™°

L (ay) () P () Tyt

=Y
Here we have written the element a second way so as to indicate its

freely reduced form; we will also do this in each of the cases below.

For Yy, = (zy)** x(xy)~%* € K for k > 1 the element in U corre-
sponding to Y3 will be

ugus Viup = a7~ (vy)” (y_lﬂv_ly) (zy)~* [(xy)kax(xy)_ka] x

_ k— —k _
=y (zy)* Py (xy)*F TV z (2y) Ty

Y
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For Vi, = (zy)key®(zy)~** € K for k > 1 the element in U
corresponding to Y; will be

ugus Ypuy = 2 (xy) ytaly (vy) ¢ [(zy)Fyt (zy) R @

=y (I’y ka+1—k p

)2 (2y) Y (zy

)1—’{7& y—l'

For YV, = (zy) % y’(xy)*® € K for k > 1 the element in U
corresponding to Y will be

—ka, b

uruz us YV ugug = 4y~ oy (zy) " @ (xy)” [(xy) "y (xy)ka] y oty

b—2, .—1 a—ak b

=" (ay)? @ (a)" " (ay -

ka—1
)Ty

For Yy, = (zy)**(y~lay) (zy)~** € K for k > 1 the element in U
corresponding to Y; will be
Lay(ey) )

_ 2—k _
CyH(y)T My

ugus Yiur = 2 (zy) y ta "ty (vy) " [(zy) oy~
a—2 ka—
=y(zy)" "y (zy)

For Yy = (zy) ke (y~tay)(zy)k® € K for k > 1 the element in U
corresponding to Y3 will be

U7U3U5Y%UGU4

1 1 1 b

=ty oy (vy) " @ (2y)® [(zy) oy ey (ay)t] y ey

_ _ 2— —k — k _
=y % (wy)” () Yy () N

It is clear from the above construction of the elements of U that the
elements in U determine the same subgroup of F» as does K. It is also
clear that the infinitely many elements of the sequence U are distinct.

It remains to show that the elements of U are Nielsen reduced and this
is a routine checking of a number of cases; as in the above the number of

cases to be considered can be somewhat reduced. This proves Lemma
4.4 (1).

For Lemma 4.4 (2) we assume that a =2,b > 2, c=1,d > 1. Again
we have the set

K = { (@)™ a* (ay) " (29)* = (ay) 7,

(zy)** y oty (ay) " |k € Z} :

b
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of generators of F» N H. Again K is not Nielsen reduced and as in
case (1) we now define an infinite sequence U = (uy, ug, ... ) such that
(K) = (U) and U is Nielsen reduced. We let

u =z, up =y 'aly,

us =1y, ug = (zy) a (zy)’ = (xy) "y (2y)*;
us = (zy)’ z (zy) " ug = (zy) >y (2)*;

ur = (zy)* y’ (vy) > = ayzya " (ay) 7"

For Yy = (zy)**z (zy)~2¢ € K for k > 2 the element in U corre-
sponding to Y will be
T (ay)’ () () (y) P

3—2k _ — _
z(zy)’ "yt Py

uy Y usurug = 27t [(zy)*Fa(zy)

2k—1
=y (zy)

For Yy = (zy) %z (zy)?* € K for k > 2 the element in U corre-
sponding to Y3 will be

Uy Ug Y uZl
= (zy) @ (2y)” (zy) 2y (2y)? [(2y) " HFa(zy)®] (2y) 22~ (ay)?

—1 — — 3—-2k 2k—2
= (zy) Y2 (y)” N a(zy)” yay.

For Y}, = (xy)*y’(xy)~2F € K for k > 2 the element in U corre-
sponding to Y will be

upt Yy us g uy =z (2y) 2Ryt (2y) 72 (ay) @ (y) 7 (2y)7 P (ay) P

2k—1 42k -1 —
=y (zy) ) L

y* e (zy Y () y

For Y}, = (xy) 2%y (xy)?* € K for k > 2 the element in U corre-
sponding to Y3 will be

Ug Ug Y uZl
= (zy) 2@ (2y)” (2y) 29 (ay)? [(2y) "y (a9)**] (wy) > 27" (2y)®

_ _ _ 2—2k 2k—2
=yt (@y) Y () gy
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For Yy = (zy)**y~lady(zy)~? € K for k > 2 the element in U
corresponding to Y3 will be

uy Yiusurug = 7 (2y) Py L aty(vy) ") (zy) 2 (zy) "2 (2y) %y’ (vy) 2
2k—2 3—2k — _ _
=y (zy)™ 2t (wy) N ayt ey

For Yy, = (zy) %y lady(ay)?* € K for k > 2 the element in U
corresponding to Y; will be

Ug Ug Yk u;l
= (zy) 22 (2)” (2y) "2y’ (2)” [(2y) ~Fy Lay(zy)®] (zy) 22~ (zy)?

—1 — — 3—2k — 2k—1
= (zy) "y’ 2 (ay)” Ty ()T yay.

Again it is easy to see that (K) = (U) and that the elements in U
are distinct, there thus being infinitely many of them. It remains to
show that they are Nielsen reduced and this again consists of checking
various cases. Doing this completes the proof of Lemma 4.4. ]

Lemma 4.5. Suppose that b > 1 and that e = ged (¢,d) > 1. Then
H(1,b,c,d) has infinite index in Ps.

Proof. Note that A, = Ay, Afs Ajs and so
H(1,b,¢,d) = H(1,b,gcd (e, d),0).

Thus, by Theorem 1, H(1,b,gcd (¢,d),0) has infinite index in Pj if
b, ged (¢, d) > 1. m

We gather together the results of this section in

Lemma 4.6. Let a,b,c,d € ZZ° where a < b and ¢ < d. If
H(a,b,c,d) has finite index in Ps, then we have one of the following
situations:

(I)a=b=1,c+d#0;
(2) a=1,b>1, ged(¢,d) =1;
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3)a=2,b=2,¢c=1,d>0;
4)a=2,b>2,c=1,d=1.

Proof. Note that a = 0 is precluded by Lemma 4.1 (i), and so b =0
is also not allowed. If ¢ = 0, then we have the situation of Theorem 1
and so must have a = 1, b = 1 or a = 1, d = 1, both of which are
included in Lemma 4.6. Thus, all other cases must have a, b, ¢, d # 0.

The case a =1, b =1, ¢+ d # 0 is included in the list, while a = 1,
b=1, c+d =0 is not allowed by Theorem 1. If a = 1, b > 1, then
Lemma 4.5 shows that we must have ged (¢, d) = 1, one of the included
cases.

All further cases must have a,b > 1 and so we have ¢ = 1 by
Lemma 4.1. Now a,b > 2 is not allowed by Lemma 4.1 and so we
must have a = 2, (with ¢ = 1). By Lemma 4.4 if b > 2, then
d = 1, a possibility in Lemma 4.6. So, lastly, we now consider a = 2,
b=2,c=1,d > c=1 and this case is included. This concludes the
proof of Lemma 4.6. ]

5. Finite index cases for H(a,b,c,d). In this section we show
that all of the cases listed in Lemma 4.6 have finite index.

We start with case (1): @ = b = 1,c+d > 0,c < d. Recall that
Ay = A12A13A1_21. Thus, H(1,1,¢,d) contains A%gd(c7d). If ¢ # 0,
then the finite index result follows from Theorem 1. So assume that
¢ = 0, in which case d # 0 and Theorem 1 again gives the result.
Theorem 1 also tells us that the index is ged (¢, d) and that the action
on cosets gives an abelian group and that H is normal in Ps.

(2) Here we have H = <A127Ag3,Ai3,Af3 = A12A13A1_21> =
(Ayg, A5, ALY, since 1 = ged (e,d). Thus, H has index b in P; by
Theorem 1. This case also gives an abelian action on cosets and H is
normal in Pj3.

(3) We will need:
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Lemma 5.1. Let H = (A2,, A3;, A13, Als) where d > 1. Then the

following elements include a set of coset representatives for H:
AVy  k=0,...,d—1;

)

Alf3A12, kZO, ,d—l;

AFy Aoy, k=0,...,d—1;
Ak Ay Ags, k=0,...,d—1.

Proof. Let € denote the above set of elements, so that |€] = 4d.
Note that <A12,A23,f113> = P3. The idea will be to show that for
x € {Aja, Ags, A13} and for y € € there is z € € such that Hyr = Hz.
This will then conclude the proof of case (3).

We will need:

Lemma 5.2. Let H = (A3,, A3;, A13) C H. Then we have

(i) Let X € H'. Then for all k > 0 we have Ak XA € H'. If
X € H, then for all k > 0 we have A¥; XA} € H.

(ii) For all k >0 we have A%y A3, ATF, Ak, A3 ATf € H'.
(iii) For all k> 1 we have A¥; Ajy Agz A1g Agyt AlZF € H'.
(iv) For all k >0 we have A%y Ay A3, A A € H'.
(v) For all k >0 we have Ak, A1 A3 AT ALY € H'.
(vi) For all k>0 we have Ak, Agz A1z Ayl AL € H'.
(vii) For all k > 0 we have /Pf3 Aqg Agg Ays A2_31 141_21 Af;_l c H'.

Proof. (i) Clearly the second statement of (i) follows from the

first. Now note that if, in a group, z centralizes (w,x,y), then

rywy 'z~ = zzywy 'z !, Using this we have:

A XATE = (A A AR X (ApAgs At ™"
= [Al? (Af21A§31Af31) Ars (A2’31A1’31A1’21) Ale] * X
x [Ars (Al Agy Ay) A (A3 A A) A ] o
= (A AR AR) X (A7 A A) e n

as required. This proves (i).
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Now each case of (ii) follows from (i).

For (iii) we note that
Az Ajg Aoz App Ay = Ayz € H.
This is (iii) with & = 1. The result for £ > 1 now follows from (i). This

concludes the proof of (iii).

For each of (iv), (v) , (vi), (vii), we only need to check the case k = 1
(using a solution to the word problem in B, [1, 2]) and then the general
result follows from (i). o

Now we consider zA;s for x € €. If z = A, k =0,... ,d—1, then
(EA12 ec.

If + = A¥; A1, then from Lemma 5.2 (ii) we see that
HzAj, = HAY A2, = HAY, € He,

as required.

If x = A}5As3, then from Lemma 5.2 (iii) we see that
HZL’A12 = Hfilfg. A23 A12 = Hfilfgl A12 A23 c HQ:,

as required.

Lastly, if x = A¥; A15A23, then from Lemma 5.2 (iv) we see that
HzA, = Hf_llfg Aig Aoz Ajg = Hf_llfgl Aoz € HC,

as required.
This concludes the case of multiplication by Ajs.

We now consider HxAgs for z € €. If x = A¥y or x = A¥; A9, then
xAssz € €, and this concludes consideration of these cases.

If 2 = Af3 Ay, then from Lemma 5.2 (i) we see that Ak AZLAF € H
and so xA3; = HAY,, which does this case.

If x = A¥;A12Ags, then from Lemma 5.2 (iv) we have

HzxAsz = HAIf?) Aqs Agg = HAIf?) App € H¢;
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this finishes the case x = fl’f3A12A23 and concludes the case of multi-
plication by Ass.

‘We now consider Ha:/_ll;, forz € €. Ifx = Ak, then Hx A3 = HAYS!
and using the fact that Ay € H this case follows.

The rest of the cases follow as above using Lemma 5.2 (v), (vi), (vii).

This shows that the action of multiplication by Aja, Ass, A13 on the
right preserves the finite set of cosets {Hxz,z € €} and so H has finite
index at most 4d in case (3) of Lemma 4.6. The fact that the index
is 4d follows since the above coset representatives are distinct under
mapping to the abelianization of Ps. This concludes discussion of (3)
of Lemma 4.6.

~ We now consider case (4) from Lemma 4.6. Here H = (A%, Aj3, Ass,
Ai13), and we show that H is normal in Ps and H contains Pj. We follow
the same strategy as in the proof of Lemma 3.2, namely, we show that
H contains commutators [A?;l, A*l] and then that it is normal.

First note that H contains

A3 ALy = A Az A AL =AY Avg Asg ALY

this finishes two of the commutators, and lastly one can show that
AL Ay = A Ags AT AG

Now we show that H is normal in P35 by showing that for all z €
{A2,, AL, Ay, Ays} and all y € {AS), A AS)} we have yay ! € H.
Of course, for y = Ali317 then we clearly have yzy~' € H. Thus, we let
y € {Af, Ay}

The nontrivial cases where y = Af}' are indicated in:

Ay ASs A = A3 A, AL € H;

Ay Ay A = (Ana (A7 A A5)) ABy (Ava (AT A3 430)) 7
= Al_gl Ag3 A5 € H;

A A1z ALy = Az € H;

Ay Ay Ao = Ay Ao Avs A AYy = AT} Ay A, € H;

Afgl A3 Ao = Aj3 € H;

A A3 AT = A2, A3 AfF € H.
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For y = As3 we have:

Agz A3 AL = A AT Ay € H;
Az Ay Asy = A1p Az AL A Ay = A AL AL € H;
ApsAi3Azy = A A7 (A2 A3 ATy ) AT Avs = ATy A7 A3 AT, Ass € H;
Ay A1sAos = A1 Az AT = Ay € H;
142:’,/113/12_3.1 = A23A12A13A1_21A2_31 = Ays;
Agd Aiz Aoy = Ayl Ajp Ay A Ags
= (Ag) Ao Ay AZ)) Avs (g Ara Ans AZ)) ™
= (A12A13A12Af31Af21A§31) A13(A12A13A12Af31Af21A§31)71
= A13A7,A1347,° A3 € H.

This concludes considerations of all cases and so proves Lemma 5.1.
O

It is now easy to show that in cases (1)—(4) of Lemma 4.6 with
abed # 0 we have

1 + 4 + ! + ! + 4 > 7
a2 b2 2 d? ged(c,d)? '

‘We now show that

i+i+i+i+#<7
a? 2 d? ged(c,d)?

in all cases where [P : H| = 0o. From the proof of Lemma 4.6 it suffices
to show that

4 n 4 n 1 n 1 n 4 <7
a? v 2 & ged(e,d)? T

in the situations described in Lemma 4.1 (ii), Lemma 4.4 (1), (2) and
Lemma 4.5. Doing this will conclude the proof of Theorem 2.

For Lemma 4.1 (ii) we have a,b,c¢,d > 1 and so

4 4 1 1 4
=+t ——<14+14+1/44+1/44+4<T.
pois +c2+d2+g0d(67d)27 +1+1/4+1/4+
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For Lemma 4.4 (1) we have a,b > 2 and so

4 4 1 1 4
ettt <A4/9+4/9+ 1+ 1+4<T.
TRt T E paedr < [9+4/9+1+1+4<

For Lemma 4.4 (2) we have a = 2,0 > 2,¢=1,d > 1 and so

4 4 1 1 4
— 4t =4 o —————— <144/94+1+1/44+4<T.
a2+b2+c2+d2+g0d(67d)27 +4/9+1+1/4+

For Lemma 4.5 we have a = 1, b > 1, ged (¢,d) > 1 so that ¢,d > 1,
and so

4+4+1+1+ A <44+1+1/4+1/44+1<7
a? b 2 & ged(e,d)? '

This concludes the proof of Theorem 2. O

6. H = <A%27 A%g’, A§4, 14137 A24, A14, A%& 12154, A%4> has inﬁnite
index in Py. In this section we prove Theorem 3.

If 1 <i<j<k<4,then [P : ¢;x(H)] is finite by Theorem 2.
We now show that H has infinite index in Pj.

Let F' = <l‘1 = A1471‘2 = A2471‘3 = A34> = F3 be the free group of
rank 3. The method of proof will be to show that H N F' has infinite
index in F'. Then Theorem 3 follows by Lemma 2.3.

Now t193(H) = (A2, A35, A13, A12A%3A1_21> has finite index in P3 by
Theorem 2. Also H N F contains

G = {A},, Az, Avg, A, = A3} A3, Agy, A}y = A3 Al A3, Asy Asd}.

The expressions for A3,, A%, can be checked [1, 3, 5]. Further, as we
saw (2.3), HNF is generated by elements of the kind a(g), where g € G
and « € Y125(H), this latter being an infinite set.

To show that H N F has infinite index in F' we do the following: let
N be the normal subgroup of F' generated by the finite set of elements

(61) {a(g)gil |g € Gv o€ {A%Qa AgB? A137 Aia A%3 A1_21}} .
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Let @ = F/N, let mg : F — @Q be the quotient map, and let
H' = ng(HNF). It will suffice to show that H' = ng(H N F) has
infinite index in @ = mg(F). We will let Q1 = 7o (A14), Q2 = 7o (Aa4),
Q3 = mQ(Asz4).

To do this we construct an infinite family of permutation representa-
tions

pn:Q_)S&lv

which have the following properties:
(1) pn(Q) is transitive.
(2) pn(H') fixes 1.

(3) [Pn(Q) : pn(H')] > 8n.
We define p,, by

n—1
P (Q1) = ] (3+8i,4+8i) (5 +8i,7+8i);
=0
pn (Q2) = (8n — 3,80 — 11,80 — 19,... ,21,13,5)
X (8n,8n — 8,8n — 16,... ,24,16,8)
n—1
< [T (2+8i,3 +8i) (4 + 8,6+ 8i) ;
=0
n—1

pn(Qs) = [ (1+8i,248i) (3484, 7+8i) (4+8i, 5+8i) (6+8i,8+8i) .
=0

We first need to show that this is a representation of @, i.e., we
need to show that each element listed in (6.1) acts trivially. If we let
r; = pn(Q;), then this amounts to checking that the r; satisfy a small
number of relations.

For example, if & = A%,, g = Ay4, then

a(g)g™t = Ayl AT} ASY Avy Asg Avg Aoy ALY

and so we must show that r; commutes with ror179. In fact the relations
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that must hold are the following commutators:

(7“1, 2T 7"2) =1,
(T27 T3 T2 TB) =4

—1 —1
, 72737y T1T2T3Ty ):1,

(
(1"3, r;lrl ro T3 1"2_17"1 7‘2) =1,
(

These one now checks.

The point of quotienting F' by N to get @ is that this makes 7o (HNF)
finitely generated, namely, generated by the finite set 7g(G).

We now have a representation, and it is easy to see that it acts
transitively. It is also easy to see that p,(H’) fixes 1. Thus p,(H’)
is contained in the stabilizer St, = Stab, (g)(1). Since p,(Q) acts
transitively we have [p,(Q) : St,] = 8n and so

[Pn(Q) : pn(H/)] = [pn(Q) : Sty ] [Sty, pn(H/)} > 8n,

as required.

Having shown (1), (2) and (3) for all n it easily follows that [Q : H']
is infinite. This proves Theorem 3. ]
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