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A NOTE ON COMPACTNESS
IN L-FUZZY PRETOPOLOGICAL SPACES

A.S. MASHHOUR, A.A. RAMADAN AND M.E.Abd. EL-MONSEF

ABSTRACT. The main task of this paper is to introduce
and study the concept of countable compactness, Lindelof, al-
most compactness and near compactness in L-fuzzy pretopo-
logical spaces. Also, the images of such spaces are investi-
gated. Finally, some examples of the above spaces are given.

1. Introduction. Throughout this paper, the symbol L will denote
a complete lattice, with a smallest element 0 and a largest element 1,
that is equipped with an order-reversing involution; for such a lattice
the DeMorgan laws hold for arbitrarily indexed suprema and infima.

Let X be a nonempty set and LX = {A: X — L}. The elements of
L are called L-fuzzy subsets of X[4]. If A € LX, then A°=1—A. We
denote Ox and 1x for the functions on X identically equal to 0 and 1
respectively. If f: X — Y and B € LY, then f~1(B) = Bo f. One
proves that f_l VjesBj = Vjle_l(Bj) and /\je]B]‘) = /\jle_l(Bj).
If f: X - Y and A € LY, then f(A) : Y — L is defined by
setting f(A)(y) = 0 if f(y) = ¢ and f(A)(y) = VyosmA()
otherwise. One proves that f(f '(A)) < A, and if f is surjective,
then f(f 1(A)) = A. Yet, £ L(f(A)) > A, f(Ajes ;) < Ajesf(4y)
and f(VjesA4;) = Vjesf(4j). A fuzzy point P in X is an L-fuzzy set
in X defined by: P(z) =t for # = zp and P(x) = 0 otherwise. The
point xg is the support of P, and 0 < t < 1. For a fuzzy point P in X
and A € LY, P € Aif P(xo) < A(xo) [9]. A collection {A;};cs, where
Aj € LX,VA; € LYV, € J, is a cover of X if and only if Ve 4; = 1x.

An L-fuzzy pretopology [2] on X is a function a : L* — L* which
satisfies:

(P1). a(¢) = ¢,
(P2). a(A) > A, for every A € LX.

The pair (X, a) is said to be an L-fuzzy pretopological space (for short,
L-fps). We will consider the following particular L-fps:

a(
a(

Received by the editors on April 30, 1985 and in revised Form on April 21, 1986.
Keywords: L-Fuzzy sets, Fuzzy pretopological spaces.

Copyright ©1990 Rocky Mountain Mathematics Consortium

199



200 A.S. MASHHOUR, A.A. RAMADAN AND M.E.A. EL-MONSEF

(P3). For every A,B € L¥, we have A < B implies a(A) < a(B);
(X, a) is said to be of type I

(P4). For every A, B € L*, we have a(AV B) = a(A4) V a(B): (X,a)
is said to be of type D.

(P5). For every A € L, we have a?(A) = aoa(A) = a(A); (X,a) is
said to be of type S.

If (X,a) is of type I, D and S, then (X,a) is an L-fuzzy topological
space [4] and a is its Kuratowsky closure (cl.). We define the interior
function i, : LX — LX by

ia(A) = (a(A49))°.

Then it is clear that the properties (P1) to (P5) become, for the interior
iq:

(P1). ia(¢) = ¢;

(P2). For every A € L, i,(A) < 4;

(P3). For every A, B € L¥, we have A < B implies i,(A4) < i,(B);
(P4). For every A, B € L*, we have i,(A A B) = i,(A) A ia(B);
(P5). For every A € L, we have i2(A) = i,(A).

a

R. Badard in [2] introduced and studied the concept of continuity
and compactness in L-fps.

In the present paper, we introduce and study the concept of countable
compactness, Lindeldf, almost and near compactness. Also, we define
strong continuity, A-continuity, and #-continuity since these are useful
for studying the images of almost compact and nearly compact L-fps.

2. Covering axioms: compactness, Lindel6f and countable,
almost, and near compactness.

DEFINITION 2.1. [2]. The function ¢ : L% — L is said to be a degree
of non-vacuity if it satisfies:

(1) ¥(¢) = ¢;
(2) ¥(A) = 1, if there exists ¢ € X such that A(z) = 1;
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(3) A < B implies 9(A4) < v(B).

In particular, ¥(A) = Vzex A(z) is a degree of nonvacuity and we use
this formula in the sequel.

DEFINITION 2.2. [2]. A type I L-fps (X, a) is 1-compact (respectively
2-compact) if, for every family {A,};cs of L-fuzzy subsets of X such
that Ajej, 4, # Ox (respectively (Ajcj,A;) > a), where Jo is a finite
subset of J, we have Ajcya(A4;) # O0x (respectively ¥(Ajesa(4;)) > a).

DEFINITION 2.3. A function ¢ : LX — L is said to be the dual of

P if P(A) = E(Y(A°), or Y(A) = E(P(A)), where A € LX and € is an

order-reversing involution.

DEFINITION 2.4. Let (X, a) be an L-fps. A family {A4;};c, of L-fuzzy
subsets of X is said to be an a-cover of X if {i,(A)};es covers X.

DEFINITION 2.5. A type I L-fps (X, a) is 1-Lindeldf (respectively 2-
Lindeldf) if, for every family {A,},c of L-fuzzy subsets of X such that
NjeeoAj # 0x (respectively ¥(Ajec,Aj) > @), where ¢ is a countable
family of J, we have Ajcya(A;) # O0x (respectively ¥(Ajesa(4;)) > ).

DEFINITION 2.6. A type I L-fps (X, a) is countable 1-compact (respec-
tively countable 2-compact) if, for every countable family {4;} e, of L-
fuzzy subsets of X such that Ajcsy A # 0x (respectively ¥(Ajez Aj) >
a), where ¢ is a finite subset of ¢, we have Ajc. ia(a(4;)) # 0x (re-
spectively ¥ (Ajec,ta(a(4;})) > ).

DEFINITION 2.7. A type I L-fps (X, a) is almost 1-compact (respec-
tively almost 2-compact) if, for every family {A;};cs of L-fuzzy subsets
of X such that Ajej,iqa(A;) # 0x (respectively ¥(Ajes,ia(45)) > @),
where Jj is a finite subset of J, we have Aje a(A4;) # Ox (respectively
b(hjesal(4y) > a)

DEFINITION 2.8. A type I L-fps (X,a) is said to be nearly 1-
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compact (respectively nearly 2-compact) if, for every family {A4;};cs
of L-fuzzy subsets of X such that Ajcj ia(Aj) # Ox (respectively
Y(Ajesyia(Aj)) > «), where Jy is a finite subset of J, we have
Njesia(a(A;)) # 0x (respectively ¥(Ajeria(a(4;)) > a).

Clearly, in any L-fps of type I, 1-compact (respectively 2-compact) —
nearly 1-compact (respectively nearly 2-compact) — almost 1-compact
(respectively almost 2-compact).

THEOREM 2.1. Let (X,a) be a type I L-fps. Each of the following
pairs of statements is an equivalence:

L (1) (X,a) is 1-compact (respectively almost 1-compact, nearly 1-
compact.
(2) For each a-cover {A;}jcs of X, there exists a finite Jo C J
such that {A;}jes, covers X (respectively{a(A;)};es, covers
X, {a(4;)}jes, is an a-cover of X).

II. (1) (X,a) is 2-compact (respectively almost 2-compact, nearly 2-
compact).

(2) For each family {A;}jcs of L-fuzzy subsets of X such that

Y(Viesia(4;)) > &(a), there exists a finite Jo C J such that

?((‘/;j)eJoAj) > &() (respectively p(Vies,a(4;) > &(a), D(Viesia(a(4;)) >

III. (1) (X,a) is 1-Lindeldf.

(2) For each a-cover {A;};jcs of X, there exists a countable family
co of J such that {A;}jecc, covers X.

IV. (1) (X,a) is 2-Lindeldf.
(2) For each family {A;}jcs of L-fuzzy subsets of X such that

¥(Vjcsia(Aj)) > §(e), there exists a countable co C J such
that Y (Viec, Aj) > €(e).



L-FUZZY PRETOPOLOGICAL SPACES 203

V. (1) (X,a) is countable 1-compact.

(2) For each countable a-cover {A;}jcc, of X, there exists a finite
co C co such that {A;};e; covers X.

VI (1) (X,a) is countable 2-compact.

(2) For each countable family {A;}jcc, of L-fuzzy subsets of X
such that ¥(Viecyta(Aj)) > &(v), there exists a finite cf C co
such that Y(Vjeq Aj) > €(a).

PROOF. We prove only I, II since III, V (respectively IV, VI) are
analogous to I (respectively II), and, for I (respectively II), we prove
only the 1-compact case (respectively 2-compact case).

I(1)=I(2). Let {A;}jes be an a-cover of X. Assume that there
is no finite Jy C J such that {A4,},;cy, covers X. Then, for every
finite Jo C J, we have Ajej, A # Ox. Since (X,a) is 1-compact we
have /\jeja(A?) # Ox. Thus, Vjecsiqs(A;) # Lx which contradicts our
assumption.

I(2)=1I(1). Let {A;};cs be afamily of L-fuzzy subsets of X such that
NjerAj # 0x and Ajeja(4;) = O0x. This implies that {A$};es is an
a-cover of X. By I(2), we have { A5} ;e covers X. Thus Ajej,4; = Ox,
a contradiction.

II(1)=1I(2). Let {A;};cs be a family of L-fuzzy subsets of X such

that ¥(Vjesin(4,)) > €&(a). Assume that, for every finite Jy C
J, ¥(Vjer,4j) # &(a). This implies that ¥(Vjes,4;) < &(a) and

hence (¥ (Vjer, 4;)) = (NjernAf) = a. By II(1), ¥(Ajesa(AF)) > a.

So (¥ (Njesa(AF)) < &(a) and Y(Vjesia(AF)) < €(a), a contradiction.

II(2)=1I (1). Let {A;}jcs be a family of L-fuzzy subsets of X
such that, for every finite Jo C J, we have ¥(Ajej,4,) > a. As-
sume that ¥(Ajesa(4;)) ? a. So, ¥(Ajesa(4;)) < a. We have
E(W(Njesa(4y))) = i(vjeJia(Ag)) > ¢(a). There is a finite J) C J
such that (Ve A7) > &(a). But ¥(AjesA4;) > «, and then
Y(Vjes,A5) < €(a), a contradiction. O
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DEFINITION 2.8. [2]. Let (X, a) be an L-fps and A € L*X. The trace
of a on A, denoted by a4, is defined
aA(B) = a(B) A Aa
for every subset B of A.

THEOREM 2.2. Let (X,a) be a type I 1-Lindelof (respectively 2-
Lindelof) L-fps. Then every closed L-fuzzy subset of X (A is said to
be a closed L-fuzzy subset of X if a(A) = A) is 1-Lindelof (respectively
2-Lindeldf).

PROOF. This follows from proposition 5 in [2].

THEOREM 2.3. Let (X,a) be a type I and S L-fps. Then the following
are equivalent:

(1) (X,a) is 1-compact (respectively 2-compact)

(2) (X,a) is 1-Lindelof and countable 1-compact (respectively 2-
Lindeldf and countable 2-compact).

PROOF. (1)=(2). Let {A;}jcc, be a countable family of L-fuzzy
subsets of X such that 1(Aje Aj) > a, where ¢ is a finite family
of ¢p. By (1), we have ¢¥(Ajec,a(A4;)) > a. Then (X, a) is countable
2-compact. This implies that ¢(Ajesa?(A;)) > . Since (X,a) is of
type S, then ¥(Ajesa(A;)) > a. Hence (X, a) is 2-Lindelof.

(2)=(1). Let (X,a) be 2-Lindel6f and countable 2-compact. Let
{A;};jecs be a family of L-fuzzy subsets of X such that ¥(Ajes,A4;) >

a, where Jy is a finite subset of J. Hence Jyp is countable and
Y(Njera(Aj)) > a, where Jg is a finite subset of J. Then

P(Ajesa®(45)) = ¥(Ajesa(4;) > a,

since a is of type S. Hence (X, a) is 2-compact. O

DEFINITION 2.9. An L-fps (X, a) is said to be regular if, for every
fuzzy point P and A € L such that P € i,(A), there exists B € L™
such that P € i,(B) C a(B) C i,(4).
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THEOREM 2.4. Let (X, a) be a typel and regular L-fps. The following
are equivalent:

(1) (X, a) is 1-compact;
(2) (X,a) is almost 1-compact.

PROOF. (1)=-(2). Obvious.

(2)=(1). Let {A;};cs be an a-cover of X. For each fuzzy point
P in X, there is an A;, such that P € i,(4;,). By regularity, there
exists B, € L* such that P € i,(Bp,) C a(Bp) C ia(Aj,). Thus,
the family {B,} is an a-cover of X. Since (X, a) is almost 1-compact,
there is a finite number of fuzzy points Pi, Ps,..., P, in X such that
{a(By,),...,a(Bp,)} covers X. It follows that {4;, ,---,A;, }isa
finite a-subcover of {A;};cs. By Theorem (2.1), (X, a) is 1-compact. O

3. Countinuity axioms: strong, A-, and #-continuity.

DEFINITION 3.1. [2]. Let (X, a) and (Y,b) be two L-fps’s. A function
f:(X,a) — (Y,b) is said to be continuous if f(a(A)) C b(f(A), for
every A € LX.

DEFINITION 3.2. Let (X,a) and (Y,b) be two L-fps’s. A function
f:(X,a) — (Y,b) is said to be strongly continuousif f(a(A)) C f(A),
for every A € LX.

DEFINITION 3.3. Let (X, a) and (Y,b) be two L-fps’s. A function f :
(X,a) — (Y,b) is said to be A-continuous (respectively 6-continuous)
if, for each fuzzy point P in X and B € LY such that f(p) € i,(B), there
exists A € LX such that p € i,(A) and f(a(A)) C b(B) (respectively
f(A) Ciy(b(B)).

One can easily deduce that if f is strongly continuous, then f is con-
tinuous. Also, if f is continuous, then f is A-continuous (respectively
f-continuous) but not conversely.
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THEOREM 3.1. Let (X, a) and (Y,b) be two L-fps’s and f : (X,a) —
(Y, b) be continuous and surjective. If (X,a) is 1-Lindelof (respectively
2-Lindeldf), so is (Y,b).

The proof is as in Proposition 6 in [2].

The following theorem, which can be easily verified, characterizes
strongly continuous functions.

THEOREM 3.2. If f : (X,a) — (Y,b), where (X,a) and (Y,b) are
L-fps’s, then the following are equivalent:

(1) f is strongly continuous.
(2) f(ia(A)) = f(A) = f(a(A), for every A € LX.
(3) ia(F~1(B)) = f~1(B) = a(f~*(B)), for every B € LY.

THEOREM 3.3. Let (X,a) and (Y,b) be two type I L-fps’s and
f:(X,a) — (Y,b) be strongly continuous and surjective. If (X,a)
is almost 1-compact (respectively almost 2-compact), then (Y,b) is 1-
compact (respectively 2-compact).

PROOF. We prove only the case of 2—compactness Let {A;};jcs be a
family of L-fuzzy subsets of Y such that 1/1( jedoAj) > o, where Jy is
a finite subset of J. Then 9(Ajesia(f~ ( i) = 1/1( JEJ(f L(A)))).
Since (X, a) is almost 2-compact, ¥Ajes f 1 (4;)) = ¢(/\J€Ja(f L(A;)

A

a. Consequently, ¥(Ajes (b(4;)) = ¥(Ajes4; )= jeaf(F71(4)) =
Hence (Y,b) is 2-compact. O

THEOREM 3.4. Let (X,a) and (Y,b) be two type I L-fps’s and
[ (X,a) — (Y,b) be A-continuous (respectively 6-continuous) and
surjective. If (X,a) is almost 1-compact (respectively 1-compact), then
(Y,b) is almost 1-compact (respectively, nearly 1-compact).

PROOF. We prove only the A-case, the f-case being perfectly analo-
gous. Let {A;};cs be a b-cover of Y. For each fuzzy point P in X,
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there is an A;_ such that ¢ = f(p) € i4(A;,). Since f is A-continuous,
there is a B, € L™ such that P € i,(B,) and f(a(B,) C b(4;,).
Now, {B,} is an a-cover of X and (X,a) is almost 1-compact. Then,
there is a finite number of fuzzy points P;, Py, ..., P, in X such that
{a(By,),...a(Byp,)} covers X. Hence {b(Aj, ),...,b(4,, )}, where
gi = f(pi), covers Y, i.e., (Y,b) is almost 1-compact.

4. Examples. In the following examples, let (X, a) be of types I,
D and S, then the collection 7 = {4 € L¥ : i,(A) = A} is a fuzzy
topology on X and i,(A) = Int(A).

EXAMPLE 4.1. If a = identity, then 1-compactness is just compact-
ness in the sense of [1, 5 and 8]. In this case the fuzzy unit interval [6,
7] is 1-compact.

EXAMPLE 4.2. If a = cl., then almost 1-compactness is just almost
compact in the sense of [3], where L = [0, 1].

EXAMPLE 4.3. If a = cl. int, then nearly 1-compactness is just nearly
compactness.
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