A NOTE ON COMPACTNESS IN L-FUZZY PRETOPOLOGICAL SPACES

A.S. MASHHOUR, A.A. RAMADAN AND M.E.Abd. EL-MONSEF

ABSTRACT. The main task of this paper is to introduce and study the concept of countable compactness, Lindelöf, almost compactness and near compactness in *L*-fuzzy pretopological spaces. Also, the images of such spaces are investigated. Finally, some examples of the above spaces are given.

1. Introduction. Throughout this paper, the symbol L will denote a complete lattice, with a smallest element 0 and a largest element 1, that is equipped with an order-reversing involution; for such a lattice the DeMorgan laws hold for arbitrarily indexed suprema and infima.

Let X be a nonempty set and $L^X=\{A:X\to L\}$. The elements of L^X are called L-fuzzy subsets of X[4]. If $A\in L^X$, then $A^c=1-A$. We denote 0_X and 1_X for the functions on X identically equal to 0 and 1 respectively. If $f:X\to Y$ and $B\in L^Y$, then $f^{-1}(B)=B\circ f$. One proves that $f^{-1}\vee_{j\in J}B_j=\vee_{j\in J}f^{-1}(B_j)$ and $\wedge_{j\in J}B_j)=\wedge_{j\in J}f^{-1}(B_j)$. If $f:X\to Y$ and $A\in L^X$, then $f(A):Y\to L$ is defined by setting f(A)(y)=0 if $f^{-1}(y)=\phi$ and $f(A)(y)=\vee_{y=f(x)}A(x)$ otherwise. One proves that $f(f^{-1}(A))\leq A$, and if f is surjective, then $f(f^{-1}(A))=A$. Yet, $f^{-1}(f(A))\geq A$, $f(\wedge_{j\in J}A_j)\leq \wedge_{j\in J}f(A_j)$ and $f(\vee_{j\in J}A_j)=\vee_{j\in J}f(A_j)$. A fuzzy point P in X is an L-fuzzy set in X defined by: P(x)=t for $x=x_0$ and P(x)=0 otherwise. The point x_0 is the support of P, and 0< t<1. For a fuzzy point P in X and $A\in L^X$, $P\in A$ if $P(x_0)< A(x_0)$ [9]. A collection $\{A_j\}_{j\in J}$, where $A_j\in L^X, \forall A_j\in L^X\forall_j\in J$, is a cover of X if and only if $\forall_{j\in J}A_j=1_X$.

An L-fuzzy pretopology [2] on X is a function $a:L^X\to L^X$ which satisfies:

(P1). $a(\phi) = \phi$,

(P2). a(A) > A, for every $A \in L^X$.

The pair (X, a) is said to be an L-fuzzy pretopological space (for short, L-fps). We will consider the following particular L-fps:

Received by the editors on April 30, 1985 and in revised Form on April 21, 1986. Keywords: L-Fuzzy sets, Fuzzy pretopological spaces.

Copyright ©1990 Rocky Mountain Mathematics Consortium

- (P3). For every $A, B \in L^X$, we have $A \leq B$ implies $a(A) \leq a(B)$; (X, a) is said to be of type I.
- (P4). For every $A, B \in L^X$, we have $a(A \vee B) = a(A) \vee a(B)$: (X, a) is said to be of type D.
- (P5). For every $A \in L^X$, we have $a^2(A) \equiv a \circ a(A) = a(A)$; (X, a) is said to be of type S.

If (X, a) is of type I, D and S, then (X, a) is an L-fuzzy topological space [4] and a is its Kuratowsky closure (cl.). We define the interior function $i_a: L^X \to L^X$ by

$$i_a(A) = (a(A^c))^c$$
.

Then it is clear that the properties (P1) to (P5) become, for the interior i_a :

- (P1). $i_a(\phi) = \phi;$
- (P2). For every $A \in L^X$, $i_a(A) \leq A$;
- (P3). For every $A, B \in L^X$, we have $A \leq B$ implies $i_a(A) \leq i_a(B)$;
- (P4). For every $A, B \in L^X$, we have $i_a(A \wedge B) = i_a(A) \wedge i_a(B)$;
- (P5). For every $A \in L^X$, we have $i_a^2(A) = i_a(A)$.

R. Badard in [2] introduced and studied the concept of continuity and compactness in L-fps.

In the present paper, we introduce and study the concept of countable compactness, Lindelöf, almost and near compactness. Also, we define strong continuity, λ -continuity, and θ -continuity since these are useful for studying the images of almost compact and nearly compact L-fps.

2. Covering axioms: compactness, Lindelöf and countable, almost, and near compactness.

DEFINITION 2.1. [2]. The function $\psi: L^X \to L$ is said to be a degree of non-vacuity if it satisfies:

- (1) $\psi(\phi) = \phi$;
- (2) $\psi(A) = 1$, if there exists $x \in X$ such that A(x) = 1;

(3) $A \leq B$ implies $\psi(A) \leq \psi(B)$.

In particular, $\psi(A) = \bigvee_{x \in X} A(x)$ is a degree of nonvacuity and we use this formula in the sequel.

DEFINITION 2.2. [2]. A type I L-fps (X, a) is 1-compact (respectively 2-compact) if, for every family $\{A_j\}_{j\in J}$ of L-fuzzy subsets of X such that $\wedge_{j\in J_0}A_j\neq 0_X$ (respectively $\psi(\wedge_{j\in J_0}A_j)\geq \alpha$), where Jo is a finite subset of J, we have $\wedge_{j\in J}a(A_j)\neq 0_X$ (respectively $\psi(\wedge_{j\in J}a(A_j))\geq \alpha$).

DEFINITION 2.3. A function $\tilde{\psi}: L^X \to L$ is said to be the *dual* of ψ if $\tilde{\psi}(A) = \xi(\psi(A^c))$, or $\psi(A) = \xi(\tilde{\psi}(A^c))$, where $A \in L^X$ and ξ is an order-reversing involution.

DEFINITION 2.4. Let (X, a) be an L-fps. A family $\{A_j\}_{j \in J}$ of L-fuzzy subsets of X is said to be an a-cover of X if $\{i_a(A)\}_{i \in J}$ covers X.

DEFINITION 2.5. A type I L-fps (X,a) is 1-Lindelöf (respectively 2-Lindelöf) if, for every family $\{A_j\}_{j\in J}$ of L-fuzzy subsets of X such that $\wedge_{j\in c_0}A_j\neq 0_X$ (respectively $\psi(\wedge_{j\in c_0}A_j)\geq \alpha$), where c_0 is a countable family of J, we have $\wedge_{j\in J}a(A_j)\neq 0_X$ (respectively $\psi(\wedge_{j\in J}a(A_j))\geq \alpha$).

DEFINITION 2.6. A type I L-fps (X,a) is countable 1-compact (respectively countable 2-compact) if, for every countable family $\{A_j\}_{j\in c_0}$ of L-fuzzy subsets of X such that $\wedge_{j\in c_0}A\neq 0_X$ (respectively $\psi(\wedge_{j\in c_0}A_j)\geq \alpha$), where c_0 is a finite subset of c, we have $\wedge_{j\in c_0}ia(a(A_j))\neq 0_X$ (respectively $\psi(\wedge_{j\in c_0}ia(a(A_j))\geq \alpha$).

DEFINITION 2.7. A type I L-fps (X,a) is almost 1-compact (respectively almost 2-compact) if, for every family $\{A_j\}_{j\in J}$ of L-fuzzy subsets of X such that $\wedge_{j\in J_0}i_a(A_j)\neq 0_X$ (respectively $\psi(\wedge_{j\in J_0}i_a(A_j))\geq \alpha$), where J_0 is a finite subset of J, we have $\wedge_{j\in J}a(A_j)\neq 0_X$ (respectively $\psi(\wedge_{j\in J}a(A_j))\geq \alpha$).

DEFINITION 2.8. A type I L-fps (X, a) is said to be nearly 1-

compact (respectively nearly 2-compact) if, for every family $\{A_j\}_{j\in J}$ of L-fuzzy subsets of X such that $\wedge_{j\in J_0}ia(A_j)\neq 0_X$ (respectively $\psi(\wedge_{j\in J_0}ia(A_j))\geq \alpha$), where J_0 is a finite subset of J, we have $\wedge_{j\in J}ia(a(A_j))\neq 0_X$ (respectively $\psi(\wedge_{j\in J}ia(a(A_j))\geq \alpha)$.

Clearly, in any L-fps of type I, 1-compact (respectively 2-compact) \rightarrow nearly 1-compact (respectively nearly 2-compact) \rightarrow almost 1-compact (respectively almost 2-compact).

THEOREM 2.1. Let (X, a) be a type I L-fps. Each of the following pairs of statements is an equivalence:

- I. (1) (X,a) is 1-compact (respectively almost 1-compact, nearly 1-compact.
 - (2) For each a-cover $\{A_j\}_{j\in J}$ of X, there exists a finite $J_0\subset J$ such that $\{A_j\}_{j\in J_0}$ covers X (respectively $\{a(A_j)\}_{j\in J_0}$ covers X, $\{a(A_j)\}_{j\in J_0}$ is an a-cover of X).
- II. (1) (X,a) is 2-compact (respectively almost 2-compact, nearly 2-compact).
 - (2) For each family $\{A_j\}_{j\in J}$ of L-fuzzy subsets of X such that $\tilde{\psi}(V_{j\in J}i_a(A_j)) > \xi(\alpha)$, there exists a finite $J_0 \subset J$ such that $\tilde{\psi}(V_{j\in J_0}A_j) > \xi(\alpha)$ (respectively $\tilde{\psi}(V_{j\in J_0}a(A_j) > \xi(\alpha), \tilde{\psi}(V_{j\in J_0}i_a(a(A_j)) > \xi(\alpha))$).
- III. (1) (X, a) is 1-Lindelöf.
 - (2) For each a-cover $\{A_j\}_{j\in J}$ of X, there exists a countable family c_0 of J such that $\{A_j\}_{j\in c_0}$ covers X.
- IV. (1) (X, a) is 2-Lindelöf.
 - (2) For each family $\{A_j\}_{j\in J}$ of L-fuzzy subsets of X such that $\tilde{\psi}(\vee_{j\in J}i_a(A_j)) > \xi(\alpha)$, there exists a countable $c_0 \subset J$ such that $\tilde{\psi}(V_{j\in c_0}A_j) > \xi(\alpha)$.

- V. (1) (X, a) is countable 1-compact.
 - (2) For each countable a-cover $\{A_j\}_{j\in c_0}$ of X, there exists a finite $c'_0 \subset c_0$ such that $\{A_j\}_{j\in c'_0}$ covers X.
- VI. (1) (X, a) is countable 2-compact.
 - (2) For each countable family $\{A_j\}_{j\in c_0}$ of L-fuzzy subsets of X such that $\tilde{\psi}(V_{j\in c_0}i_a(A_j)) > \xi(\alpha)$, there exists a finite $c_0' \subset c_0$ such that $\tilde{\psi}(\vee_{j\in c_0'}A_j) > \xi(\alpha)$.

PROOF. We prove only I, II since III, V (respectively IV, VI) are analogous to I (respectively II), and, for I (respectively II), we prove only the 1-compact case (respectively 2-compact case).

 $I(1)\Rightarrow I(2)$. Let $\{A_j\}_{j\in J}$ be an a-cover of X. Assume that there is no finite $J_0\subset J$ such that $\{A_j\}_{j\in J_0}$ covers X. Then, for every finite $J_0\subset J$, we have $\wedge_{j\in J_0}A_j^c\neq 0_X$. Since (X,a) is 1-compact we have $\wedge_{j\in J}a(A_j^c)\neq 0_X$. Thus, $V_{j\in J}i_a(A_j)\neq 1_X$ which contradicts our assumption.

 $I(2)\Rightarrow I(1)$. Let $\{A_j\}_{j\in J}$ be a family of L-fuzzy subsets of X such that $\wedge_{j\in J_0}A_j\neq 0_X$ and $\wedge_{j\in J}a(A_j)=0_X$. This implies that $\{A_j^c\}_{j\in J}$ is an a-cover of X. By I(2), we have $\{A_j^c\}_{j\in J}$ covers X. Thus $\wedge_{j\in J_0}A_j=0_X$, a contradiction.

II(1) \Rightarrow II(2). Let $\{A_j\}_{j\in J}$ be a family of L-fuzzy subsets of X such that $\tilde{\psi}(\bigvee_{j\in J}i_a(A_j)) > \xi(\alpha)$. Assume that, for every finite $J_0 \subset J$, $\tilde{\psi}(\bigvee_{j\in J_0}A_j) \not> \xi(\alpha)$. This implies that $\tilde{\psi}(V_{j\in J_0}A_j) \leq \xi(\alpha)$ and hence $\xi(\tilde{\psi}(V_{j\in J_0}A_j)) = (\bigwedge_{j\in J_0}A_j^c) \geq \alpha$. By II(1), $\psi(\bigwedge_{j\in J}a(A_j^c)) \geq \alpha$. So $\xi(\tilde{\psi}(\bigwedge_{j\in J}a(A_j^c)) \leq \xi(\alpha)$ and $\psi(V_{j\in J}i_a(A_j^c)) \leq \xi(\alpha)$, a contradiction.

II(2) \Rightarrow II (1). Let $\{A_j\}_{j\in J}$ be a family of L-fuzzy subsets of X such that, for every finite $J_0\subset J$, we have $\psi(\wedge_{j\in J_0}A_j)\geq \alpha$. Assume that $\psi(\wedge_{j\in J}a(A_j))\not\geq \alpha$. So, $\psi(\wedge_{j\in J}a(A_j))<\alpha$. We have $\xi(\psi(\wedge_{j\in J}a(A_j)))=\tilde{\psi}(\vee_{j\in J}i_a(A_j^c))>\xi(\alpha)$. There is a finite $J_0'\subset J$ such that $\tilde{\psi}(\vee_{j\in J_0'}A_j^c)>\xi(\alpha)$. But $\psi(\wedge_{j\in J_0'}A_j)\geq \alpha$, and then $\tilde{\psi}(V_{j\in J_0'}A_j^c)\leq \xi(\alpha)$, a contradiction. \square

DEFINITION 2.8. [2]. Let (X, a) be an L-fps and $A \in L^X$. The trace of a on A, denoted by a_A , is defined

$$a_A(B) = a(B) \wedge A,$$

for every subset B of A.

THEOREM 2.2. Let (X, a) be a type I 1-Lindelöf (respectively 2-Lindelöf) L-fps. Then every closed L-fuzzy subset of X (A is said to be a closed L-fuzzy subset of X if a(A) = A) is 1-Lindelöf (respectively 2-Lindelöf).

PROOF. This follows from proposition 5 in [2].

THEOREM 2.3. Let (X, a) be a type I and S L-fps. Then the following are equivalent:

- (1) (X, a) is 1-compact (respectively 2-compact)
- (2) (X,a) is 1-Lindelöf and countable 1-compact (respectively 2-Lindelöf and countable 2-compact).

PROOF. (1) \Rightarrow (2). Let $\{A_j\}_{j\in C_0}$ be a countable family of L-fuzzy subsets of X such that $\psi(\wedge_{j\in c_0'}A_j)\geq \alpha$, where c_0' is a finite family of c_0 . By (1), we have $\psi(\wedge_{j\in C_0}a(A_j))\geq \alpha$. Then (X,a) is countable 2-compact. This implies that $\psi(\wedge_{j\in J}a^2(A_j))\geq \alpha$. Since (X,a) is of type S, then $\psi(\wedge_{j\in J}a(A_j))\geq \alpha$. Hence (X,a) is 2-Lindelöf.

 $(2)\Rightarrow (1)$. Let (X,a) be 2-Lindelöf and countable 2-compact. Let $\{A_j\}_{j\in J}$ be a family of L-fuzzy subsets of X such that $\psi(\wedge_{j\in J_0}A_j)\geq \alpha$, where J_0 is a finite subset of J. Hence J_0 is countable and $\psi(\wedge_{j\in J_0}a(A_j))\geq \alpha$, where J_0' is a finite subset of J. Then

$$\psi(\wedge_{j\in J}a^2(A_j))=\psi(\wedge_{j\in J}a(A_j))\geq \alpha,$$

since a is of type S. Hence (X, a) is 2-compact. \square

DEFINITION 2.9. An L-fps (X, a) is said to be regular if, for every fuzzy point P and $A \in L^X$ such that $P \in i_a(A)$, there exists $B \in L^X$ such that $P \in i_a(B) \subset a(B) \subset i_a(A)$.

THEOREM 2.4. Let (X, a) be a type I and regular L-fps. The following are equivalent:

- (1) (X, a) is 1-compact;
- (2) (X, a) is almost 1-compact.

PROOF. $(1) \Rightarrow (2)$. Obvious.

 $(2)\Rightarrow (1)$. Let $\{A_j\}_{j\in J}$ be an a-cover of X. For each fuzzy point P in X, there is an A_{j_p} such that $P\in i_a(A_{j_p})$. By regularity, there exists $B_p\in L^X$ such that $P\in i_a(B_p)\subset a(B_p)\subset i_a(A_{j_p})$. Thus, the family $\{B_p\}$ is an a-cover of X. Since (X,a) is almost 1-compact, there is a finite number of fuzzy points P_1,P_2,\ldots,P_n in X such that $\{a(B_{p_1}),\ldots,a(B_{p_n})\}$ covers X. It follows that $\{A_{j_{p_1}},\cdots,A_{j_{p_n}}\}$ is a finite a-subcover of $\{A_j\}_{j\in J}$. By Theorem (2.1),(X,a) is 1-compact. \square

3. Countinuity axioms: strong, λ -, and θ -continuity.

DEFINITION 3.1. [2]. Let (X, a) and (Y, b) be two L-fps's. A function $f: (X, a) \longrightarrow (Y, b)$ is said to be *continuous* if $f(a(A)) \subset b(f(A))$, for every $A \in L^X$.

DEFINITION 3.2. Let (X, a) and (Y, b) be two L-fps's. A function $f: (X, a) \longrightarrow (Y, b)$ is said to be strongly continuous if $f(a(A)) \subset f(A)$, for every $A \in L^X$.

DEFINITION 3.3. Let (X,a) and (Y,b) be two L-fps's. A function $f:(X,a) \longrightarrow (Y,b)$ is said to be λ -continuous (respectively θ -continuous) if, for each fuzzy point P in X and $B \in L^Y$ such that $f(p) \in i_b(B)$, there exists $A \in L^X$ such that $p \in i_a(A)$ and $f(a(A)) \subset b(B)$ (respectively $f(A) \subset i_b(b(B))$.

One can easily deduce that if f is strongly continuous, then f is continuous. Also, if f is continuous, then f is λ -continuous (respectively θ -continuous) but not conversely.

THEOREM 3.1. Let (X, a) and (Y, b) be two L-fps's and $f: (X, a) \longrightarrow (Y, b)$ be continuous and surjective. If (X, a) is 1-Lindelöf (respectively 2-Lindelöf), so is (Y, b).

The proof is as in Proposition 6 in [2].

The following theorem, which can be easily verified, characterizes strongly continuous functions.

THEOREM 3.2. If $f:(X,a) \longrightarrow (Y,b)$, where (X,a) and (Y,b) are L-fps's, then the following are equivalent:

- (1) f is strongly continuous.
- (2) $f(i_a(A)) = f(A) = f(a(A))$, for every $A \in L^X$.
- (3) $i_a(F^{-1}(B)) = f^{-1}(B) = a(f^{-1}(B)), \text{ for every } B \in L^Y.$

THEOREM 3.3. Let (X,a) and (Y,b) be two type I L-fps's and $f:(X,a) \longrightarrow (Y,b)$ be strongly continuous and surjective. If (X,a) is almost 1-compact (respectively almost 2-compact), then (Y,b) is 1-compact (respectively 2-compact).

PROOF. We prove only the case of 2-compactness. Let $\{A_j\}_{j\in J}$ be a family of L-fuzzy subsets of Y such that $\psi(\wedge_{j\in J_0}A_j)\geq \alpha$, where J_0 is a finite subset of J. Then $\psi(\wedge_{j\in J}ia(f^{-1}(A_j)))=\psi(\wedge_{j\in J}(f^{-1}(A_j)))$. Since (X,a) is almost 2-compact, $\psi\wedge_{j\in J}f^{-1}(A_j))=\psi(\wedge_{j\in J}a(f^{-1}(A_j))\geq \alpha$. Consequently, $\psi(\wedge_{j\in J}(b(A_j))=\psi(\wedge_{j\in J}A_j)=\psi(\wedge_{j\in J}f(f^{-1}(A_j))\geq \alpha$. Hence (Y,b) is 2-compact. \square

THEOREM 3.4. Let (X, a) and (Y, b) be two type I L-fps's and $f: (X, a) \longrightarrow (Y, b)$ be λ -continuous (respectively θ -continuous) and surjective. If (X, a) is almost 1-compact (respectively 1-compact), then (Y, b) is almost 1-compact (respectively, nearly 1-compact).

PROOF. We prove only the λ -case, the θ -case being perfectly analogous. Let $\{A_j\}_{j\in J}$ be a b-cover of Y. For each fuzzy point P in X,

there is an A_{j_q} such that $q=f(p)\in i_b(A_{j_q})$. Since f is λ -continuous, there is a $B_p\in L^X$ such that $P\in i_a(B_p)$ and $f(a(B_p)\subset b(A_{j_q})$. Now, $\{B_p\}$ is an a-cover of X and (X,a) is almost 1-compact. Then, there is a finite number of fuzzy points P_1,P_2,\ldots,P_n in X such that $\{a(B_{p_1}),\ldots a(B_{p_n})\}$ covers X. Hence $\{b(A_{j_{q_1}}),\ldots,b(A_{j_{q_n}})\}$, where $q_i=f(p_i)$, covers Y, i.e., (Y,b) is almost 1-compact.

4. Examples. In the following examples, let (X, a) be of types I, D and S, then the collection $\mathcal{T} = \{A \in L^X : i_a(A) = A\}$ is a fuzzy topology on X and $i_a(A) = \text{Int}(A)$.

EXAMPLE 4.1. If a = identity, then 1-compactness is just compactness in the sense of [1, 5 and 8]. In this case the fuzzy unit interval [6, 7] is 1-compact.

EXAMPLE 4.2. If a = c1., then almost 1-compactness is just almost compact in the sense of [3], where L = [0, 1].

EXAMPLE 4.3. If a=c1. int, then nearly 1-compactness is just nearly compactness.

Acknowledgements. We are grateful to Prof. Robert Badard who read the manuscript and made valuable comments.

REFERENCES

- 1. C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182–190.
- 2. Robert Badard, Fuzzy pretopological spaces and their representation, J. Math. Anal. Appl. 81 (1981), 378–390.
- ${\bf 3.}\;$ A. Di Concilio and G. Gerla, Almost compactness in fuzzy topological spaces, Fuzzy sets and systems ${\bf 13}\;(1984),\,187-192.$
 - 4. J.A. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1967), 145-174.
 - 5. ——, The fuzzy Tychonoff theorem, J. Math. Appl. 43 (1973), 734-742.
- 6. T.E. Santner, R.C. Steinlage and R.H. Warren, Compactness in fuzzy topological spaces, J. Math Anal. Appl. 62 (1978), 547–562.

- 7. Bruce Hutton, Normality in fuzzy topological spaces, J. Math. Anal. Appl. 50 (1975), 74–79.
- 8. C.K. Wong, Fuzzy topology; product and quotient theorems, J. Math. Anal. Appl. 45 (1974), 512–521.
- 9. ——, Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl. 46 (1974), 316–328.
 - 10. L.A. Zadeh, Fuzzy sets, Inform. Cont. 8 (1965), 338-353.

MATHEMATICS DEPARTMENT, FACULTY OF SCIENCE, ASSUIT UNIVERSITY,

Assuit, Egypt

MATHEMATICS DEPARTMENT, FACULTY OF SCIENCE, ASSUIT UNIVERSITY,

ASSUIT, EGYPT

MATHEMATICS DEPARTMENT, FACULTY OF SCIENCE, TANTA UNIVERSITY,

TANTA, EGYPT