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ON THE MULTIPLICITY OF T ⊕ T⊕ · · · ⊕ T
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Constantin Apostol and Doug McMahon

1. Introduction. Let L (X ) denote the algebra of all (bounded
linear) operators on a complex Banach space X . The multiplicity of
T ∈ L (X ) is the cardinal number defined by

μ(T ) = min
Γ⊂X

{card Γ : X =
∨

{T ky : y ∈ Γ, k = 0, 1, 2, . . . }},

where
∨
R denotes the closed linear span of the vectors in R .

If μ(T ) is finite or denumerable, then X is necessarily separable.
Throughout this note we shall always assume that X is separable and
infinite dimensional.

If A ∈ L (X ) and B ∈ L (Y ), then A ⊕ B denotes the direct
sum of A and B acting in the usual fashion on the hilbertian direct
sum X ⊕ Y of X and Y . It is an easy exercise to check that
max[μ(A), μ(B)] ≤ μ(A ⊕ B) ≤ μ(A) + μ(B).

Let T ∈ L (X ); for each n ≥ 1, let T (n) denote the direct sum of
n copies of T acting in the usual fashion of the direct sum X (n) of n
copies of X . It readily follows from the previous observations that

max [μ(T (m)), μ(T (n))] = μ(T (max[m,n])) ≤ μ(T (m+n))

≤ μ(T (m)) + μ(T (n)), m, n ≥ 1.

For which sequences {μn}∞n=1 of natural numbers satisfying the con-
ditions μmax[m,n] ≤ μm+n ≤ μm + μn, m, n ≥ 1, does there exist a
Banach space operator T such that μ(T (n)) = μn for all n = 1, 2, . . . ?
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By combining some well-known examples and some new ones, it is
possible to show that the following sequences are attainable in this way:

{nk}∞n=1 for each k ≥ 1,(Ak)
{nk + 1}∞n=1 for each k ≥ 1,(Bk)
{nk + 2}∞n=1 for each k ≥ 1,(Ck)
{k + 1, 2k, 3k, 4k, 5k, 6k, . . . } for each k ≥ 1,(Dk)
μn ≡ 1,(E)
μn ≡ 2, and(F )
μn ≡ ∞.(G)

Is there any other? Is {μ(T (n))}∞n=1 always a convex sequence, either
constant or satisfying μ(T (n)) ≥ n for all n = 1, 2, . . . ?

The sequence (Ak) is attained by Ak = S(k), where S denotes the
unilateral shift in �2 (defined by Sej = ej+1 for all j = 1, 2, . . . ,
with respect to some orthonormal basis {ej}∞j=1, k = 1, 2, . . . ): clearly,

μ([S(k)](n)) = μ(S(nk)) ≤ kn. On the other hand, nul S∗(nk)
:=

dim ker S∗(nk)
= nk, and therefore the multiplicity cannot be smaller

than nk (see, e.g., [11, Proposition 1(i)]). Similarly, the direct sum
S(∞) of denumerably many copies of S satisfies μ([S(∞)](n)) = ∞ for
all n = 1, 2, . . . , so that (G) is also attainable.

The sequence (E) is attained by a large number of examples, including
the adjoints of all the unilateral weighted shifts in �2 [9] (see also
Proposition 3.1 below). In particular, μ(S∗(n)

) = 1 for all n = 1, 2, . . . .

This article grew out of a question of C. Apostol: Is there any Hilbert
space operator T such that μ(T (2)) = μ(T ∗(2)

) = 1? (Clearly, neither
T , nor T ∗, can have an eigenvector.)

This question is affirmatively answered in §3: there exists a compact
bilateral weighted shift E such that μ(E(∞)) = μ(E∗(∞)

) = 1. More-
over, if F = E ⊕E∗, then an unpublished observation of J.A. Deddens
[7] indicates that μ(F ) = μ(F ∗) = μ(F (∞)) = μ(F ∗(∞)

) = 2 (so that
the sequence (F ) is also attainable; see §4).

In §5 it is shown that (1) if the sequences {μn} and {μ′
n} are

attainable, then so is {max[μn, μ′
n]}, and (2) a general result that

implies, in particular, that μ(S(k)⊕R) = μ(S(k))+μ(R) = k+μ(R) for
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each operator R whose spectrum σ(R) is a subset of the open unit disk.
Combining these two results and the previous examples it is easily seen
that (Bk), (Ck) and (Dk) are attainable.

In [13], the first author completely characterized those sequences
{μn}∞n=1 such that the multiplicity of the n-th power of T is equal
to μn for all n = 1, 2, . . . , for some Banach space operator T : given
a sequence satisfying certain (very simple) necessary conditions, a T
satisfying μ(Tn) = μn, for all n = 1, 2, . . . , is constructed by taking
infinite direct sum of suitable operators acting on finite dimensional
spaces.

But such an operator can only satisfy μ(T (n)) ≡ ∞, or μ(T (n)) = nk
for all n = 1, 2, . . . (for some k ≥ 1). Thus, the problem we analyze here
is intrinsically infinite dimensional. Furthermore, the “infinite power”
of an operator T does not make any sense, in general; but it makes
perfect sense to consider T (∞), the direct sum of denumerably many
copies of T ∈ L (X ) acting on the hilbertian direct sum of denumerably
many copies of X . It will be shown in §2 that

μ(T (∞)) = sup
n

μ(T (n)) = lim
n→∞μ(T (n)).

That is, either {μ(T (n))} is an unbounded sequence and μ(T (∞)) = ∞,
or {μ(T (n))} is bounded, and μ(T (∞)) = maxn μ(T (n)).

The authors wish to thank Professor Gustavo Corach for calling the
attention to “stable ranks” of Banach algebras (an important tool in
§5).

2. The multiplicity of T(∞).

Theorem 2.1. μ(T (∞)) = supn μ(T (n)).
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Proof. Clearly, it is enough to show that if μ(T (n)) ≤ m < ∞ for
all n = 1, 2, . . . , then μ(T (∞)) ≤ m.

Assume m = 1, that is, T (n) is cyclic for all n = 1, 2, . . . , and
let C (T (n)) = {(y1, y2, . . . , yn) ∈ X (n) : X (n) =

∨
{T kyj : j =

1, 2, . . . , n}∞k=0} be the set of cyclic vectors of T (n).

Since μ(T (n)) < n for all n > 1, and μ(T (n)) ≥ sup{nul[(λ − T )∗
(n)

:
λ ∈ C ]} = n sup{nul[(λ − T )∗ : λ ∈ C ]} [11, Proposition 1(i)], it
readily follows that T ∗ cannot have eigenvectors. Therefore, by using
[12, Propositions 1(vii) and 1n(vii) and Theorem 1] and [15, Theorem
1] (see also [1 Chapter 11]), we infer that C (T (n)) is a Gδ-dense subset
of X (n). Thus, if

C (T (n))′ = {(yj)∞j=1 ∈ X (∞) : (y1, y2, . . . , yn) ∈ C (T (n))},

then
C = ∩∞

n=1C (T (n))′

is a Gδ-dense subset of X (∞).

Let {λj}∞j=1 be a bounded sequence of non-zero complex numbers,
and let (yj)∞j=1 ∈ X . By construction, y[n] := (y1, y2, . . . , yn) ∈
C (T (n)), n = 1, 2, . . . .

Let A (T ) denote the weak closure of the polynomials in T and 1X ,
and let Mn[A (T )] be the algebra of all n × n operator matrices with
entries in A (T ). Since An = ⊕n

j=1λj1X ∈ L (X (n)) is invertible and
both An and A−1

n belong to Mn[A (T )], it follows from [12, Proposition
1n(vi)] that

Any[n] = (λ1y1, λ2y2, . . . , λnyn) ∈ C (T (n)),

n = 1, 2, . . . , whence it follows that (λjyj)∞j=1 ∈ C.

Claim. If εn ↓ 0, n → ∞, fast enough, then (εjyj)∞j=1 is a cyclic
vector for T (∞).

Set ε1 = 1, and let {fi}∞i=1 be a denumerable dense subset of
X . Clearly, ∪∞

n=1{(fi1 , fi2 , . . . , fin
, 0, 0, 0, . . . )} is a denumerable dense

subset of X (∞).

Since y1 is cyclic for T , there exists a polynomial p(1) (.;1) such that

‖f1 − p(1)(T ; 1)y1‖2 < 1.
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It follows that

‖(f1,0, 0, 0, . . . ) − p(1)(T (∞); 1)(ε1y1, δ2y2, δ3y3, . . . )‖2

= ‖f1 − p(1)(T ; 1)y1‖2 +
∞∑

j=2

‖p(1)(T ; 1)(δjyj)‖2

≤ ‖f1 − p(1)(T ; 1)y1‖2 + ‖p(1)(T ; 1)‖2
∞∑

j=2

δ2
j ‖yj‖2 < 1,

provided 0 < δj ≤ ε
(1)
j , j = 2, 3, . . . (for suitably chosen constants

ε
(1)
j , 0 < ε

(1)
j ≤ 1).

Suppose we have already chosen ε1 = 1, ε
(1)
j , j ≥ 2, ε

(2)
j , j ≥

3, . . . , ε
(k−1)
j , j ≥ k, and εj = min[ε(i)j : i = 1, 2, . . . , j − 1], j =

2, 3, . . . , k. Since (εjyj)k
j=1ε C (T (k)), there exist polynomials p(k)

(.; i1.i2, . . . , ik) such that

‖(fi1 , fi2 , . . . , fik
) − p(k)(T (k); i1, i2, . . . ik)(ε1y1, ε2y2, . . . , εkyk)‖2 <

1
k

for each k-tuple (i1, i2, . . . , ik) with 1 ≤ ih ≤ k.

Clearly,

‖(fi1 , fi2 , . . . , fik
, 0, 0, 0, . . . ) − p(k)(T (∞); i1, i2, . . . , ik)

(ε1y1, ε2y2, . . . , εkyk, δk+1yk+1, δk+2yk+2, . . . )‖2

= ‖(fi1 , fi2 , . . . , fik
) − p(k)(T (k); i1, i2, . . . , ik)(ε1y1, ε2y2, . . . , εkyk)‖2

+ max{‖p(k)(T ; r1, r2, . . . rk)‖2
∞∑

j=k+1

δ2
j ‖yj‖2 :

(r1, r2, . . . , rk) ∈ {1, 2, . . . , k}(k)} <
1
k

,

provided 0 < δj ≤ ε
(k)
j , j = k+1, k+2, . . . (for suitably chosen constants

ε
(k)
j , 0 < ε

(k)
j ≤ εk).

Define εk+1 = min [ε(1)k+1, ε
(2)
k+1, . . . , ε

(k)
k+1]. It is immediate that

(ε1y1, ε2y2, . . . ) is a cyclic vector for T (∞); that is, μ(T (∞)) = 1.
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The case 1 < m < ∞ can be handled in exactly the same way, with
X replaced by X (m); the set C m(T (n)) of all multicyclic m-tuples of
T (n) is a Gδ-dense subset of (X (n))(m) for all n = 1, 2, . . . . The details
are left to the reader.

3. A Hilbert space operator T such that both T(∞) and
T∗(∞)

are cyclic. In a certain sense, “most” Hilbert space operators
satisfying H =

∨
{ker Tn}∞n=1 satisfy μ(T (∞)) = 1:

Proposition 3.1. Let T ∈ L (H ) (H a separable Hilbert space) and
assume that

T =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 T1,r1 · · · · · · · · ·
0 0 · · · · · · · · · 0 T2,r2 · · ·

0 0 · · · · · · · · · · · · 0 T3,r3 · · ·
· ·

O · ·
· ·

⎞
⎟⎟⎟⎟⎟⎠

H1

H2

H3

·
·
·

,

where H = ⊕∞
j=1H j , {rj}∞j=1 is strictly increasing and Tj,rj

has dense
range for all j = 1, 2, . . . ; then T is cyclic. Furthermore, (T k)(∞) is
cyclic for all k = 1, 2, . . . .

(The proof follows by minor modifications of the proof of Theorem 2
of [18], or Lemma 7 of [17]. Observe that (T k)(∞) always has a matrix
of the same kind as T ; therefore, it suffices to show that T is a cyclic
operator.)

In all these examples, T has nontrivial kernel and T ∗ has no eigen-
vectors. Clearly, T ∗(2)

cannot be cyclic.

Here is an example in which both T (∞) and T ∗(∞)
are cyclic.

Example. Let {en}∞−∞ be an orthonormal basis of the Hilbert space
H , and define E ∈ L (H ) by Een = wnen+1, n ∈ Z, where

wn =

⎧⎪⎨
⎪⎩

1, if n(0) := 0 ≤ n < n(1),
1

2k, if −n(2k) ≤ n < −n(2k − 2), k = 1, 2, . . . ,
1

2k−1, if n(2k − 1) ≤ n < n(2k + 1), k = 1, 2, . . . ,
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for a certain strictly increasing sequence {n(k)}∞k=0 tending to infinity
“very fast” (in a sense to be specified later).

Claim. If n(k) → ∞(k → ∞) fast enough, then

x =
∞∑

k=1

1
k

e−n(2k−1) ∈ C (E) and y =
∞∑

k=1

1
k

en(2k) ∈ C (E∗).

For each h > 0, we have

∥∥∥ hEn(2h−1)x

‖En(2h−1)e−n(2h−1)‖
− e0

∥∥∥

=
∥∥∥

h−1∑
k=1

(
h

k

)
En(2h−1)e−n(2k−1)

‖En(2h−1)e−n(2h−1)‖
+

∞∑
k=h+1

(
h

k

)
En(2h−1)e−n(2k−1)

‖En(2h−1)e−n(2h−1)‖

∥∥∥

≤ C(h − 1)
(

h − 1
h

)n(2h−1)

+
∞∑

k=h+1

(
h

k

)n(2h−1)

,

and

∥∥∥ hE∗n(2h)
y

‖E∗n(2h)en(2h)‖
− e0

∥∥∥

=
∥∥∥

h−1∑
k=1

(
h

k

)
E∗n(2h)

en(2k)

E∗n(2h)en(2h)

+
∞∑

k=h+1

(
h

k

)
E∗n(2h)

en(2k)

‖E∗n(2h)en(2h)‖

∥∥∥

≤ C(h − 1)
(

2h − 3
2h − 1

)n(2h)

+
∞∑

k=h+1

(
2h − 1
2k − 1

)n(2h)

,

where C(h−1) is a constant depending only on h−1 (and n(1), n(2), . . . ,
n(2h − 2)).

One sees that, if n(2h − 1) ≥ n(2h − 1)′ and n(2h) ≥ n(2h)′ (for
sufficiently large n(2h−1)′ > 2n(2h−2) and n(2h)′ > 2n(2h−1), then

∥∥∥ hEn(2h−1)x

‖En(2h−1)e−n(2h−1)‖
− e0

∥∥∥ <
1
h

and
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∥∥∥ hE∗n(2h)
y

‖E∗n(2h)en(2h)‖
− e0

∥∥∥ <
1
h

for all h = 1, 2, . . . .

It readily follows that e0 ∈ M+ ∩M−, where

M+ =
∨

{Ekx}∞k=0 and M− =
∨

{E∗k

y}∞k=0.

A fortiori, M+ ⊃ H+ =
∨
{en}∞n=0, and M− ⊃ H− =

∨
{e−n}∞n=0.

Let P+(P−) denote the orthogonal projection of H onto H+(H−,
respectively). It is easily seen that P−f ∈ M+ for all f in M+. Since,
for each h > 0 and all k sufficiently large,

∥∥∥k

n(2k−1)−h∏
j=0

1
w−n(2k−1)+j

P−En(2k−1)−hx − eh

∥∥∥2

= k2
∞∑

i=k+1

n(2k−1)−h∏
j=0

(
w−n(2i−1)+j

w−n(2k−1)+j

)2

→ 0, k → ∞,

we deduce that e−1, e−2, . . . ∈ M+.

Hence, M+ = H ; that is, x ∈ C (E).

The same argument shows that y ∈ C (E∗).

Define Nj = {2j−1(2r − 1)}∞r=1 (j = 1, 2, . . . ). Ad hoc modifications
of the above proof show that if

fj =
∑

k∈Nj

1
k

e−n(2k−1) and gj =
∑

k∈Nj

1
k

en(2k)′

then

(f1, f2, . . . ) ∈ C (E(∞)) and (g1, g2, . . . ) ∈ C (E∗(∞)
).

Remarks 3.2. (i) E and E∗ are compact operators without eigenval-
ues. By using [12, Proposition 1(vii) and Theorem 1] it is not difficult
to check that C (E(∞)) ∩ C (E∗(∞)

) is actually a Gδ-dense subset of
H (∞).
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(ii) Minor modifications of the proof show that, given a two-sided
sequence {w′

n}∞−∞ of positive numbers, we can find E as in the example
whose weight sequence {wn}∞−∞ satisfies 0 < wn ≤ w′

n for all n ∈ Z.

4. The “transpose” of a Hilbert space operator. Let {ej}∞j=1

be an orthonormal basis of the Hilbert space H , and let T ∈ L (H ).
T admits a unique matrix representation (tij)∞i,j=1 with respect to this
basis; moreover, the “transpose” matrix

tT = (tji)∞i,j=1

is also the matrix of an operator acting on this space.

The “transpose operator” tT is not uniquely determined by T ; it
actually depends on T and on the basis {ej}∞j=1. Nevertheless, two
transposes of a given operator are always unitarily equivalent. Indeed,
if T = (tij)∞i,j=1 is the “conjugate operator,” then T ∗ = tT . If
T = (t′ij)

∞
i,j=1 with respect to the orthonormal basis {fj}∞j=1 and

U = (uij)∞i,j=1 is the unitary operator defined by Uej = fj , j = 1, 2, . . . ,
then the matrix of UTU∗ with respect to {ej}∞j=1 coincides with
(t′ij)

∞
i,j=1. We have

tT ′ = (t′ji)
∞
i,j=1 = t(UTU∗) = (UTU∗)

∗
= (UTU∗) = U tTU

∗
,

where U is the “conjugate” of U with respect to the basis {ej}∞j=1.
tT behaves, in every sense, like the “mirror image” of T . Recall that

an operator T is semi-Fredholm if ran T is closed and either nul T
or nul T ∗ is finite dimensional. In this case, the index is defined by
ind T = nul T − nul T ∗ (see, e.g., [3]).

The following result resumes the most important properties of the
transpose operators. The proofs are left to the reader.

Proposition 4.1. (i) σ(tT ) = σ(T )

(ii) nul(λ− tT )k = nul[(λ− T )∗]kand nul [(λ− tT )∗]k = nul(λ− T )k

for all λ ∈ C and all k = 1, 2, . . . .

(iii) inf{‖(λ − tT )x‖ : ‖x‖ = 1, x ⊥ ker(λ− tT )} = inf{‖(λ−T )x‖ :
‖x‖ = 1, x ⊥ ker(λ − T )}.
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In particular, ran(λ− tT ) is closed if and only if ran(λ−T ) is closed.

(iv) λ − tT is semi-Fredholm if and only if λ − T is semi-Fredholm;
in this case, ind(λ − tT ) = −ind(λ − T ).

(v) f(tT ) = tf(T ) and ‖f(tT )‖ = ‖f(T )‖ for each function f analytic
on some neighborhood of σ(T ).

In [7], J.A. Deddens proved that if T = (tij)∞i,j=1 and tij is real for
all (i, j), then T ⊕ T ∗ cannot be cyclic. It is obvious that in this case
T ∗ = tT . Thus, the following proposition is a mild improvement of
Deddens’s result; the proof follows by the same argument. (We include
it here for completeness.)

Proposition 4.2. Let T = (tij)∞i,j=1 be the matrix of the Hilbert
space operator T with respect to the orthonormal basis {ej}∞j=1, and let
tT = (tji)∞i,j=1; then T ⊕tT is not cyclic.

Proof. Observe that (T kei, ej) = (ei, T
∗k

ej) = (T ∗kej , ei) =
((tT )kej , ei) for all i, j = 1, 2, . . . . For any f =

∑∞
j=1 ajej and

g =
∑∞

j=1 bjej in H (f, g non-zero vectors), define

f =
∞∑

j=1

ajej and g =
∞∑

j=1

bjej ;

then

((T ⊕tT )k(f, g), (g,−f)) = (T kf, g) − ((tT )kg, f)

=
( ∞∑

i=1

aiT
kei,

∞∑
j=1

bjej

)

−
( ∞∑

j=1

bj(tT )kej ,
∞∑

i=1

aiei

)

=
∞∑

i,j=1

[aibj(T kei, ej) − bjai((tT )kej , ei)] = 0
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for all k = 0, 1, 2, . . . .

Hence, (f,−g) is a non-zero vector orthogonal to
∨

{(T ⊕t T )k(f, g)}∞k=0.

Therefore no vector is cyclic for T ⊕tT .

Clearly, the results of Propositions 4.1 and 4.2 remain true if tT is
defined as the transpose of T with respect to an orthonormal basis
ordered as Z. Hence, we have

Corollary 4.3. Let E be the bilateral weighted shift defined in §3,
and let F = E ⊕ E∗; then

μ(F (n)) = μ(F ∗(n)
) = μ(F (∞)) = μ(F ∗(∞)

) = 2

for all n = 1, 2, . . . .

Proof. Clearly, E∗ = tE. By Proposition 4.2, F = E ⊕ E∗ cannot
be cyclic. Since both E and E∗ are cyclic, we deduce that μ(F ) = 2.
Since F ∗ = E∗⊕E is unitarily equivalent to F , we also have μ(F ∗) = 2.

The same argument shows that all the operators F (n), F ∗(n)
, n =

1, 2, . . . , F (∞) and F ∗(∞)
have multiplicity 2.

Remarks 4.4. (i) Suppose μ(T ) = μ(tT ) ≥ 2. Does it follow that
μ(T ⊕tT ) ≥ 3? The answer is NO; that is, Proposition 4.2 cannot be
improved in this direction: take T = F ! Then tT = tF is unitarily
equivalent to F and, therefore, T ⊕tT is unitarily equivalent to F (2),
but μ(F (2)) = 2.

(ii) As J.A. Deddens observed in [7], it follows from Proposition 4.2
that S ⊕ S∗ is not cyclic. (S = the unilateral shift. This was also
observed by N.K. Nikol’skĭı, V.V. Peller and V.I. Vasjunin; see [9,
p. 283].) By using this result, we can now answer the question in
the last line of [11, p. 98]: Let Tab = S ⊕ (a + bS∗), b �= 0; then
Tab is cyclic if and only if |a| + |b| > 1. Indeed, according to this
reference, it only remains to consider the case |a| + |b| = 1. If a = 0
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and |b| = 1, we are done because bS∗ is unitarily equivalent to |b|S∗.
Assume that |b| < 1, and let φ(λ) = a + bλ. If Cφ ∈ L (H2) is defined
by (Cφf)(λ) = (f ◦ φ)(λ) = f(a + bλ), f ∈ H2, then Cφ and C∗

φ are
injective operators with dense range and S∗C∗

φ = C∗
φ(a + bS∗), so that

(S ⊕ S∗)(1 ⊕ C∗
φ) = (1 ⊕ C∗

φ)[S ⊕ (a + BS∗)].

Since 1 ⊕ C∗
φ has dense range, we see that

2 = μ(S ⊕ S∗) ≤ μ[S ⊕ (a + BS∗)] ≤ μ(S) + μ(a + bS∗) = 2,

that is, μ[S⊕ (a+ bS∗)] = 2 for |a|+ |b| ≤ 1, b �= 0 (see [11, Proposition
1(vi)]).

5. New examples from the old ones.

Proposition 5.1. Let Tj(Tj ∈ L (X j)) be a finite or denumerable
family of operators, and let

T = ⊕j [2−j1X j + 4−j(1 + ‖Tj‖)−1Tj ] ∈ L (⊕jX j);

then
μ(T (n)) = sup

j
μ(T (n)

j ) for all n = 1, 2, . . . .

Proof. Let Aj = 2−j1X j + 4−j(1 + ‖Tj‖)−1Tj ; then T = ⊕jAj

and the spectrum of the direct summand Ak is a clopen subset of σ(T )
included in the band {λ ∈ C : 2−k − 4−k < Re λ < 2−k + 4−k}.
Since this band does not intersect σ(⊕j �=kAj), it follows from Runge’s
theorem (see, e.g., [8]) that there exists a sequence {pk,h}∞h=1 of
polynomials such that

pk,h(λ) →
{

1, uniformly on a neighborhood of σ(Ak)
0, uniformly on a neighborhood of σ(T )\σ(Ak),

k = 1, 2, . . . .

Therefore, Pk = the projection of ⊕jX j onto X k along ⊕j �=kX j is
a norm limit of polynomials in T . It follows that, if f = (fj) ∈ ⊕jX j ,
then fk = Pkf ∈

∨
{Thf}∞h=0.
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It is easily seen that f is cyclic for T if and only if fk is cyclic for
Tk, for each k = 1, 2, . . . . More generally, (f (1), f (2), . . . , f (m)) is a
multicyclic m-tuple for T if and only if (Pkf (1), Pkf (2), . . . , Pkf (m)) is
a multicyclic m-tuple for Tk for each k = 1, 2, . . . .

Thus, μ(T ) = supj μ(Tj).

The same argument shows that μ(T (n)) = supj μ(T (n)
j ) for all n =

1, 2, . . . .

Corollary 5.2. The sequence (D1) = {2, 2, 3, 4, 5, 6, . . . } is attain-
able.

Proof. Apply the above result to T1 = S = shift and T2 = F ,
defined as in Corollary 4.3.

The sequence (Bk) = {nk + 1}∞n=1 can be attained as follows: let B
be the bilateral weighted shift defined by

Bej =
{

2ej+1, if j ≥ 0,
ej , if j < 0.

It is not difficult to check that σ(B) = {λ ∈ C : 1 ≤ |λ| ≤ 2} and
λ−B is a semi-Fredholm operator of index −1 for all λ in the interior
of σ(B); moreover,

H =
∨

{Bke0}∞−∞ = [A a(B)e0]
−
,

where A a(B) denotes the weak closure of the rational functions with
poles outside σ(B); that is, B is rationally cyclic. However, B is not
cyclic because {λ ∈ C : ind (λ−B) = −1} is connected, but not simply
connected (see [10, 11, 14], or [1, Chapter 11]).

Furthermore, by combining the results in these references with [11,
Propositions 1(i) and 2], we infer that A a(B(n)) has multiplicity n and

μ(B(n)) = n + 1 for alln = 1, 2, . . . .

Thus, Bk = B(k) satisfies

μ(B(n)
k ) = μ(B(nk)) = nk + 1 for all n = 1, 2, . . . .
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Unfortunately, the above results cannot be modified to obtain the
sequences {nk + 2}∞n=1. This can be done by using the following
quantitative version of [11, Proposition 4].

Theorem 5.3. Suppose T ∈ L (X ), R ∈ L (Y ),X =
∨
{T kyj :

j = 1, 2, . . . , m}∞k=0, and there exist a Jordan curve γ ⊂ {λ ∈ C :
nul(λ− T )∗ = m} and a function φ : γ → X ∗(m)

, φ = (φ1, φ2, . . . , φm),
such that

(i) ker(λ − T )∗ =
∨
{φi(λ)}m

i=1 for each λ ∈ γ;

(ii) ‖φ(λ)‖ ≤ C and | det(φi(λ)yj)m
i,j=1| ≥ δ > 0 (for some positive

constants C, δ) for all λ ∈ γ; and

(iii) σ(R) is included in interior(γ) (= the bounded component of
C \γ).

Then
μ(T ⊕ R) = μ(T ) + μ(R) = m + μ(R).

We shall need an auxiliary result:

Lemma 5.4. Let γ and R be as in Theorem 5.3, and let

A (γ) = {f : f is continuous on γ̂, analytic on interior(γ)}

(sup norm, γ̂ = γ ∪ interior(γ)). If Mλ = “multiplication by λ” on
A (γ), then μ(Mλ ⊕ R) = μ(R) + 1.

Proof. It is obvious that μ(Mλ ⊕ R) ≤ μ(Mλ) + μ(R) = μ(R) + 1.

Assume that μ(Mγ ⊕ R) = m < ∞, and let (f1, y1), (f2, y2), . . . ,
(fm, ym) ∈ A (γ) ⊕ Y be a multicyclic m-tuple for Mλ ⊕ R, that is,

A(γ) ⊕ Y =
∨

{(Mλ ⊕ R)k(fj , yj) : j = 1, 2, . . . , m}∞k=0.

Then Y =
∨
{Rkyj : j = 1, 2, . . . , m}∞k=0 and A (γ) =

∨
{(Mλ)kfj :

j = 1, 2, . . . , m}∞k=0, and therefore the ideal generated by f1, f2, . . . , fm

coincides with A (γ). It follows from [5, Theorem 1.2 or Theorem 3.11]
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or [16] that there exist functions h1, h2, . . . , hm ∈ A (γ) such that h1 is
invertible and

h1f1 + h2f2 + · · · + hmfm = e0,

where e0(λ) ≡ 1 on γ̂.

Observe that hj(Mλ ⊕ R) = hj(Mλ) ⊕ hj(R) (where hj(Mλ) =
“multiplication by hj ,” and hj(R) defined via functional calculus,
j = 1, 2, . . . , m) is a well-defined norm-limit of polynomials in Mλ ⊕R;
moreover, since h1 is invertible in A (γ), so is the operator h1(Mλ⊕R).
Hence the m × m operator matrix

L =

⎛
⎜⎜⎜⎜⎝

h1(Mλ ⊕ R) h2(Mλ ⊕ R) h3(Mλ ⊕ R) · · · hm(Mλ ⊕ R)
1 ⊕ 1

1 ⊕ 1 O

O
.. .

1 ⊕ 1

⎞
⎟⎟⎟⎟⎠

(∈ L ([A (γ) ⊕ Y ](m))) is invertible, and both L and L−1 belong
to Mn[A (Mλ ⊕ R)]; therefore (by [12, Proposition 1n(vi)]), the
coördinates of

L

⎡
⎢⎢⎢⎢⎢⎣

(f1, y1)
(f2, y2)

·
·
·

(fm, ym)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

(e0, z1)
(f2, y2)

·
·
·

(fm, ym)

⎤
⎥⎥⎥⎥⎥⎦

,

(where z1 =
∑m

j=1 hj(R)yj) form a multicyclic m-tuple for Mλ ⊕ R.

Similarly, the m × m operator matrix

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 ⊕ 1
−f2(Mλ ⊕ R) 1 ⊕ 1 O
−f3(Mλ ⊕ R) 1 ⊕ 1

· ·
· ·
· O ·

−fm(Mλ ⊕ R) 1 ⊕ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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(∈ L ([A (γ) ⊕ Y ](m))) is invertible, and both N and N−1 belong to
Mn[A (Mλ ⊕ R)]. Therefore the coördinates of

N

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(e0, z1)
(f2, y2)
(f3, y3)

·
·
·

(fm, ym)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(e0, z1)
(0, z2)
(0, z3)

·
·
·

(0, zm)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(where zj = yj − fj(R)z1, j = 2, 3, . . . , m) form a multicyclic m-tuple
for Mλ ⊕ R. In other words,

A (γ)⊕Y =
∨

{(Mλ⊕R)k(e0, z1); (Mλ⊕R)k(0, zj) :j = 2, 3, . . . , m}∞k=0.

In particular, (0, z1) ∈ A (γ) ⊕ Y , and therefore there exist sequences
{p(j)

k }∞k=1 of polynomials, j = 1, 2, . . . , m, such that

∥∥∥p
(1)
k (Mλ ⊕ R)(e0, z1) +

m∑
j=2

p
(j)
k (Mλ ⊕ R)(0, zj) − (0, z1)

∥∥∥

=
∥∥∥(p(1)

k ,
m∑

j=1

p
(j)
k (R)zj) − (0, z1)

∥∥∥ → 0, k → ∞.

It readily follows that p
(1)
k (λ) → 0, k → ∞, uniformly on γ̂, and

therefore ‖p(1)
k (R)‖ → 0, k → ∞, and

∥∥∥
m∑

j=2

pk(R)zj − z1

∥∥∥ → 0, k → ∞.

Since Y =
∨
{Rkzj : j = 1, 2, . . . , m}∞k=0, we conclude that

Y =
∨

{Rkzj : j = 2, 3, . . . , m}∞k=0

(because this last closed span actually contains z1!).

Hence, μ(R) ≤ m− 1 = μ(Mλ ⊕R)− 1, whence the result follows.
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Proof of theorem 5.3. Clearly, m = nul(λ−T )∗ ≤ μ(T ) ≤ m, λ ∈
γ, so that μ(T ) = m; moreover, μ(T ⊕R) ≤ μ(T ) + μ(R) = μ(R) + m.

According to [11, Theorem 1] (see also [12, Theorem 1], [15, Theorem
1], or [1, Chapter 11]), conditions (i) and (ii) are actually equivalent
to the existence of an intertwining mapping X : X → A (γ)(m) with
dense range such that Xyj = (0, 0, . . . , 0, e0(j-th coordinate), 0, . . . , 0),
j = 1, 2, . . . , m, and XT = M

(m)
λ X.

Define Y : X ⊕ Y → A (γ)(m) ⊕ Y by Y = X ⊕ 1Y ; then

Y (T ⊕ R) = (M (m)
λ ⊕ R)Y.

Since Y has dense range,

μ(M (m)
λ ⊕ R) ≤ μ(T ⊕ R) ≤ μ(R) + m

(See [11, Proposition 1(vi)]). Thus, it suffices to show that μ(M (m)
λ ⊕

R) ≥ μ(R) + m.

If m = 1, this follows from Lemma 5.4. If m ≥ 2, then we construct
m Jordan curves γ1 = γ, γ2, γ3, . . . , γm, such that σ(R) ⊂ interior (γm)
and γj ⊂ interior (γj−1) for j = 2, 3, . . . , m.

The “restriction operator” Cj : A (γ) → A (γj) (defined by Cjf =
f |γ̂j , f ∈ A (γ)) is an injective mapping with dense range and satisfies

CjMλ (onA (γ)) = Mλ (onA (γj))Cj , j = 1, 2, . . . , m

(C1 = identity on A (γ)). Therefore

(
m⊕

j=1

Cj)M
(m)
λ (onA (γ)(m)) = [

m⊕
j=1

Mλ (onA (γj))](
m⊕

j=1

Cj)

and
μ(M (m)

λ ⊕ R) ≥ μ([⊕m
j=1Mλ (onA (γj))] ⊕ R).

Since

σ([
m⊕

j=h

Mλ(on A (γj))] ⊕ R) = γ̂h, h = 1, 2, . . . , m,
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and γ̂h ⊂ interior(γh−1) for h = 2, 3, . . . , m, by repeated use of Lemma
5.4, we obtain

μ(T ⊕ R) ≥ μ(M (m)
λ ⊕ R) ≥ μ([

m⊕
j=1

Mλ(on A (γj))] ⊕ R)

= μ([
m⊕

j=2

Mλ(onA (γj))] ⊕ R) + 1

= μ([
m⊕

j=3

Mλ(onA (γj))] ⊕ R) + 2

= · · · = μ([Mλ(on A (γm))] ⊕ R) + (m − 1) = μ(R) + m.

Hence, μ(T ⊕ R) = μ(T ) + μ(R).

Corollary 5.5. For each k ≥ 1, the sequences

{nk + 1}∞n=1,(Bk)
{nk + 2}∞n=1,(Ck)
{k + 1, 2k, 3k, 4k, 5k, 6k, . . . }(Dk)

are attainable.

Proof. (Bk). Apply Theorem 5.3 with T = S(k) (S = unilateral
shift) R = E as in §3 and γ = {λ ∈ C : |λ| = 1/2}. (Observe that
σ(E) = {0}.)

(Ck). Apply Theorem 5.3 with T = S(k), R = F as in Corollary 4.1
and γ = {λ ∈ C : |λ| = 1/2}.

(DK). If k = 1, this is the result of Corollary 5.2. If k ≥ 2, apply
Proposition 5.1 to T1 satisfying (Ak) and T2 satisfying (Ck−1):

max[(k − 1) + 2, k] = k + 1,

but
max[n(k − 1) + 2, nk] = nk for all n ≥ 2.

Remark 5.6. The following simple criterion (somehow related to the
proof of Theorem 5.3) can be used to estimate multiplicities of certain



MULTIPLICITY 463

operators: suppose T ∈ L (X ), μ(T ) = m and nul(λ0 − T )∗ = p (≤ m)
for some λ0 ∈ C . If (y1, y2, . . . , ym) is a multicyclic m-tuple for T and
S =

∨
{y1, y2, . . . , ym}, then S = R +L , where L = S∩ [ran(λ0−T )]

−
,

dim R = p,X = R +[ran(λ0−T )]
−

and R ∩[ran(λ0−T )]
−

= R ∩L =
{0}. Clearly, we can directly assume that R =

∨
{y1, y2, . . . yp}.

Let M =
∨
{T kyj : j = 1, 2, . . . , p}∞k=0 =

∨
{(λ0 − T )kyj : j =

1, 2, . . . , p}∞k=0, and let T 0 ∈ L (X /M ) be the operator induced by T
on the quotient space (defined by T 0(x0) = (Tx)0, where x0 = x+M );
then

μ(T 0) = m − p.

Indeed, it is easily seen that μ(T |M ) ≤ p and

m = μ(T ) ≤ μ(T |M ) + μ(T 0).

On the other hand, (yj)0 = yj + M = M for j = 1, 2, . . . , p, and
therefore X =

∨
{T kyj : j = 1, 2, . . . , m}∞k=0 implies that

X /M =
∨

{(T 0)k(yj)0 : j = p + 1, p + 2, . . . , m}∞k=0,

whence we obtain μ(T 0) ≤ m − p.

Thus m ≤ μ(T |M ) + μ(T 0) ≤ p + (m − p) = m, and therefore
μ(T |M ) = p, μ(T 0) = m − p and μ(T ) = μ(T |M ) + μ(T 0).

6. Rational multiplicity, etc.

(1) Clearly, the multiplicity of the algebra A (T ) coincides with μ(T ).
Similarly, if A (T )(n) = {A(n) : A ∈ A (T )}, then μ[A (T )(n)] =
μ(T (n)), n = 1, 2, . . . .

In addition to A (T ), we can consider the other three algebras nat-
urally associated with T : A a(T ) (mentioned in §5), A ′(T ) = {A ∈
L (X ) : AT = TA} (= the commutant of T ) and A ′′(T ) = {B ∈
L (X ) : BA = AB for all A ∈ A ′(T )}(= the double commutant of T ).
We always have A (T ) ⊂ A a(T ) ⊂ A ′′(T ) ⊂ A ′(T ), and therefore

μ[A (T )(n)] ≥ μ[A a(T )(n)] ≥ μ[A ′′(T )(n)] ≥ μ[A ′(T )(n)]

for all n = 1, 2, . . . .
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What can be said about the sequences {μ[A a(T )(n)]}∞n=1, {μ[A ′′

(T )(n)]}∞n=1 and {μ[A ′(T )(n)]}∞n=1?

Of course, the three of them satisfy the inequalities μmax[m,n] ≤
μm+n ≤ μm + μn, m, n ≥ 1; moreover, each of the examples Ak =
S(k), E, F = E⊕E∗, S(k)⊕E, S(k)⊕F satisfy A (T ) = A a(T ) (because
the spectra have no holes), whence it readily follows that each of the
sequences (Ak), (Bk), (Ck), (Dk), (E), (F ) and (G) are attainable for
A a(T ).

On the other hand, by using the examples of [19], we can easily check
that (Ak) can be attained by A ′′(T ) and A ′(T ), for each k ≥ 1.

(2) Theorem 2.1 remains true if A (T ) is replaced by A a(T ) (same
proof, with polynomials replaced by rational functions with poles
outside σ(T )).

The “rational version” of Lemma 5.4 follows by the same argument
by using [5, Theorem 3.1], [6]: let Ω be a bounded open subset of
C whose boundary consists of finitely many pairwise disjoint Jordan
curves, let A (Ω) = {f : f is continuous on Ω

−
and analytic on

Ω}, and let R ∈ L (Y ) be an operator such that σ(R) ⊂ Ω; then
μ(Mλ ⊕ R) = μ(R) + 1. By using this result, we obtain the “rational
version” of Theorem 5.3.

Theorem 5.3a. Suppose T ∈ L (X ), R ∈ L (Y ),X =
∨
{Ayj :

A ∈ A a(T ), j = 1, 2, . . . , m} and there exist Ω as above such that
∂Ω ⊂ {λ ∈ C : nul(λ − T )∗ = m} and a function φ : ∂Ω → X ∗(m)

, φ =
(φ1, φ2, . . . , φm), such that

(i) ker(λ − T )∗ =
∨
{φi(λ)}m

i=1 for each λ ∈ ∂Ω;

(ii) ‖φ(λ)‖ ≤ C and |det(φi(λ)(yj))m
i,j=1| ≥ δ > 0 (for some positive

constants C, δ) for all λ ∈ ∂Ω;

(iii) each bounded component of C \Ω−
includes a bounded component

of C \σ(T ); and

(iv) σ(R) ⊂ Ω.

Then

μ[Aa(T ⊕ R)] = μ[Aa(T )] + μ[Aa(R; Ω)] = m + μ[Aa(R; Ω)],

where A a(R; Ω) is the weak closure of the rational functions in R with
poles outside Ω

−
.
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(3) The final section of A. Atzmon’s article [2] contains some in-
teresting results about the sequence {μ(T (n))}∞n=1. We hope that his
technique of multilinear mappings will shed some light on our problem.

(4) If the sequence μn ≡ m is attainable for all m ≥ 1, then so is every
convex sequence satisfying μn ≥ n for all n = 1, 2, . . . : use Proposition
5.1 and Theorem 5.3 as in the proof of Corollary 5.5. Indeed, a sequence
like this satisfies μn ≤ nμ1 (for all n ≥ 1), and therefore μn = nk + m,
for some k ≥ 1, for all n large enough. It is not difficult to deduce
that μn = max[nkj + mj : j = 1, 2, . . . , p] for some finite family with
m1 > m2 > · · · > mp = m and k1 < k2 < · · · < kp = k.

ADDED IN PROOF: Professor N. K. Nikol’skĭı wrote several articles
about sufficient conditions for μ(S ⊕ T ) = μ(S) + μ(T ), and related
problems. We list these articles below with the hope that they will
help to complete the analysis begun in the present article:

1) Selected problems of weighted approximation and spectral analysis,
Proc. Steklov Inst. Math. 120 (1974); English transl. Amer. Math.
Soc., Providence, R.I., 1976. (See especially Section 3.4.)

2) Methods for calculating the spectral multiplicity of orthogonal
sums (Russian), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst.
Steklov (LOMI) 126 (1983), 150-158.

3) Ha-plitz operators: a survey of some recent results, Operators and
Function Theory (Lancaster, 1984), NATO Adv. Sci. Inst. Ser. C:
Math. Phys. Sci. 153, Reidel, Dordrecht-Boston, Mass., 1985, pp.
87-137.
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