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SOME OBSERVATIONS ON THE
SAFF-VARGA WIDTH CONJECTURE

TIMOTHY S. NORFOLK
Dedicated to W.J. Thron on the occasion of his 70th birthday.

ABSTRACT. In this paper, we consider the Saff-Varga
Width Conjecture, which relates the order of an entire func-
tion to the asymptotic behavior of the zeros of its partial sums.
Together with a partial history of the problem, we derive a set
of conditions sufficient to prove the conjecture, based on the
rate of growth and angular distribution of the zeros of a certain
sequence of partial sums. The results presented demonstrate
the construction of a sequence having the desired minimal
growth rate and indicate the direction that might be taken to
complete the proof of the conjecture, in terms of a possible
modification of a theorem of Erdés and Turan.

For each nonnegative integer, n, let s,(z; f) := Y. r_,arz" denote
the n-th partial sum of the entire function f(z). Our interest is
in determining the asymptotic behavior of the zeros of s,(z; f). In
particular, we wish to describe regions which must contain zeros of the
sequence {s,(z; )} ;.

A critical result in this area is the theorem of Carlson [2, 3], which
we state in the following form, as proven by Rosenbloom [13]:

Theorem A. Let f(z) be an entire function. If there exists a sector of
infinite area with vertex at the origin such that the number Z,, of zeros
of sn(z; f) inside the sector satisfies lim,,_, o Z,/n =0, then f(z) is of
order zero.

This result clearly delineates the entire functions of positive order
from those of order zero. The statement of the Saff-Varga Width
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Conjecture is an attempt to express the behavior of the partial sums
of an entire function in terms of its order. In one form, the conjecture
may be given as follows.

The Saff-Varga Width Conjecture [14]. Let 0 <7 < o0, K >0
and zog > 0 be given, and define the “parabolic” region

S (K;zp):={z=z+iyeC: |yl < Kz' 2,2 >z}

Then if f(z) is an entire function of order 7 < A < oo, the region
Sr(K;zo) contains infinitely many zeros of {sn(z; f)}. That is, there
exists an increasing sequence {ny} of positive integers and a correspond-
ing sequence {zn, } of complex numbers such that z,, € S;(K;xzo) and

Sny (2ny; ) = 0.

The following special cases are known to hold:

(a) Via the theorem of Carlson [2, 3 and 13], the uniform conver-
gence of {s,(z;f)} to f(z) on compact subsets of C, and Hurwitz’s
Theorem (cf. [4, pp. 151-155]), the case 7 = 0 holds immediately.

(b) If f(z) has infinitely many zeros on the positive real axis, the
result again follows from the uniform convergence of the partial sums
on compact subsets of C.

(¢) Newman and Rivlin [11, 12] and Szegé [15] implicitly showed
that the partial sums of fs(2) := exp(e??z) exhibit the desired asymp-
totic behavior for all 0 < 0 < 2.

(d) In [7], it was shown by Edrei, Saff and Varga that the partial
sums of the Mittag-LefHler functions of order A, 1 < A, defined by

Eya(z) == 1;) T+ k)

have the desired asymptotic behavior about any ray emanating from
the origin. That is, any rotation of S; (K;zo) contains infinitely many
zeros of {sn(2z; E1/\)} for any 0 <7 < A, K > 0 and z¢ > 0.

(e) In [5] and [6], Edrei also showed that the conjecture holds for
certain classes of entire functions of infinite order.
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On the basis of the proofs in the known cases, and on the results
which follow, it seems reasonable to restate the conjecture in terms of
the following sufficient conditions:

Let f(2) = Y pe, arz® be entire, of order 0 < A < co. Then there
exists a sequence {z,, } of zeros of s, (z; f) satisfying

L limg oo |20, | = 00,
IL limy_,o0 10g |2, |/ logni < )
1. limsup;_, log|arg z,,|/logny < —1.

To see that these conditions are indeed sufficient, suppose that such
a sequence exists and write

Zng, = Ty, + Wy, = n,lc/AH'“ exp (:tin,;(175k)/2) ,

where limy_, o £ < 0, limsup,,_, ., 6x < 0 and, by condition I, 1/\ +
e > 0.

Rewriting, using ay := 1/\ + ¢ and By, := —(1 — ;) /2, we obtain

ng = w%f"“ sect/ @k (ng’“)

and
[Yn, | = ng* sin(ng*) < nz’“nfk
1468k /an
= xi:ﬂ"“/“’“ [sec(ni’“)] .
Since L s \
limsup@ = lim sup M < -=<0,

k—oo Ok k—o0 2(1/)\+5k:) o 2

given 0 < 7 < A\, K > 0 and xg > 0, there exists a positive integer kg
such that z,, € S;(K;xzo) for all k > k.

The existence of a sequence satisfying conditions I and II is known.
In fact, Tsuji [16] proved that the set of entire functions having a
sequence of partial sums whose largest zeros satisfy conditions I and II
is precisely the set of entire functions of order at least A.

Our aim is to construct a natural sequence of partial sums whose
largest zeros satisfy the given growth condition and also provide a
special sequence of partial sums whose existence was demonstrated by
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Rosenbloom [13]. Since we wish to consider the asymptotic behavior
of the partial sums, we may assume without loss of generality that
our entire functions satisfy f(0) = 1. We will begin by defining
a dominating sequence of partial sums for any entire function and
estimating the growth rate of the corresponding zeros.

Theorem 1. Let f(2) = > 5o arz® be a nonpolynomial entire
function satisfying f(0) = 1. Define an increasing sequence {ny} of
nonnegative integers via

— 1/ng 1/n

no:=0, l|an,|"™ = max |a,|
<n

and a sequence of normalizations via

Ry := max .
0<j<k \ |an, |

Then the largest zero of sn, (Riz; f) has modulus bounded by 2.

Proof. The fact that f(z) is entire implies that lim,, ., |a,|'/" = 0,
which in turn means that the sequence {n} is well defined. From the
definitions of {ny} and {Ry}, it follows that the largest coefficient (in
modulus) of sy, (Rkz; f) is an, R.*, as can be seen by the following:

Given 0 <4 < nyg, there exists 0 < j < k such that n;_; <1 < n;.
Consequently, by the definitions of {ny} and {R}}, we have
| B, < lan, |17 R
NE—"n; i/nj i ne\i/n;
< (lan B2 ™) 7 Bl = (o, | BE)™
< |ank|Rzka
since i < nj and |an, |R.* > |ag| = 1.

It then follows that the largest zero is bounded by the Cauchy
Inclusion Radius (Henrici [9, pp. 457-458], Marden [10, p. 122]), which
is in turn bounded by 2 (cf. [10, pp. 122-126]). O

It is to be remarked that the sequence {s,, (z; f)} constructed above
must contain the subsequence of partial sums of minimal growth rate
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since s,(2; f) has a zero of modulus at least |a,| */" if a, # 0. It
thus behooves us to construct a subsequence of {Ri} with the desired
minimal growth rate, for which we will require the following lemmas.

Lemma 1. If0 <z <y, then 0 < (zlogy/z)/(y —x) < 1.

Proof. Let t := z/y, and consider the behavior of the function
f(t):=(—tlogt)/(1—t)for0<t<1l. O

Lemma 2. Let {ny} be an increasing sequence of positive integers,
and let {yx} be a sequence of real numbers satisfying liminfy,_, o yx = 0.
Then

n;
lim inf J 1 -1 - < 0.
1kmln Or%aick{ - j(% og nE — V;j ogn])} <0

Proof. We proceed by contradiction. Given k > 2, define an integer-
valued function A such that the maximum in the above is achieved at
1 < h(k) < k. If the limit inferior of the aforementioned quantity is
positive, there exist B > 0 and k¢ > 1 such that

Nh(k)

(v log ni, — Yy log niky) = B for k > k.
Nk — Nh(k)

Consequently,

Nk — Nh(k)

(1)  ~Arlogng > B ( ) + Yhk) log npky  for k > ko.

Th(k)
Given k > 2, we may define a finite decreasing set {p, } of nonnegative
integers via

po:=Fk, pi1:=h(k) and pn:=h(pn-1),

stopping when some p,, = 1. Since this sequence is decreasing, there
exists a maximal integer 1 < m = m(k) < ny — ng, such that p,, < ko.
Thus, applying (1) m times, we obtain

m Ny, — Ny,
(2) ylogng > By  —H=—F 4o, logny,.

i=1 pi
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We define

(3) A=  nin log n;j,

and so, by (2) and (3), we have

i log ng 2B<Z%m) + A

=1 i

n 1/m
> Bm <ﬂ> -1+ A
Npom
(by the arithmetic-geometric mean inequality)
1 —1
> Bm [M} A
m
so that | | /B
'ykZB[Ognk_ 08k, + A/ ] for k > kg.
log ng

Consequently, we have liminfy_,. yx > B > 0, which is the desired
contradiction, proving our assertion.

In terms of the desired construction of the subsequence {k;} which
yields the limit inferior above, we may either define it by

= min v; fori>1
The = 5k, -

which will occur, for example, if v > 0 for all £k > 1, or via

= min~y; and = min . for 4> 2.
Tho = HEG R =
In either case, it is clear that lim; . v, = 0 and that the required
limit inferior will be achieved since the given maximum is an increasing
function of v. O

Theorem 2. Let f(z) := > po,arz® be an entire function of order
0 < X < oo satisfying f(0) = 1, and let {ny} and {Ry} be defined as in
Theorem 1. Then there exists a subsequence {ng,} of {ny} such that
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(i) 1 <lim; e \anki \1/"’% Ry, < el/A
and the largest zero, wy,  of s, (2; f) satisfies

(i) lim;oo log|wn,,|/lognk, = i

Proof. Since f(0) = 1, it is trivial to show that s, (2; f) has a zero of
modulus at least |a,, |~*/™*. However (cf. Boas [1, pp. 1-9]), we have
that

logl/la,| 1
lim inf 28 1/19n] _ L
n—oo nlogn A

so we define a sequence {\;} via
log1/|ay, 1
%::M__ fork>1
ng log ng A
(where we set 71 :=1if ny =1).

The definition of our sequence {n} yields liminfy_, % = 0. Thus,
considering the conclusion of Theorem 1, it is only required to show
that we can generate a subsequence {~,} with limit 0 and for which
{Ry,} satisfies condition (i).

From our definitions, we have

0 < log \ank|1/"’“Rk

_ nj o logn,) 4 alog(me/ng)
= max {0, jmax, { Sy (v log e = 75 log my) + =Y = n) JJ

By Lemma 1 and Lemma 2, there exists a sequence {k;} of positive
integers such that lim;_,, v¢, = 0 and the limit inferior of the quantity
above as ¢ — oo is at most 1/X, which is the desired result. O

We remark that the growth condition on the largest zero cannot be
replaced, in general, by the statement that |z,| = O(n'/*) as n — co.

To see this, for 0 < p < oo, define the function,

Sk

=1 S A—
9o(2) =142+ kz:; kk/p(log k)k”
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which is an entire function of order p, and for which the largest zero of
sn(2;g,) grows exactly at a rate of n'/? logn.

Using the subsequence {k;} constructed in Theorem 2, we also have
a constructive proof of the following result of Rosenbloom [13]:

Theorem 3. Let f(z) := > po,arz® be an entire function of order
0 < X < oo satisfying f(0) = 1, and let {ny, } be the sequence of positive
integers constructed as in Theorem 1 and Theorem 2. Then, defining

2"k Sny, (Rki/z; f)
Uny, RZ:” ’

Yi(z; f) =

we have that ;(0; f) = 1 and that {¢;(z; f)} is uniformly bounded as
i — 0o on compact subsets of {z € C: |z| < 1}.

To provide justification that the subsequence {s,, (z; f)} of partial
sums of f(z) does indeed dominate the asymptotic behavior of the
zeros, notice that, for any € > 0, the sequence {¢;(z; f)} satisfies the
hypotheses of the following theorem of Rosenbloom [13], with r = 1—¢,
and b= e 1/

Theorem B. Let p(z) = > ,_,ckz" be given, and suppose that
max; —, |f(2)] =1 My(r) < M for some r > 0, || > a > 0,
len| > 0™ > 0. Then, given any 0 < 7 < 7 there exist constants
w > 0 and A depending only on M,a,b,r and T such that p(z) has at
least n w — A zeros in any infinite sector of the form |argz —a| < 7.

While this result does not prove condition III of our conjecture, it
does suggest that the statement might be in the correct form and
immediately yields Theorem A of Rosenbloom [13] when applied to

our sequence {¢;(z; f)}

We may also use Theorem 3 to show that our sequence {Rg,} of
normalizations behaves in the general case like the normalizations
in the known cases (cf. [7, 11, 12, 15]). That is, the number of
zeros of a subsequence of {s,, (Rrz; f)} outside any disk of the form
{z € C:1+¢ < |z|} is uniformly bounded in k for each £ > 0.
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Theorem 4. Let f(z), {ny,} and {Rk,} be as in the statement of
Theorem 2. Then there exists a subsequence of {sn,, (Rk,2; f)} whose
zeros have only finitely many limit points in {z € C:1+¢ < |2|} for
each € > 0.

Proof. From the proof of Theorem 3, the sequence {;(z;f)} is
uniformly bounded on compact subsets of the open unit disk and
satisfies ¥;(0; f) = 1. Thus, by Montel’s Theorem (cf. [4, pp. 151-155]),
this sequence of functions has a subsequence which converges uniformly
to a function ¥(z), analytic on the open unit disk and satisfying
v(0)=1.

Hence, ¥(z) has only finitely many zeros in the disk {z € C : |z] <
(1 + €)™} which are the limit points of the zeros of the subsequence
of {t;(z; f)} inside this disk. Thus, since the zeros of ¢;(z; f) are the
reciprocals of those of s,,, (Ry,z; f), we have the result. O

Theorem 3 would indicate that the remaining condition (III) of our
modified conjecture might be proven by applying some modification of
the following theorem of Erd6s and Turan [8].

Theorem C. Let p(z) = ZZ:O ckz®, where coc, # 0. For 0 < a <
B < 2m, let Z(a;B;p) denote the number of zeros of p(z) which satisfy
a<argz <. Then

M,y(1)
V |COcn|'

|Z(e; B;p) —n(B — ) /27| < 16, | nlog

Unfortunately, the theorem in question is too crude to yield the
desired result directly and attempts at modification to take into account
the structure of the polynomial have, as yet, proved unsatisfactory.

In conclusion, I would like to express my deepest appreciation to
Dr. Arden Ruttan and Prof. Richard Varga of Kent State University,
who have listened so patiently and offered so much guidance in my
investigation of this problem.
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