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TWO FAMILIES OF ORTHOGONAL POLYNOMIALS
RELATED TO JACOBI POLYNOMIALS

MOURAD E.H. ISMAIL AND DAVID R. MASSON

Dedicated to Wolfgang Thron on his 70th birthday

ABSTRACT. A family of orthogonal polynomials that gen-
eralize Jacobi polynomials is introduced. The exceptional case
a + 8 = 0 of Jacobi polynomials is investigated.

1. Introduction. The Jacobi polynomials {P%#(z)} satisfy the
three term recurrence relation
(1.1)
2(n+ 1) (n+a+B+1)2n+a+ PP (2)
=2n+a+B8+1)[(2n+a+B)2n+a+B+2)z+ (o’ — )]

PP (z) —2(n+a)(n+B)(2n+ a+ B+ 2) PP (a)
and the initial conditions

(1.2) PXP(z)=1, PM(z)=[z(a+B+2)+a—7]/2

When a > —1 and 8 > —1, the Jacobi polynomials are orthogonal on
[—1, 1] with respect to the beta distribution (1 —z)%(1+z)? dz. When
a + B # 0, the Jacobi polynomials are well defined through (1.1), but
when o+ 8 = 0 one must be careful in defining the P;. If we use (1.2),
it is then clear that P, = z+a. On the other hand, if we let a+8 = 0in
(1.1), then use (1.1) with the initial conditions P_; = 0 and Py = 1 and
compute P; from the recursion (1.1), we will see that in addition to the
option P; = z+ «a we may also choose P; = x. The former choice leads
to the standard Jacobi polynomials, [8, 16], while the latter choice
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leads to what we call the exceptional Jacobi polynomials. In Section 2

we shall study the exceptional Jacobi polynomials in some detail. We

shall prove that the exceptional Jacobi polynomials are orthogonal on

[—1,1] with respect to the weight function

(1.3)

w(z, ) = 2sin(Ta) (1—2?) '
ma  (1—z)2* 4 2cos(ra)(l — 22)™ + (1 + z)2

The weight function w(z, ) is normalized to have total mass 1, i.e.,

/1 w(z,a)dr =1.

-1

The above definite integral is equivalent to
(1.4)
/°° te(14¢)2 I'(l—a)l(1+a)
0

dt = , l<a<l
1+ 2 cos(ma)t® + 22 4 “
It is not difficult to prove (1.4) by integrating (14 2)2(1 +e t"@z2)~1
over a keyhole contour with a small circle around the origin.
The integral in (1.4) resembles a beta integral. In fact, the form
(1.4) suggests the existence of a two-parameter generalization of (1.4).

For recent work on beta type integrals, we refer readers to R. Askey’s
interesting series of articles [1-3].

In [19], J. Wimp defined associated Jacobi polynomials as the solu-
tion to

(1.5) 2(n+c+1)(n+c+a+f+1)(2n+ 2+ a+B)P(z;¢)
(8%

= (2n+2c+a+B+1)[(2n+2c+a+8)(2n+2c+a+B+2)z+ (o
) (o3

(a® %)
PoP(z3¢) —2(n+c+a)(n+c+B)(2n+2c+ a+ B+2) PP

1(@s0),
which satisfies the initial conditions

(1.6) PP (z;¢) =0, PP (x;c) =1.

Associated Jacobi polynomials, as Wimp points out, arise when we
replace n by n + ¢ in the coefficients in the recurrence relation defining
the Jacobi polynomials. Thus, Wimp’s associated Jacobi polynomials



FAMILIES OF ORTHOGONAL POLYNOMIALS 361

reduce to the familiar Jacobi polynomials when ¢ = 0 and a+8 # 0. For
recent work on associated classical polynomials, we refer the interested
reader to [5, 7, 10—-13, 19] and their references.

In Sections 3, 4, and 5 we study a different class of associated Jacobi
polynomials. The motivation comes from stochastic processes. A birth
and death process with birth rates {\,,} and death rates {u,, } generates
a family of orthogonal polynomials {Q,(z)} via

Q-1(x) =0, Qo(z)=1,
(17) AnQn-{—l(x) = (>\n + Mpn — CL’)Qn(I - NnQn—l(x)a
n > 0.

The birth and death rates are assumed to satisfy
(1.8) An >0, pipi1 >0 forn >0, but uo > 0.

A family of birth and death process polynomials is orthogonal on a
subset of [0, c0).

Wimp’s associated Jacobi polynomials are birth and death process
polynomials with rates

(1.9)
N = 2n+c+1+p8)(n+c+1+a+p) n >0
" 2n+2c+1l+a+p)2n+2c+2+a+p)’ -7
= 2(n+c)(n+c+ ) ——
2n+2c+a+B)2n+2¢c+1+a+p5)

(1.10) Qu(z) = (=1)"[(1 + &)n/(L+ ¢+ B)al PP (z — L;¢).

When pg # 0, it was observed in [10] and [11] that a companion
process arises by redefining yg to be zero, and this naturally leads to a
second family of orthogonal polynomials. Thus, we assume that

(1.11) An, and p, are as in (1.9), but we choose pp = 0.

We shall denote the family of polynomials generated by the rates (1.11)
by {Q.(z)}. Let

(112)  Qu(@) = (~1)"[(1 + 0)u/(1 + ¢ + BIPLP(PL (@ — 150).
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The P,,’s constitute the second family of associated Jacobi polynomials.
Following Wimp [19], we use the more convenient polynomials

(1.13) R*P(z;¢) = P*P(2x — 1;¢) and R®P(z;¢) = P2P(2x — 1;¢).

Throughout the rest of this work we shall use only the R,’s and R,’s
and will refer to them as associated Jacobi polynomials.

In Section 3 we derive explicit representations for the R,’s. They are
stated as Theorem 3.3 and Theorem 3.10. We also give the value of
an R, at ¢ = 0. In Section 4 we derive a generating function for the
R,’s and determine the asymptotic behavior of the R,’s as n — oo.
In Section 5 we prove that the J-fraction associated with the R,,’s is
a quotient of two hypergeometric functions. We also find the weight
function of the R,’s and record the orthogonality relation.

2. Exceptional Jacobi polynomials. Recall that the exceptional
Jacobi polynomials {P%(z)} are generated by the recurrence relation
(1.1) for n > 0, with @ = —f3, and the initial conditions

(2.1) Pi(z) =1, Py =z)==.
It is easy to see that

(2.2) Pe(z) = lim P “(z;c).

c—0+

Wimp [19] found explicit representations, a generating function, and
the weight function for his associated Jacobi polynomials. He also gave
a fourth-order differential equation satisfied by his associated Jacobi
polynomials. In the case of exceptional Jacobi polynomials, Wimp’s
formulas simplify considerably, so we will state them. Wimp [19] gave
two explicit representations for his polynomials. They are (19) and (28)
on pages 987 and 988 of [19]. When a + 8 = 0, both representations
reduce to

()"

P (z) = oTen {1+ a)p2Fi(—myn+1;14+a5(1+2)/2)

(2.3)
+(1—a)p2Fi(—n,n+1;1—o;(1+2)/2)}.
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Since

(=1)"(B+ n

Pr(e) = 0

oFi(—n,n+a+ B+ 16+ 1;(1+2)/2),

we rewrite (2.3) in the form

1

(24) Pa@) = 5

[P (@) + Py (x)].

It is straightforward to use (2.4) and derive generating functions for
the polynomials under consideration and determine their asymptotic
development from the corresponding results for Jacobi polynomials
[16].

The corresponding J-fraction converges to the Stieltjes transform of
the measure of orthogonality, du, say. Thus,

ce 2=t A1 =1+ )+ (1 =)~ (1+¢)°]
(2.5) (=22 L[| <1, 2¢[-1,1].

/°° du(t) (1= ™0 +Q*-(1-O*@+¢™

We then apply the inversion formula for the Stieltjes transform [15]
and find the weight function. The orthogonality relation is

(2.6) /71 Pri(z)Po(2)w(z; ) de = (1(—;:(_3_”1(;(;';)” Sm,ns

where the normalized weight function w(z; ) is given by (1.3).

One way to find a fourth-order differential equation satisfied by the
exceptional Jacobi polynomials is to let 8 = —a, vy (=a+8+1) =1,
and let ¢ — 0 in the differential equation Wimp derived for his
polynomials, [19, (48), p. 993]. Another way is to use the differential
and recursion properties of the Jacobi polynomials as follows. The
operator

D(a, i) f(z) := (1-a®)f"(z) + [B — a — (a+ B + 2)z]f'(z)
(2.7) +nn+a+p+1)f(x)
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annihilates a Jacobi polynomial P2 (zx), Szegd [16, §4.2]. Using the
relationship

d 1 N
P2A(@) = S(at B+ n+ DRI @),

Szego [16, §4.21], and (2.4) we see that

D(1—a,14+a;n—1)D(a, —a;n)Po(x)
d
=—4aD(1—-a,1+a;n—1)—P, *%(z) =0.
dx
Therefore, the exceptional Jacobi polynomials satisfy the differential
equation

(2.8) D(1—-oa,1+a;n—1)D(a, —a5n)Pa(x) = 0.

The fourth-order differential equation (2.8) is the same as the equation
resulting from setting 8 = —a,y = 1, and letting ¢ — 0 in (48) on page
993 of [19].

3. Explicit representations for associated Jacobi polynomi-
als. Both families of associated Jacobi polynomials satisfy the same
recurrence relation but different initial conditions. Furthermore, the
polynomials {R*#(x;c)} and {R>? (z;c+ 1)}, n > 0, also satisfy the
same recurrence relation and are linearly independent functions of n.
Therefore,

Ry (w;c) = AR (w5¢) + BRYP, (w50 + 1)

where A and B do not depend on n but may depend on x. The initial
conditions

(B+c+1)(2z — Xo)

RyP(z5¢) =1, RYP(ajc) = :
0 (m C) 1 (l’ C) )\0(C+1)

with Ag asin (1.9), give A=1and B = ¢(c+a)(2c+1+7)/[(c+1)(c+
v)(2¢ + v — 1)], so that
(3.1)

2c+1
REP(x;¢) = R¥P(x5¢) + cleta)2e+1+47)

(c+1)(c+7)(2c-1+7)

szl(x; c+ 1))
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where

(3.2) y=a+B+1

Theorem 3.3. The R,,’s have the explicit representation

(3.4) RYF(z;e) =

n(Y+20n(B+ct+1)n o~ (=n)e(Y+ 1+ 20)k 4
O e gy kzzo At oncr110)"

(k—n,n—l—’y—l—k—i—%,c—i—l—i—,@,c
- aF3

k+c+14+8k+c+1,v+2c

1).

Proof. We use the representation, due to J. Wimp [19, p. 987],

(3.5) RyP(z;c) =

n(Y+20)n(B+ct+1)n = (n)k(y+n+20)k 4
(=1) (c+ ) kZ:O I+ oelct118)”

P k—n,n+~v+k+2cc+pB,c 1
Y3 \ k4+ce+1+8k+c+1,y+2c—1 ’

and the relationship (3.1) to get

(3.6)
R (256 = (1)

n

(=n)e(n+2c+7)k &

'Y+2C)n(/8+c+l)n r
(c+ Dgrr(c+ 14 B)rs1

(c+7)nn!

k=0

k—n,n+~v+k+2cc+p8,c ‘l)

(c+1+k)(k+c+1+ﬁ)4F3(k+c+1+ﬁ,k+c+1,7+201

cle+a)(k—n)k+n+2c+7)
(v +2¢)(y +2¢c—1)

k—n+1ln+vy+k+2c+1Lc+pB+1c+1
a4k 1)].

E+c+24+8,k+c+2,v+2c+1
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Wilson [18, (4.3)] proved the following contiguous relation for a 4F3
series,

(3.7) 4F3(A,B,C,D;E, F,G;1)— 4F3(A+1,B,C,D;E + 1, F,G;1)
(A— E)BCD

= m 4F3(A+1,B+1,C+1,D+1; E+2, F+1,G+1;1),

provided that one of the numerator parameters is a negative integer and
the 4 F5 is balanced (Saalschiitzian), that is, the sum of the denominator
parameters exceeds the sum of the numerator parameters by 1. In (3.7)
we set

A=c+pB, B=k—n, C=¢, D=n+k+2c+n,
E=~+2c—-1, F=k+c+1l, G=k+c+pF+1.

Hence A—E=p—v—c+1=—c— a. A calculation now gives (3.4),
and the proof is complete. O

In his interesting work [17], J.A. Wilson outlined a systematic way
of deriving contiguous relations like (3.7). Wilson’s dissertation [18]
contains a valuable complete list of contiguous relations for terminating
balanced 4F3’s.

Corollary 3.8. We have the explicit evaluation

(39) Rz’ﬁ(ﬂ; C) = (_1) (C + 1)n

Proof. Set x =0 in (3.4) to obtain

2¢)n 1), -
Rgvf’(o;c)z(—1)n(7+ )n(B+c+1) . < n,n+vy+2c,c+144,c

)

By Saalschiitz’s theorem, Bailey [6, p. 9], the 3F, above sums to
{(=n)n(c+Y)n}/{(y + 2¢)n(—c — n),} and (3.9) follows after simple

manipulations. O

(c+7)nn! c+1+8,c+1,v+2¢
(Y F20)a(B+c+ 1), —n,n+vy+2¢cc
=(-1) 3k 1).

(c+7)nn! c+1,v+2¢
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We now derive another representation of the R,’s. The new repre-
sentation will be used in the next section to determine the asymptotic
behavior of R,, for large n and fixed z.

Theorem 3.10. We have

(3.11)
c+1+08),

(1) "Ry (25¢) = ( 1) 2Fi(-n—c,n+c+y 8+ L)

clet nsr
BB+ 1)(c+7)n
oFi(n+c+1,1-n—c—vyl-Fz)
oF1 (1 —c,c+7;2 + B;z).

oFi(e,1—c—y;—Biz) -

Proof. Wimp [19, (28) p. 988] proved
o (~)"(y+c+1)/8

QB (o ) - yTe
R O T [ G T CE
-oFi(—mn—c¢,n+c+y;1+ B;2)

(=1)"*'¢/B
(v +2c=1)(v+ )n(+ )ns1

-9 (1—c,c+v—1;14 5;2)
-oFi(n+c+1L,1—n—c—7;1-5;2).

2F1(c,2 —v— ¢ 1= B5x)

We now substitute for the R,,’s in (3.1) by their corresponding expres-
sions from (3.12) and establish the representation

IF'(n+c+1+p)
F'n+c+1)
'n+c+1+a)

L(n+c+7)
coFi(n+c+1L,1—-n—c—7;1-p5;2),

(—1)"Ry(50) =

CoFi(-—n—c,n+c+vy14B5z)




368 M.E.H. ISMAIL AND D.R. MASSON

where C and D are given by
B(y+2c— 1) (c+1+8)C=T(c+1D)[(B+c)(y+c—1)
“2F1(e,2—c— ;1 - Bi2)
—clcta)aFi(l+cl—c—7y1l- Pz,
B(y+2c—1)I(c+ a)D =cl(c+7)[2F1(-c,c+ 731+ B;x)
—o2Fi(l1—c¢,y+c—1;14B;z)].

To simplify C and D, we expand the respective hypergeometric func-
tions in powers of x and collect the coefficients of like powers. A fan-
tastic amount of simplification occurs and we find

C=[(c+1)/T(c+1+pB)]2F1(c;1—v—c—pz),
(8)2D = —[el(y + )2/ + )] 2F1(1 — ¢, 7 + 6 B+ 2 ).
This completes the proof of Theorem 3.10. O

Note that Corollary 3.8 also follows from (3.11).

4. Asymptotics and a generating function. The following
asymptotic formula (Erdélyi et al. [9, (17), p. 77])
(4.1) 2Fi(a+n,b— n;c,sin? )
B F(c)nchrl/Z(COSe)cfafb71/2
~ V/m(sin @)c—1/2

asn — oo, 6 € (0,7), is due to G.N. Watson. The first result in this
section is an asymptotic formula for the R,,’s.

(1
cos 2n0+(ab)0+§<§c>},

Theorem 4.2. For § € (0,7/2) and n — oo, we have

wir2 gy o DB DI+ D)
(43 (sin®0ic) Vnal(c+1+ )
W(0) cos[(2n + 2¢ +7)0 + (n — 1/4)7 — 7],

(cos )"~ 1/2(sing)A—1/2

with

(4.4) W(0) = |2Fi(c, ¢ — B — a; —B;sin? 0) + Ke'™ (sin §) 2 +2
coFi(c+ 14 8,1 —c—a;2+ B;sin? )|
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where

 Ile+7)I(c+1+p) B
(4.5) K=o rare+ g P

and n, which depends on 0, is given by (4.8) and (4.9).

Proof. Apply (4.1) to the n-dependent 3F;’s in (3.11) and use
['(n+a)/T(n+b) =~ n*" to obtain
(4.6)
(=1)"VmnR%P (sin? ; ¢)
L T(B+1)r(c+1)
T I(B+c+])
- 9F1(c,1 — ¢ — ; —B;sin? 0)
™o, L+ Y)T(=8)
sl =50t B (e+ o)

-9 (1—c,c+7;2 + f3; sin? 6) cos (fn + gﬂ) ,

(cos 9)_0‘_1/2(sin 9)_3_1/2

(cos 8)* /2 (sin §)P+3/2

where
(4.7) &n=(02n+2c+7v)0 — /4.
We then apply the Kummer transformation
oFi(a,b;c;x) = (1 —2)°" 7 3 Fi(c — a,¢ — by ¢; ),
Bailey [6, (2), p. 2], to the function oFy(1 — ¢,y + ¢; 3 + 2;sin”§) in
(4.6), then write the result in an amplitude phase form. The result is

(4.3) with

(4.8) W(8)cosn = {sFi(c,—c — B — o; —B;sin? §) + K(sin §)**+?
coF (c+ 14+ 8,1 —c— ;2 + B;sin?0)} cos(m3/2),

(4.9) W(0)sinn = {2F;(c, —c — f — a; —B;sin’ §) — K(sin §)2**2
coFy(c+14B,1—c— ;2 + B;sin? 0)} sin(n3/2).

The next result is a generating function for the R,’s. It is an easy
consequence of the following lemma.
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Lemma 4.10. Let t,z,a,b,c be complex numbers, x ¢ [1,00), and
assume |t| < |£¥/2 + (z — 1)Y/2|72. Then

= (c+a)n(b)nt™ ) —

(4.11) Zn!(a—i—b—}-l)n oF 1 (—n —a,n + b;c;z) =
2b(Z2 _ t)fafc(Z2 + t)chafb

. 2F1(—a,b;c; (t— Zl)/2t) 2F1(a+c,a+1;a+b+1;2t/(t—Z2))

n=0

where

(4.12) Zy=1-®, Zy=1+4+®, &=][(1-1t)*+4at]'/>

Lemma 4.10 is stated in Wimp [19] with references to the various
authors who contributed to its development.

Theorem 4.13. Let

(4.14) pi=[(141)% — 4at]'/2.
The R, ’s have the generating function
(4.15)

(7+C)n(c+1)ntn B (. N
Z N!(’Y+26+1)n Ry (I,C)—

9 ety P (;,1—@—731c p(oct 1+t—0p
1+t+p 2t -8 I 1+ 2t

2 2 etl
) ey

n=0

Y+2e+1|1+t+p) BB+1) 1+t+p
1—c¢,2+7y l—c—vy,c+1[1+t—p
.o F F L
2 1< 2+ 8 ‘33)2 1( 1-3 2
B+c+1l,c+1 2t
'2F1 — .
Y+2c+1 |14+t+p

Proof. We multiply both sides of (3.11) by (—t)"(y + ¢)n(c +
1)n/[n!(y + 2¢ 4+ 1),] and sum over nonnegative integral values of n.
Using (4.11), this gives, for the sum (4.15),
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2c+’y(t 4 Zz)fcfﬁfl(z2 _ t)fa o F (Ca l-c—v l‘)

-8
g [Terte t+ 7y 7 c+B+1,c+1] 2t
241 ,8+]. 2t 241 7_}_20_’_1 t+Z2
clc+a c —c—1—-« a
— %$2 +1(t + ZZ) ! (Z2 - t)
1l—cc+7vy l—c—vy,c+1|t+ 2,

. o F ’ F J cra
AT (T
g (et itacty| 2

I 4241 |t4+25)°

where t is replaced by —t in Z; and Z of (4.14). We then apply the
Kummer transformation, stated below (4.7), to the third and sixth

oF} in the above expression and transform it to the right-hand side of
(4.15). o

When ¢ = 0, the generating function (4.15) reduces to

Ayt 2 K 2t
S e 1= {_} B, <a+1,7 4)
n+y 1+t+p L+ [14+t+p

n=0
vyi=a+pB+1.

5. The weight function. Let {p,(x)} be a sequence of polynomials
generated by
(5.1)
po(z)=1, pi1(z) = Aox+Bo, Pn+1(x)=(Anz+Bn)pn(2)—Crpn-1(2),

such that the positivity condition

Ap_14,Cp, >0, n=12 ...,
is satisfied. Under these conditions the polynomials {p,(x)} are or-
thogonal with respect to a finite positive measure, du say, with infinite
support. If we normalize p to have total mass 1, then the orthogonality
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relation will be

o0 A n
62 [ pn@pal@) du@) = by Goi= 1,60 = 1o
The orthonormal polynomials are {p,(z)/\/(,}. Nevai [14, pp.
141-143] proved that if the series

> {1/l + VO () = 31}

converges, then du = p'dz + dp; where p' is continuous and positive in
(—=7,7), the support of x’ is [—v,~] and p; is a jump function constant
outside (—v,7). Under the same assumptions Nevai also proved that
the limiting relation

lim sup{y'(z)v/ 72 — 22p,,(x)/¢n} = 2/7

n—ro0

holds almost everywhere on the support of du provided that the total
@ mass is 1. We shall prove later that the measure du is absolutely
continuous in the case of the polynomials {R%#(x)} when ¢ > 0,
a+c¢c>0,and 8+ 1> 0. In the present case,

(5.3)

G = (2c+y)(c+1+a)ulc+14+B)n = e+ (c+1)T(c+7)

(2c+2n+7)(c+Dnlc+7)n  2nT(c+1+a)l(c+1+06)

Hence, after a change of variable, Nevai’s theorem establishes the
orthogonality relation

2P (1~ z)®
WQ(arcsm\/_)
D+ DB+l (ct+a+1+n)(c+B+1),
C@2n+ 2+l (c+y+n)T(c+1+8)(c+1), ™"

(5.4) /’Ra’ﬁxc)'Ra’ﬁ( c)

and W is given by (4.4).

We now find a representation for the continued J-fraction whose
denominator approximants are the R,’s. When |z| > 1, Wimp [19]
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proved that the continued J-fraction with denominator approximants
{Ry P (x50)} is

o (c+ e+ B+ 1;2c+y+1;1/2)/ oFy(c,c+ B;2¢ +v — 1;1/x).

The numerator approximants of { R%#(z;c)} are {(y + 2¢)z2[(c+1)(c+
)] LR®P, (2; c+1)}. In view of Markov’s theorem, we have, for |z| > 1,
lim R (z;c+1)/R%P (x;¢)
n—oo

_(c+1)(c+)2Fr(c+ e+ B+ 1;2¢+v+ 1;1/x)
z(y+2¢)22F1(c, e+ B3 2c+v - 1;1/x)

The numerator approximants of {R%?(z;c)} are also {(y + 2¢)a[(c +
1)(c+7)]"'R*”,(x;¢ + 1)}. Taking into account (3.1) and the above
limit, we get after some manipulations

(6:5)  lim R (zse+ 1)/RY (@ic) =

(c+D(c+7y)2Fi(c+ L, c+B+1;2¢+v+1;1/2)
z(y+2¢)22F1(c,c+ B+ L;2c+ v;1/x) '

Therefore, when |z| > 1, the continued J-fraction F(z) whose denom-
inator approximants are the R, ’s has the representation

2Fi(c+1,c+1+B;2¢+1+7;1/x)
zoF1(c,c+ 14 352c+v;1/x)

(5.6)  F(z) = .zl > 1.

By Markov’s theorem, F'(z) is the Stieltjes transform of dy when z
is outside the support of du. When ¢ > 0, a+¢ > 0, 8+ 1 > 0,
the denominator in (5.6) has no zeros in (1,00), hence dp has no mass
points in (1,00). Spectral measures of birth and death processes are
always supported on a subset of [0,00), so du has no masses in (—o0, 0).
Nevai’s theorem shows that (0, 1) is free of point masses. To show that
z =0 or 1 do not support a discrete mass, we note that the series

[Rgﬁ(x;c)]z/(’m z=0,1

NE

0

n

diverges and appeal to Corollary 2.6, pages 45-46 in [15].
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