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ON TRANSFORMATIONS AND ZEROS
OF POLYNOMIALS

A. ISERLES, S.P. NORSETT AND E.B. SAFF

ABSTRACT. We survey certain transformations of the set
mp[z] of m-th degree polynomials into themselves. These
transformations share the property that polynomials with all
their zeros in a certain real interval are mapped to polynomi-
als with all their zeros in another real interval. Rich sources
of such “zero-mapping” transformations can be found in the
Laguerre-Pélya-Schur theory of multiplier sequences. Others
follow from the theory of biorthogonal polynomials, by iden-
tifying them with a mapping from the parameter space. This
identification leads to two general techniques for the genera-
tion of such transformations. As a consequence, we prove a
result on the zeros of certain convolution orthogonal polyno-
mials introduced by Al-Salam and Ismail.

1. Introduction. Let 7 be a transformation of the set of the n-th
degree polynomials, forthwith denoted by m,[z], into itself. In general,
even if it is known that all the zeros of u reside in a certain real interval,
little can be said about the zeros’ location of 7Tu. However, there
exist many transformations that exhibit regularity in their “mapping”
of zeros. Possibly the simplest nontrivial example is Tu = u', which
retains the property that all the zeros of u reside in a real interval (for a
complex-plane version of this statement, the Gauss-Lucas theorem, cf.
[16]). The themes of this paper are three general techniques to produce
transformations that display interesting “zero-mapping” properties.
The first is classical and its major elements can be traced back to the
work of Laguerre, a century ago. Nonetheless, it deserves being better
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known and appreciated. The remaining two techniques are based on
the theory of biorthogonal polynomials.

We commence with the classical theory of multiplier sequences [18]:
the real sequence {a,}3° is a multiplier sequence of the first kind if,
given any polynomial Y ;_ urz® (of arbitrary degree n) with all its
zeros real, the transformation

(1.1) T<Zukxk’> = Zakukxk’
k=0 k=0

maintains the reality of zeros. All such sequences can be characterized
by means of certain analytic properties of the generating function
®(z) := >0 ,(1/nl)a,z™. This characterization will be surveyed in
Section 2. Similar results for multiplier sequences of the second kind,
which are defined similarly to (1.1) but, instead, map positive zeros to
real zeros, can be found in [18].

It is, in general, a nontrivial task to generate interesting multiplier
sequences. One technique, which is mentioned in Section 2, rests
upon the connection between such sequences and the Pdlya frequency
functions [12]. A less general method originates in the theory of
biorthogonal polynomials and it is explained in Section 3.

Another source of interesting transformations is the theory of biorthog-
onal polynomials. The authors were engaged recently in extending the
perimeters of this theory, and the surveyed results follow from this
work.

Let ¢(z, ) be a real distribution (as a function of =z € (a,b)) for
all p in the parameter interval (c,d). We say that p,(x; p1,.-. , ftn)
is an n-th biorthogonal polynomial if uy,...,u, € (c,d) are distinct,
Pn, € Ty [z] and

b
(12) / pn(t;'ufla v 7#”) d(p(tnu’k) = 07 k= 17' SERLB

It is obvious that biorthogonality generalizes “conventional” orthogo-
nality, in the sense of r,(z) = p,(z;0,1,...,n — 1) being orthogonal
with respect to 7(x), where dp(z, p) := x* dr(z). Moreover, it can be
easily checked that r,,(z) coincides with lim,, . .. 0 Pn (51, , fin)
where, now, do(z, u) := p® dr(x).
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In Section 3 we survey elements of the theory of biorthogonal polyno-
mials, mainly in connection to loci of their zeros and to the derivation
of their explicit form. This theory is used in Section 4 to define a family
of transformations by the relation

n

(1.3) T(H(fﬂ#k)) = pu(T; i1y - -+ s pn)-

k=1

Subject to further conditions on ¢, the transformation 7 maps zeros in
a predictable manner, from (c,d) to (a,b). We derive one such trans-
formation in detail and list further transformations that “correspond,”
in a sense, to familiar distributions.

Section 5 is devoted to a second application of biorthogonality to the
subject matter of this paper. By identifying the distribution dy(z, i)
with G(z, p)dr(x), where 7 is a distribution and G a generating
function of its orthogonal polynomials {7, }, we obtain a transformation
of the form

(1.4) T(kzn:_oukmk> = kz:ﬁkum(w),

where the constants 8y, 81, ... depend on {r,,}. A condition identical to
that of Section 3 ensures that (1.4) maps zeros in a predictable manner.

Finally, in Section 6, we consider transformations of the form

T<Zuk,xk> = Zbkuk (7I)k,
k=0 k=0

where () is the Pochhammer symbol, defined by ()¢ := 1, (o) :=
(a+k—1)(a)k—1, k = 1,2,.... These transformations arise in the
study of discrete convolution-orthogonal polynomials that have been
introduced and analyzed by Al-Salam and Ismail [1]. For a suitable
measure dr and function h(z), convolution-orthogonal polynomials
{¢n} formally satisfy the relation

(1.5) > him (k)gn () = Ambmn, mmn=0,1,...,
k,1=0
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where \,,, > 0 and

% Bk (£ B
Mkl :=/ W(—t)k“dﬂt).

— 00

For the case when h(z) is the Laplace transform of a nonnegative
function on (0,00), Al-Salam and Ismail have stated that ¢,(x) has
all its zeros in (0,00). Unfortunately, this is not the case, as we
demonstrate by providing a counter-example. We partially remedy this
situation by giving a simple proof of a somewhat weaker statement,
utilizing the composition of two transformations of biorthogonal type
and the form (1.3).

An alternative formulation of the transformations that are considered
in this paper follows by virtue of linearity of each 7w in the coefficients
of u, as long as we represent both in “correct” bases. Since this
representation generally depends on n, we find for every n = 0,1, ...
two bases of my,[z], the range basis £,,0,n,1,- .. ,&n,n and the image
basis Vp0,Vn,1; .-+ »VUnn, such that the action of 7 on u € m,[z] is fully
described by

(1.6) T: & k(x) = vpk(x), k=0,1,...,n.

For example, the multiplier transformation (1.1) is, simply, 7 : z*
arx®, and (1.4) corresponds to T : z* > Byri(x). Note that all these
four bases form Newton systems—each &, » and v, j is independent of
n. This does not reflect the full generality of the transformations in
this paper.

Applications of “zero-mapping” transformations are outside the scope
of this survey. Multiplier sequences were already used in a large number
of fields, e.g., in theory of delay equations [6], analysis of numerical al-
gorithms [17] and approximation theory [10]. Moreover, the definition
(and the range) of underlying “zero-mapping” transformations can be
extended to entire functions, leading to the Pdlya-Laguerre class [7].
We believe that the more novel forms of transformations are likely to
be of equally wide-ranging applicability.

A word about notational conventions in this paper: We deal here with
three different concepts of orthogonality, a whole host of distributions
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and generating functions of diverse definition and form and several
distinct transformations. To keep the exposition comprehensible, we
consistently adhere to Table 1.

TABLE 1. Notational conventions.

T [2]: The set of all n-th degree polynomials with

real coefficients.

k

uw =Yg urz® An arbitrary polynomial in m,[z].

T: A mapping of 7, [z] into itself.

{nr} A range sequence.

{vn i} An image sequence.

{ax}: A multiplier sequence.

{br}: An Al-Salam and Ismail sequence.

. The generating function of {ay}.

T A distribution in z.

{rn}: Polynomials orthogonal with respect to the
distribution .

G: A generating function of {r,}.

{qn}: Discrete convolution-orthogonal polynomials
of Al-Salam and Ismail.

©: A distribution in x € (a,b) for all p € (c,d).

{I.}: Generalized moments of ¢ with respect to
the monic sequence {p,, }.

{pn}: Polynomials biorthogonal with respect to the dis-
tribution ¢ and parameters 1, ... ,u, € (c,d).

{sn}: The parameter polynomials [];_, (z — ux).

2. Multiplier sequences. Multiplier sequences of the first kind
have already been defined in the introduction. To recap, we define the
transformation 7 by (1.1),

n n

k\ _ k

T(E UpT ) = E apurz”,
k=0 k=0
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or, in the alternative formulation of range and image sequences,
Enk(z) = 2%, v, 1 (z) = axz®, and say that {a,} is a multiplier se-
quence of the first kind if T takes polynomials with real zeros to poly-
nomials with real zeros. Such sequences were already characterized by
Laguerre [15] and, in a more streamlined and modern form, by Pélya
and Schur [18]:

Theorem 1 (Pélya and Schur). Let ®(z) := Y. (1/n!)a,2".
Then {an} is a multiplier sequence of the first kind if and only if ® is a
real entire function and either ®(z) or ®(—z) possesses the factorization

N
z
coet?zM <l + —) ,
’ ,}1 G

where ¢y € R\{0}, ¢c1 >0, (1,{2,...>0, M € {0,1,2,...}, 0 < N <
oo, and Zszl Ck_l < 00.

An equivalent characterization, again due to Pdlya and Schur [18],
is in terms of the Jensen polynomials gn(x) := > . _o(})arz®, n =

0,1,...:

Theorem 2 (Pélya and Schur). {a,} is a multiplier sequence of
the first kind if and only if all Jensen polynomials have only real zeros,
all of the same sign.

A classical (and useful!) example of a multiplier sequence is
{1/(14w),}, where w > —1 and (&), is the Pochhammer symbol [20].
We have

> 1
¥ = 2

n=0
B Nl+w
= OFl z = 7( %w )Iw(2\/z),
z

1+ w;

where ,F,, stands for a generalized hypergeometric function [20] and
1, is the modified Bessel function, I,,(z) := i~“J,(iz). It is elementary
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that the Bessel function J,,, normalized by z~“, is entire, of order 1 and

with real zeros [23] and it readily follows that ® obeys the conditions of
Theorem 1 (with positive (;’s) and {1/(1+w),} is, indeed, a multiplier
sequence. An alternative proof is by means of Theorem 2: The Jensen
polynomial is

=32 (1)

e
! n!
=1k —z | = =——L{(-2),
1+ w; (L+w)n

where L is a Laguerre polynomial [20]. Thus, all the zeros of g,, are
negative.

Another example of a multiplier sequence, likewise derivable from
elementary principles, is {q”z}, where —1 < ¢ < 1 [15]. In Section 4 we
produce alternative proofs for both sequences, based on biorthogonal
polynomials.

Functions @ that obey the conditions of Theorem 1 are called the
type I functions in the Pdlya-Laguerre class [12]. They are precisely
all the real entire functions that can be obtained as uniform limits (on
compact subsets of the complex plane) of polynomials with only real
zeros, all of which have identical sign [4]. Such functions have obvious
significance in approximation theory.

Theorems 1 and 2 notwithstanding, it is quite complicated to produce
nontrivial examples of multiplier sequences—the two above examples
reoccur time and again in literature. Fortunately, a fruitful mechanism
for generation of multiplier sequences is provided in terms of Pdlya
frequency functions. We say that a function, f, defined on the real line,
is a Pélya frequency function if the kernel f(xz — y) is strictly totally
positive. It is a Pdlya frequency density if, in addition, it is integrable
in (—o0,00). Deferring a discussion of strict total positivity, in the
more general framework of strict sign consistency, to Section 3, we just
quote an important result of Schoenberg [21].

Theorem 3 (Schoenberg). @ is a type I function in the Pdlya-
Laguerre class if and only if it is of the form ®(z) = C/¥(z), where
C € R\{0} and VU is a Laplace transform of a Pdlya frequency density.
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We refer the reader to [12] for an extensive exposition of Pdlya
frequency functions and to [2] for some of their applications to rational
approximation theory.

Another means for derivation of multiplier sequences is the theory of
biorthogonal polynomials. Unlike the three preceding theorems, it falls
short of characterization. Nonetheless, it provides a useful and easy
technique for the problem at hand. We discuss this approach in the
next section.

We mention in passing the generalization of multiplier sequences from
the real line to portions of the complex plane in [13, 14, 4].

3. Biorthogonal polynomials. Although biorthogonal polyno-
mials were introduced and applied to various problems, more notably
interpolation [5], their treatment in [8] and subsequent papers differs
in a crucial detail; instead of assuming a discrete set of distributions
that generate underlying biorthogonal polynomials, we stipulate a dis-
tribution that depends on a continuous parameter. The discrete set
of distributions that is required to define a specific biorthogonal poly-
nomial is produced by sampling the parameter interval the requisite
number of times. This dependence on continuous parameters yields
the mechanism for generation of transformations.

Let o(z, p) be a distribution in z € (a,b) for every u € (c,d). Given
distinct py,...,un € (¢,d), we say that p,(x) = pp(z;5p1, ... ,4n) is
the n-th biorthogonal polynomial (BOP) if it obeys (1.2), i.e.,

b
/ () do(t ) =0, k=1,....n.

The theory of BOP’s is surveyed in [8]. It is proved there that the BOP
system {p,, }22, exists and is unique, subject to

b b bom
[ do(t,p) [ tde(t,p) -+ []t" dp(t, p)
b b b
det | Ja dP(tinz) [y tde(t ) oo [ de(t ) |
b, b b n,1:
[ do(t,pn) [ tdo(t,p) -+ [t de(t, pn)

for all n = 1,2,... and distinct p1,...,un € (¢,d). Distributions that
obey the inequality are said to be regular.
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Given a sequence pg, p1, - - -, where each p,, is a monic polynomial of
degree n, we set

b
I, (w) ::/ pn(t)do(t,n), n=0,1,....
a
Then, up to a multiplicative normalization constant,

Io(pa) Ii(pa) -+ In(pa)
Io(p2)  Ii(pe2) I, (p2)

(31) pn(x;ula cee a,U‘n) = det

(i) L) - Tn(pn)
(@) pi@) - pula)

Unlike their orthogonal counterparts, zeros of biorthogonal polyno-
mials are not necessarily confined to the interval (a,b). However, let
us suppose that dp(z, u) = w(z, p) dy(z), where the distribution ¥ is
independent of u, whereas w is a C! function of p € (¢, d), which is
strictly sign consistent (SSC): Given any n = 1,2,... and monotone
sequences a < T1 < To < - < Tp < by c < pr < pp < -0 < pp < d,
the determinant

w(zy,p1) w(re,p) - w(Tn, 1)

w(zy, p2) w(re,p2) -+ w(Tn,p2)
det . . .

w(xlaﬂn) w(m%ﬂn) w(xnaun)

is nonzero and of a sign which depends only on n, but not on the choice
of the monotone sequences [12].

Lemma 4 (Iserles and Ngrsett). If either ¢ or w is C* in u and
SSC, then all the zeros of the BOP p,, reside in (a,b) and are distinct.

The proof of the lemma follows readily from strict sign consistency,
since it implies that {¢(z, u1), ..., (z, p )} or {w(z, p1), ... ,w(z, )}
is a Chebyshev set.

Note that strict sign consistency generalizes the more familiar concept

of strict total positivity, whereby the determinant is always positive
[12].
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The explicit form of biorthogonal polynomials is frequently easy to
derive, either by (3.1) or by other techniques. It is often linked to an
expansion of the parameter polynomials s,(z) := [[,_,(z — ux) and,
as in the preceding section, the choice of basis is crucial.

An easy example is

T

32 e =v(2), @)= (e -0.)
We choose p,,(z) = =™, therefore

I,(p) = /0 t" dvp (i) = u”/o t" dy(t) = cu™,

where ¢, > 0 is the n-th moment of ¢. Let s,,(z) =Y 1 _,8n, xz¥. Then

n

Sn
(33) pn(x;/)’la"' 7/J'n) :Z—chk
k=0 ¥
[8], since
Sp, i
/ Z ki‘kdw( > :an,k,u{czsn(,u‘l)zoa l:]-a y 1.
k=0 k=0

Note that the transformation s,, — p, is nothing else but (1.1) with
ar =1/cy, k=0,1,...,n

Considerably more fruitful examples of biorthogonal polynomials
being explicitly known are obtained by taking any combination of a
¢, together with {p,}, such that

Iny1(p) _ gn(p) _
(3.4) I:(u) = )’ n=0,1,..

where both g,, and h,, are linear functions, such that h,,, g, k), — g, ht. #
0 on (¢,d) for all n =0,1,... ,k=0,1,... ,n. Normalizing Iy(u) = 1,
we obtain
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A special case is provided by the distributions that lead to Hahn-type
orthogonal polynomials [3].

A long and technical proof of regularity is given in [9]. Taking
regularity for granted, the explicit form is easy to verify: Present the
parameter polynomial in the basis

n k—1 n—1
sn(@) =Y 3ns [ [ 95(@) [ ] hi(2)-
k=0 j=0 ji=k

Then

[ SOt ) = > s di) = s ) =0
k=0

—1
—0 L Z:O hk (:ul)

forall l =1,...,n. Thus, by regularity,
(3.5) Pr(@s 1, i) = D Snkpr().
k=0

The crucial observation that allows biorthogonality to be used to con-
struct “zero-mapping” transformations is encapsulated in the following
theorem.

Theorem 5 (Iserles and Ngrsett). Let the conditions of Lemma
4 be satisfied. Then the transformation

maps polynomials with all their zeros in (¢, d) into polynomials with all
zeros in [a, b].

Proof. Given any polynomial with distinct zeros in (c,d), we can
always identify it with a parameter polynomial s,, and the transforma-
tion (3.6) is well defined. Moreover, by Lemma 4, all the zeros of Ts,,
are in (a,b) and distinct. The theorem follows by allowing confluent
zeros by a limiting argument. 0O
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In principle, (3.6) does not define a mapping from m,[z] into itself.
Fortunately, in practice it is trivial to extend its range to all of m,[z].

To illustrate the last theorem, we consider (3.2). First we choose
d(z) = (1/T(w +1))x¥e " dz, where w > —1. Thus,

1 * wtn —t o Dw+n+1)
Cn Twt D) /0 e dt Tw+ D) (w+1),

and (3.3) gives p,,(z) = Y p_o(Snk/(1 +w)g)zF. A classical result [12]
is

Lemma 6. The function z¥ is SSC for all 0 < x < o0, y € R.

Thus, all the conditions of Lemma 4 can be easily verified and
Theorem 5 yields an alternative proof that {1/(w+1),,} is a multiplier
sequence.

Our next example is the Stieltjes-Wigert distribution

dp(z) = %eﬂmogw)%x,
where ¢ > 0. The moments are ¢, = q*("H)Z, n =0,1,..., with

q == exp(—1/(40?)) € (0,1) [3]. Since w(w,p) = Cf(z)f ()2 1o8n,
where C' > 0, f(y) = e~ (108Y)* - 0, Lemma 6 ensures strict sign
consistency. A trivial change of variable proves Laguerre’s result that
{g"’} is a multiplier sequence (cf. Section 2).

4. Biorthogonal transformations. In this section we use Theo-
rem 5, in tandem with distributions (3.4), to present several transfor-
mations with predictable behavior of zeros. The presentation follows
a fixed pattern: we specify a distribution and a sequence {p,}, ver-
ify (3.4) and use Theorem 5 on the explicit form (3.5). This yields a
transformation which, frequently, needs to be further recast for greater
clarity. This work is based on [9], except for the recast transformations
that lead to image sequences of orthogonal polynomials which appear
n [11]. We make no effort to address ourselves to the full generality of
results in these references.



TRANSFORMATIONS AND ZEROS 343

Example I. We set dp(z, p) := (1/T'(p))z* e ®dz, where (a,b) =
(¢,d) = (0,00). Strict sign consistency follows at once from Lemma 6.
Moreover, selecting p,(z) = 2", we have I,(1) = ()n, n = 0,1,...,
hence (3.4) holds with g,(1) = n + p and h,(p) = 1. Application of
Theorem 5 to the explicit form (3.5) yields at once (in the terminology
of range and image sequences which we use whenever possible)

Theorem 7 (Iserles and Ngrsett). The transformation
(4.1) T:(x)y—z"

maps polynomaials with positive zeros into polynomials with positive
ZET0S.

Note that in the proof of the theorem it is necessary to rule out zeros
migrating to the origin—a trivial task.

To recast (4.1) we invoke a technical lemma from [11]:

Lemma 8 (Iserles and Saff). Given constants v,...,v, € R and
Bos--- ,Bn > —1, the identity

n

(4.2) Zn:(x)kvk = ZWW, z € R,

k=0 k=0

implies that

U = (—1)k

"1 E+1)_
()Mul, k=0,1,...,n
k

k l!
I=

Theorem 7TA (Iserles and Saff). The transformation

Bn+1_w)n

T: ( — L) (z),

n!

where L£f‘> is a Laguerre polynomial [20], maps positive zeros to positive
zeros.



344 A. ISERLES, S.P. NORSETT AND E.B. SAFF

Proof. We change range base from {(z),} to {(8, + 1 — z),/n!},
using (4.2). Thus, by Lemma 8,

(S0 ()

k=0 k=0
" ke (B + Dy, =k
Yt oy Gkl |
k=0 k=0 ) Br + 1;
_ZUkL(ﬂk)(l‘),
k=0

exploiting the hypergeometric form of Laguerre polynomials [20]. This
proves the theorem. 0O

Example II. Let dp(z,u) = (1 — p/N)p*dy(z), where X > 0,
(a,b) = (0,00), (¢,d) = (0,)) and ¢ is a step function with jumps
of (N)m/(m!A™) at m =0,1,.... Clearly, w is SSC by Lemma 6.

We choose p,(z) := (=1)"(—z),,. Therefore

I(n) = (ﬁ)k_l (ﬁ)n (Mn, n=0,1,...

and (3.4) holds with g,(u) = (L 4+ n/A)p, hn(p) =1 — p/X. Invoking
Theorem 5, we have

Theorem 9 (Iserles and Ngrsett). The transformation

(4.3) T:ab\—2)"F (D" (—2)k, k=0,1,...,n,

maps polynomials with zeros in (0, ) into polynomials with positive
zeros.

Again, the proof easily rules out zeros migrating to the origin —hence
the zeros of the image polynomial are in (0, 00) rather than [0, o).

The limiting case A = oo of Example II will be of importance in our
later discussion of discrete convolution-orthogonal polynomials. Hence,
we state it as
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Theorem 9A. The transformation
(4.4) T2k (~1)*(—2)k, k=0,1,...,n,

maps polynomials with all zeros in (0, 00) into polynomials with all zeros
in (0, 00).

It is possible to recast (4.3) into two different forms:

Theorem 9B (Iserles and Ngrsett). The transformation
T:2b = (mD)F(—2)e (A + 2), kAR

maps polynomials with zeros in (0,\) into polynomials with positive
zeros.

Theorem 9C (Iserles and Saff). Let ¢ € (0,1) be given. The
transformation

T:zF = (=)@ + Np_n(eN)mp(s; A\ +n—k,¢), k=0,1,...,n,

maps polynomials with zeros in (cA,(c + 1)A) into polynomials with
positive zeros, where m,, denotes here the Meizner polynomial of the
first kind [3].

Example III. Many transformations in [9] involve basic hypergeo-
metric series [22]. A typical example is

ol 1) = e (), (0,8) = (1,00), (6.0)= (0,00),

—q 307

where ¢ > 1 and ¢ is a step function with jumps of (—1)"/[q]., at ¢,
m=0,1,.... Here (; q)n is the g-rising factorial
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whereas [g], := (¢;q)n. Strict sign consistency is valid by Lemma 6.
Moreover, setting p,(z) := 2",

where

f(2) == oo q,2

)

is a basic hypergeometric function. The function f is entire and

—k

Q

flgt2) = flz) =)

L)
Safgl, A

Thus, by induction,

f(2) = (@ 207 Y fla™2), m=0,1,....

Since ¢ > 1, letting m tend to infinity yields

F(2) = (a7 247 oos
thus,

L(p) = (=1;9)n, n=0,1,....

We are within the framework of (3.4) with g,, (1) = 1+¢™ i, by (1) = 1.
As migration of zeros to the endpoints can be, again, ruled out, we have

Theorem 10 (Iserles and Ngrsett). The transformation
T:(—@q)n "

maps polynomials with positive zeros into polynomials with zeros in
(1,00).

Thirteen further examples are listed in [9], but the underlying prin-

ciple should be, by now, clear. Equally clear should be the gap be-
tween a schematic application of Theorem 5 and the final form of
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transformations—a gap that is filled by a great deal of careful formulae
manipulation.

5. Expansions in orthogonal polynomials. Let ¢ be an arbi-
trary distribution, defined for € (a,b), and {r,} the corresponding
orthogonal polynomials. We set f, := f; r2(t) dy(t). Further, we
stipulate the convergence and strict sign consistency of the generating
function

G(z,p) == Z dpro(2)p™,  do,di,...#0,
n=0

for all z € (a,b) and p € (¢,d) (typically, by virtue of convergence,
¢ = —d, but sometimes strict sign consistency “takes over” and further
reduces the interval).

Following [11], we set dp(z,p) := G(z,p)dy(x), ie., identify G
with w, and consider the underlying biorthogonal polynomials. Let
pn(x) := (1/gn)rn(z), where g, is the coefficient of =™ in r,,—hence p,
is monic. Then

by virtue of orthogonality of {r,}. The explicit form of {p,, } is obtained
by an argument identical to that in Section 3: Let the parameter
polynomial be s, (z) := Y ;_;sn,z". Then

/b n Ik o (DG, ) d (2)
a p_o dkfk ’

ol

n b )
oy (G5 [ onons v )

<.

3 |l

an-p{ =s,(w) =0, [=1,2,... ,n.
=0

<.
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Consequently,

n
gk k:
p"(w;,u'la--- 7/"n)— > Z

¢ d, fk dkfk

and Theorem 5 leads to the main result of this section:

Theorem 11 (Iserles and Saff). Provided that G is SSC for all
z € (a,b) and p € (¢, d), the transformation

(5.1) T 2" s ﬁrn(m‘)

maps polynomials with all zeros in (¢, d) into polynomials with all their
zeros in [a, b].

It is frequently easy to exclude zeros from the endpoints, as in Section
4, replacing [a, b] with (a,b) in the last theorem.

The main difficulty in implementing (5.1) typically rests in verifying
strict sign consistency of a generating function. A wide range of well-
known orthogonal polynomial systems and their generating functions
were analyzed in [11]. We select three examples from that reference.

Example L. dy(z) = ﬁe‘zzdx, (a,b) = R. This is the Hermite

distribution and r, = H,, f, = 2"n!. The choice d,, = 1/n! leads to
the classical generating function

G(z,p) = e*F7H

[20] which is convergent and, by virtue of Lemma 6, SSC for all u € R.
We have

Theorem 12 (Iserles and Saff). The transformation
T:2"— Hy(x)

maps polynomials with real zeros into themselves.
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Example II. dy(z) = 2% *dz, « > —1, (a,b) = (0,00). The
(a)

underlying Laguerre polynomials Ly’ admit the generating function

@

Gla, ) = Y L (e = (1= )7 e 55,
n=0

which is convergent and SSC for all 0 < =z, |u| < 1. Moreover,
fn=T(a+n+1)/n! [20] and Theorem 11 yields

Theorem 13 (Iserles and Saff). The transformation
n!
sz s ———— L)
T:x H(Ol-i-l)n n (I)

maps polynomials with zeros in (—1,1) into polynomials with nonneg-
ative zeros.

The last result can be somewhat sharpened for a = 0. Let s,(z) =
S oSkt have all its zeros in (—1,1). Then (1); = k!, LV (0) = 1
imply that

Ts,(0) = isnyk =s,(1) #0
k=0

and the zeros of T s, stay clear of the origin.

Example III. dy(z) = (1 — 2?)%dz, (a,b) = (—1,1). This is
the wultraspherical distribution (or, under different normalization, the
Gegenbauer distribution) [20] and r,, = P{*®). Tt is known that

— 20+ D iaa) 1
Gz, p) == =P ()" = =
(@, 1) ; @i, i
! I(a+n+1)2
1 — z2)e P(a,a) 2t — 92a+1 [
/_1( z) P ) dt nl(2a +2n+ )0 (2a +n + 1)
[20], thus
! 1
(5.2) L _nilatnty)

dn fn (@+1)n
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where C = I'(e + 3)/(v/7L(a + 1)).
Strict sign consistency is considerably more complicated to examine
than in previous examples and results are available at present only

for the range o > —1/2. They depend on a criterion for strict total
positivity from [19]:

Lemma 14 (Pdlya and Szegd). Let two functions f and g be given
in (0,00), such that f is positive and nonincreasing and g is monotone
throughout the range. Then the function

(5:3) w@y+¢w+4yéwﬁ@Hﬁwﬂwﬁ

is strictly totally positive.
To bring the generating function to the form required by Lemma 14,
we set y := (2u)/(1 + p*) and transform

z—1 ’_>y—1
s+ YTy AT

i d

Setting 8 := a+1/2 > 0, it follows that G is SSC for « € (—1,1) and

@ > 0 if and only if
Le+)+1)’
2 T+y

is SSC for all z,y > 0. This, in turn, is equivalent to (z + y)™” being
SSC for x,y > 0. We now invoke Lemma 14 with

(—log2)®
f(I) — W, 0<£E<].,
0, 1<z,

and g(z) := z — 1/2. Conditions of Lemma 14 are satisfied and
substitution in (5.3) yields

T+y /1 Ty—1 8 Tty /oo —(z+y)t,B
— 7| et Clogt)Pdt = —— 2 e~ (@t0)tB gt
rB+1) /o ( ) LB+1) Jo

_ 1 B g,
‘rw+n@+mBA M
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and strict sign consistency (in fact, the stronger strict total positivity)
follows. Consequently, we can now substitute (5.2) into Theorem 11:

Theorem 15 (Iserles and Saff). Let o > —1/2. The transforma-
tion
Na+n+3
Tz — RlaThTy) (atn 2)P,SO""‘)(QJ)
(a+1),
maps polynomials with all their zeros in (—1,1) into polynomials with
all zeros in [—1,1].

The value o = —1/2 falls just outside the scope of the theorem.
This is only to be expected, since the generating function reduces to a
constant. There is some experimental evidence that —1 < a < —1/2
brings about strict sign consistency (but not strict total positivity!) in
the generating function, but no proofs exist.

The border-line case is interesting since it corresponds to Chebyshev
polynomials. In that instance, elementary considerations are sufficient
to ascertain that the transformation

(5.4) T :az" — T,(z)

maps real polynomials with zeros in {z € C : |z| < 1} into polynomials
with zeros in (—1,1) [11]: Let the real polynomial s, (z) = > j_;sn k2"
have all its zeros inside the complex unit disc. We apply the argument
principle to s, along |z] = 1. Now s, has exactly n zeros inside, and
none on the perimeter of the unit disc; hence, the argument varies by
27mn. Therefore,

n

T{sn}(cost) = an,k coskf = Re s, (')
k=0

has precisely n zeros in 6 € [0, 7). This proves our assertion concerning
(5.4).

6. Transformations of Al-Salam and Ismail. Let {a,} be a
sequence of real numbers with the property that ag = 1 and oy, # 0 for
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k > 1. Al-Salam and Ismail [1] introduced and studied the sequence-
to-function transformation L,[f](x) defined by

i Veap A* £(0)z",

k=0

where Af(z) = f(z + 1) — f(z), AFf(z) = A(AF1f(z)). This
transformation maps the set of sequences to a set of formal power series.
In particular, if j is a fixed nonnegative integer and

(6.1) fi(k) = (,_k)j, k=0,1,...,

then it is easy to verify that

(6.2) Lofil(z) = 2.

Consequently, for an arbitrary polynomial u(z) = >, _,uxz",
(6.3) L, [Z ujfj] (z) = u(z).
§=0

Let {r,} be polynomials that are orthogonal (in the conventional
meaning of this phrase) with respect to the distribution 7. Then, in
view of (6.3), for each n > 0, there is a polynomial ¢, of degree n such
that

Lalgn(K)](z) = ra(2),

where L, acts on the sequence {g,(k)}7>,. The polynomials {g,} are
called discrete convolution-orthogonal polynomials because, if

(6.4) h(z) := Zozjacj,
then, at least formally,

Z nk,lqm(k)qn(l) = )‘mém,na m,n = 07 la tee
k=0
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where

o p(k) @)
M1 ;:/ W(*t)kﬂdﬂt)-

— 00

What can be said about the zeros of such polynomials ¢,? Here we
give a simple answer for the case when

(-1

(65) a; = T

Cjs  Cj ::/0 t7 dy(t),

where ¢ is a real distribution on (0,00) and {cj_l} is a multiplier
sequence.

Theorem 16. Suppose that a; is of the form (6.5) with co =
fooo dy(t) =1 and c;j > 0, j = 1,2,...,n. Moreover, assume that
{cj*l} s a multiplier sequence. If T, is a polynomial of degree n having
all its zeros lying in (0,00), then the same is true of g, := L7 [r,].

Proof. From the definition of multiplier sequences, positive zeros are
mapped into positive zeros and the transformation

) 2
Ti:z? — —
Cj

maps 7, to a polynomial R, having zeros in (0,00). Furthermore, by
Theorem 9A, the transformation

Toial o (1) (—2);
maps R, to a polynomial with zeros in (0,00). But
(T20Ti)(rn) = gn

since (cf. (6.1) and (6.2))

Lo[(T2 0T1)fvj|w:k](x) =1L, [M] (z)
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Hence, ¢, has all its zeros positive and simple. O

Note that if h(x) in (6.4) is the Laplace transform of a nonnegative
weight w(t) dt = dy(t), i.e.,

(6.6) h(z) = /000 e “tdy(t)
where
(6.7) | v =1

then

_h90) (=1 _ =0
(6.8) o= = /0 t'dy(t) = TIA

provided the integrals and derivatives exist. Theorem 5.1 in Al-Salam
and Ismail [1] states that if {r,} is a polynomial set orthogonal on
(0,00) and h(z) is the Laplace transform of a nonnegative function,
then ¢, = L7'[r,] has all its zeros simple and lying in (0,00). This
theorem, in its full generality, is incorrect: for example, let

z, 0<x<1,

vo={y 120

and
1—¢e7"

T

h(z) = /0 " eTtap(t) = 2677 +

Thus, h is a Laplace transform of a nonnegative weight. We have
ar = (=1)*@2k+1)/(k+1)!, hence (=1)*/cx = (=1)*(k +1)/(2k + 1).
Every polynomial with all its zeros positive and distinct is orthogonal
with respect to some distribution supported on (0, c0) [24]. We choose
rs(z) = (z — 1)(z — 2)(z — 3). Easy calculation verifies that

166 186 , 4 4

@) = =0+ 5w — a4 5

g3 has a complex conjugate pair of zeros, providing a counter-example
to Theorem 5.1 in [1]. The incorrectness of the proof of that theorem
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can be traced to its use of an unjustified version of a “generalized
variation diminishing property” of Laplace transforms.

Theorem 16 demonstrates that some convolution-orthogonal polyno-
mials have all their zeros in (0, 00). The treatment given here suggests
a connection between discrete convolution-orthogonal polynomials and
the composition of biorthogonal maps which is worthy of further inves-
tigation.

We shall say that {b;} is an Al-Salam and Ismail sequence (ASIS) if

1
by = ———, k=0,1,...
k h(k)(o)a ) Ly )

where h satisfies (6.6-8) and {(—1)b;} is a multiplier sequence. Then
the result of Theorem 16 yields

Theorem 17. Let {b;} be an ASIS sequence. Then the transforma-

tion
T: {Zukmk} = Zbkuk(—m)k
k=0 k=0

maps polynomials with all zeros positive to polynomials with all zeros
positive.

Example I. h(z) = (14 )%, o > 0. Since

l o0
h - = tafl 7(1+z)tdt
@ = | e ,

h is the Laplace transform of a nonnegative function. It produces the

ASIS

\k
P D A
(@)

(we use Section 2 to argue that {1/(a)x} is a multiplier sequence) and
the transformation

_ .k
T:ka(fl)k( 2) , a>0.
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Example II. h(z) = (1 — e *)/z. h is the Laplace transform of
the piecewise-constant function that equals 1 on (0,1] and vanishes in
(1,00). It produces the ASIS b, = (—1)¥(k +1), k= 0,1,..., and the
transformation

T2 (~1)F(k+1)(—2)p-
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