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ORTHOGONAL MOMENTS
ERIK HENDRIKSEN AND HERMAN VAN ROSSUM

ABSTRACT. Let (cn(t))22, be a sequence of orthogonal
polynomials (OPS), and let (yn(t;2))52, be the OPS with
respect to (cn(t))S2 , as a moment sequence. For (cn ()22,
we take successively the Laguerre, Hermite, ultraspherical,
Charlier, and Meixner polynomial sequences and determine
the newly generated OPSs. As an application, results on the
Turanians of the special systems mentioned above, are found
in a way completely different from the method used by Karlin
and Szegb [4].

Introduction. Laguerre developed a method for obtaining contin-
ued fractions of a certain type for a class of complex functions [6, pp.
322-343]. Here we consider one of Laguerre’s examples in a slightly
different form, i.e.,

fe) = o (ifi)t—l 3 ez

(t € R\Z;z € C\[-1,1], branch with f(co0) = 0). Then

1 (_1)n+1(c)n
—en(t) = — - I o p (1 tt—n;—1), n=0,1,....
c cn(t) 5 D) oF1(—n n ), n

The n-th approximants U, (z)/V,(z) of the J-fraction for f match the
power series in 2z~ !:

=0z ).

Hence, the polynomials V,, are orthogonal with respect to the moment
sequence (cp(£))2,.
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From
(1.1) (22— 1)f'(z) +2tf(2) +1=0
we obtain

(n 4 1)en(t) — 2ten, 1(t) — (n— V)en_2(t) =0, n=2,3,...,

while
co(t) =1 and c¢(t) =t.

By Favard’s theorem, the polynomials ¢, (t) in ¢ form an orthogonal
polynomial system (OPS). Laguerre’s method applied to (1.1) yields
the differential equation (d.e.)

(22— )V (2) +2(z — t)V,! — n(n+1)V,(z) =0,
from which we see that
Va(2) = P{THI(2),

where Pr(ft’t)(z) denotes the Jacobi polynomial of degree n. Hence,
(Péft’t)(z))ff’zo is an OPS whose moments c,(t) also form an OPS.

Taking this as our cue, we want to develop a theory of OPSs with
orthogonal moments. In the present paper we restrict ourselves to
moment sequences of Laguerre, Hermite, ultraspherical, Charlier, and
Meixner polynomials.

In these cases an important result obtained by H.L. Krall [5], recorded
here in Proposition I, immediately leads from the recurrence relations
satisfied by the moments of a specific moment sequence to linear second
order differential equations satisfied by the orthogonal polynomials
belonging to the OPS generated by these moments. As corollaries
we get results on Hankel determinants with orthogonal polynomial
elements, called “Turanians” by Karlin and Szegé (see [4]). The Hankel
determinant H." = det(cit; (t))?;:lo for a moment sequence (¢, (t))32,
is sometimes denoted by T'(co(t),c1(t),... ,cn_1(t)). In the following,
H7(10) is also referred to as the Hankel determinant (of order n) belonging
to the J-fraction

(e7)] —Qq —Qp—1

2B+ 2+ B+ T+ 2B+

)
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with Y>> ¢, (t)z~™ ! as its associated power series. We will normalize
our moment sequences (cy,(¢))52, such that ¢y(¢) = 1. We notice that

0 n—1_n—2 2
H,s ) = af oy Ty, g

Proposition 1. Let (yn(2))52, be an OPS with (cn ()52, as its
moment sequence. Then the following are equivalent.

(a) yn(2) satisfies the d.e.
(12) (l2222 + 1z + lQO)yZ + (lllz + llO)y;L = )\nyn(z)

with An = lll’l’L + lgg’l’L(’n - ].)

(b) The moments c,, satisfy the recurrence relations
(1.3) (l11 +1l22(n—1))cn + (Lio+l21(n—1))cp—1 +l20(n —1)cp_2 =0

and H #0,n=1,2,....
The l;; may depend on t but they do not depend on n.

2. Laguerre moments. For the Laguerre polynomials LL“),

adopt Szegd’s definition

e

k=0

we

Here we consider normalized Laguerre polynomials

()
cn(t):L("a—)(t) where L£ﬁ>(0):("+°‘>, n=01,....
L (0) n

The recurrence relations are

(n+a)ep,+t—(a+2n—Dlep1+(n—1)cp—2=0, n=2,3,...,
t
a+1’

C():l, 01:1—
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Comparison to (13) yields llO =t—a— ]., l11 =« + ]., 120 = 122 = ].,
l21 = —-2.

Let y, = yn(z;t;) denote the polynomial of degree n belonging
to the OPS with (suitably normalized) Laguerre moments. Then
Proposition I yields the d.e.

(2.1) (z— 1% +[(a+1)(z— 1)+ tly,, =n(n+ a)y,.

The differentiation is with respect to z. For simplicity, we assume that
the status of ¢ now is that of a parameter allowed to assume positive
real values and that a > —1 throughout.

Theorem 2.1. The members of the OPS generated by the normalized
Laguerre polynomial moments c,, are (fized) first degree transformations
of the Bessel polynomials. The Turanian T(cp,c1,...,cn—1) of the
Laguerre moments is equal to the (n x n)-Hankel determinant of the
sequence ((a + 1))~ " multiplied by ™1,

Proof. The Bessel polynomial of degree n,
R.(a;2) = (=1)"((a 4+ n),) "t 2 Fo(—n,a + n; 2)
is a polynomial solution of the d.e.
(2.2) 2" (2) = [1 = (e + 1)2ly'(2) — n(n+ a)y(z) =0
and also the denominator of the n-th approximant of the J-fraction

(e7)] —Qj —Qp_1

24P+ 2+ B+ 2B+

(2.3)

where ag = ¢g = 1 and
(2.4)

-1 —n(a+n—1)

M=t De+r2) T at+2n-2)(a+2n—1)2(a +2n)’
n=23,....

The successive transformations z — —z/t and z — z — 1 transform the
d.e. in (2.2) into the d.e. in (2.1) so the OPS generated by the Laguerre
moments is, apart from a first-degree transformation, the Bessel OPS.
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Ounly the transformation z — z/t affects the partial numerators a,,
n=1,2,.... The J-fraction in (2.3) becomes

1 —a1t2 —an,1t2
24+bit+ z2+bt+ T+ z+bt +

(2.5)

The Hankel determinant H,(lo) belonging to the J-fraction in (2.3) is
given by

HO =a a2 a2 La,_1.
Since T'(cg,c1,- .- ,¢n—1) is the (n x n)-Hankel determinant belonging
to the J-fraction in (2.5) we find

_ yn(n—-1) n—1 _n-2 2
T(coyClye-- yCn1) =1 ( )al ay g0

with «; as given in (2.4). O

Remark 2.1. 1 Fi(1;q; 2) is the generating function of the moments
of the generalized Bessel polynomials. It has been shown by De Bruin
[1] that, only if @ = 1 (i.e., the case of exp(z)), the moment sequence
is totally positive. Hence, the sequence of normalized Laguerre poly-
nomials (¢, )%, ¢t # 0, is totally positive if and only if a = 1.

Another result is Karlin’s [3], i.e.,

Pla+l) (4 >
(Fasnrn™0), o o>

n=0

is a totally positive sequence (is a one-sided Pélya frequency sequence).
3. Hermite moments. The Hermite polynomials H,(t) satisfy

Ho(t) = 2Hy 1(£) — 2(n — D)Hp 5(t), n=2,3,...,
H()(t) =1, Hl(t) =2t, te R.

Applying Proposition I we find, for the polynomials vy, = y,(z;t)
belonging to the OPS with moment sequence (H,(t))32,, the d.e.

n=0’

(3.1) 2y + (z — 2t)y!, = ny,.
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The d.e. for the Hermite polynomial H,(z) is

(3.2) y" — 22y’ = —2ny.

The special J-fraction in 2s,

1 -2 —4 —2(n—1)

3.3 — = = ... .
(3-3) 25+ 2s + 2s + + 2s +

has denominators H,(s). The Hankel determinant HT(LO) belonging to
this fraction is equal to

23711191 (n — 1)!

Comparing (3.1) and (3.2) suggests the substitution 2s = i(z — 2t) in
(3.3). After an equivalence transformation we obtain the J-fraction
(written in normalized form)

1 2 2(n —1)
Z4+—2t4+ 2+ -2+ T+ z+-2t+

The n-th denominator is y,, (—2is+2t) = (—i)"Hy,(s). Hence, we finally
obtain

Theorem 3.1. The members of the OPS generated by the Hermite
polynomial moments are (fized) first-degree transformations of the Her-
mite polynomials. Moreover,

T(Ho(t), Hy(t), ..., Hy_1(t)) = (=2)2"= V1121 .. (n — 1)!

Remark 3.1. From the sign pattern of the sequence of Turanians,
namely + — —++— —++4 — —---, it follows that the Hermite moment
sequence (H,(t))22, is totally positive for all values of ¢.

4. Ultraspherical moments. The ultraspherical polynomials
P,ga)(t), a > —1/2,t € R satisfy the recurrence relations
nP{® () = 2(n+a—1)tPY,(t) — (n+2a—2)P'% (1), n=2,3,...,

P ) =1, P (t)=2at.
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We introduce the normalized ultraspherical polynomials ¢, = c,(f)(t)
defined by

(a)
Pr
D (t) = ( )(t) ,
P (1)
where ) ) 0
P(a)(l) _ <n+ a — > _ ( a')n
n n!

The recurrence relations are
2a+n—1ec,—2(n+a—Dtcp—1+(n—1)cp2=0, n=2,3,...,
Co = 1, C1 = t.

In this case Proposition I applies. Let (y,)5% = (yn(2;t;a))22, denote
the OPS generated by the moment sequence (¢,)3,. Then the y,
satisfy the d.e.

(4.1) (22 — 2tz + 1)yl + 2a(z — t)y,, = n(n + 2a — 1)y,.
The d.e. satisfied by ¢, = ¢\ (t) is
(4.2) (2 = 1)y" + (2a + 1)ty = n(n + 2a)y.

Putting z — t = z in the d.e., (4.1) followed by the substitution
T = sv/t2 — 1 yields the d.e.

(4.3) (52 — 1)0"(s) + 2av'(s) = n(2a — 1 + n)v(s),

satisfied by v(s) = y,(t + sVt2 — 1). For A = a — 1/2, the d.e. in (4.3)
is the d.e. for the ultraspherical polynomial PT(L)‘). Hence,

a—1 —t
yn(#t;0) = Py é)( z )
N

We have

Theorem 4.1. The orthogonal polynomials generated by the sequence

of ultraspherical moments (csla) (1)), are first-degree transformations
a—1/2)

of the ultraspherical polynomials P,g . Moreover,

T(cg”(8), e (8), ..., (1) = (1 — 1)3n( =D g,

» “n—1
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where H,(LO) is the (n x n)-Hankel determinant of the moment sequence

1
corresponding to the polynomaials PT(LG 2),

Remark 4.1. The sequence (c%a)(t))ff’zo of ultraspherical moments

with [¢| > 1 and a > 0 is positive definite.

5. Charlier moments. The Charlier polynomials, also called
Poisson-Charlier polynomials, ¢, (¢;a) are defined as follows (see Chi-
hara [2])

en(ta) = zn:(—nk(;’) f—,l (Z) n=01,....

k=0

Here ¢t denotes a real variable and a is a nonzero real number. The
recurrence relations are

acy(t;a) + (t—n+1—a)en—1(t;a) + (n — 1)ep—2(t;a) =0,
n=23...,
t

co(t;a) =1, ci(t;a)=1— o

Let (yn(z;t;a))22, be the OPS generated by the Charlier moment
sequence (cn(t;a))22,. Then it follows from Proposition I that the
polynomials y,, = y,(z;t; a) satisfy the d.e.

(5.1) (1—2)y! + (az +t — a)y,, = anyy.

The Laguerre polynomial L) (z) satisfies the d.e.

(5.2) 2y + (a+1—2)y +ny=0.

The transformations z — z — 1 and z — az transform the d.e. (5.1)
into the d.e. (5.2), with o = —¢ — 1. Hence,

Theorem 5.1. The orthogonal polynomzials generated by the sequence
of Charlier moments (c,(t;a))2, are first-degree transformations of
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the Laguerre polynomials Lg{l) with o = —t — 1. For the Turanian of
the Charlier polynomials we find

T(co(t;a),c1(t;a), ... ,cn_1(t;a))
=a D121 (=) ()" (1 =t)" 2 (n—3—1)%(n—2—1).

(Compare [4, p. 73 ff.]).

Remark 5.1. The sequence (c,(t;a))%2, of Charlier polynomials is
positive definite if a # 0 and ¢ < 0.

6. Meixner moments. Meizner 1 polynomials. The Meixner I
polynomials are defined by (see [2])

N AYE R
_ B — (—1\"n! —k
my(t) = my(t;b5¢) = (1) nE (k)(n—k)c ,
k=0
c#0,1and b#0,—1,—2,.... Hence,

mn(0) = (—l)”n!<_b> .

n

Normalized Meixner I polynomials are defined by

en(t) = , n=0,1,...,

where b and c¢ are assumed to be real, b > 0, from now on. The
recurrence relations are

eb+n—1)c,(t) —[(c— Dt + (c+ 1)(n —1) + cbley,—1(t)
+ (n—1Dep—2a(t) =0, n=23,...,

c—1
co(t)=1, cf(t)= e

t+ 1.

Proposition I leads to the d.e.
(6.1)
(c2® = (c+1)2)yp(2) + [eb(z — 1) = (c = Dt]yp(2) = en(b+n— 1)ya(2).
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Here (yn(2))22 o = (yn(z;t;b;¢))22, denotes the OPS generated by the
Meixner I moments. First-degree transformations lead from (6.1) to

(6.2) s(1 — s)vll(s) — (bs + t)v,(s) + n(b — 1+ n)v,(s) =0,

where v, (s) = yn(1 — ((c = 1)/c)s).
We put b=¢g+1 and ¢t = —p — 1. Then the d.e. in (6.2) becomes

s(1 = s)vp(s) + [p+1 = (g +1)s]up(s) + n(g + n)on(s) = 0.

Obviously, v, (s) = J,(p, g; $), the Jacobi polynomial of degree n on the
interval [0, 1]. Moreover, y,(z) = Jn(p, ¢;7(1—2)), where v = ¢/(c—1).
If the y,, are normalized such that they are monic, then we have the
recurrence relations

_ ’Y(lfz)_*'/@)n

Yn(z) = _—7?Jn—1(z) -

Oy —
;2 Ly (2).

For the Turanian T'(co(¢), ¢1(¢), ... , cn—1(t)) of the normalized Meixner
I polynomials we find

T(co(t),cr(t), ... yenoi(t) =7 " Do a2 202 Lo, 1,

where

Bp+k)atk-Da-—ptk-1)
(q+2k*2)(q+2k71)2(q+2k)7 =1,Z,....

(6.3) ap =
Hence, we have

Theorem 6.1. The orthogonal polynomaials generated by the sequence
of Meizner I moments are first-degree transformations of the Jacobi
polynomials. For the Turanian of the Meizner I polynomials we find

T(co(t),c1(t), .- yen 1(t) =D a2 202 ,a, 4,

where ay, is as in (6.3).

Remark 6.1. The sequence of normalized Meixner I polynomials
cn(t) = cn(t; b;¢) is positive definite if b+ ¢ > 0 and ¢ < 0.
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Remark 6.2. Let PT(LQ’B ) be the Jacobi polynomial of degree n on
the interval [—1,1]. Then we have

1

If b = 2, then

1
o <1 - 27) = P (z),

and we are back to the example in our introduction.

Meizner 11 polynomials. The Meixner II polynomials M,(t) =
M,,(t; 0; n) satisfy

Ma(t) = [t = (2(n=1)+1)8] My -1(t) = (62 +1)(n—1)(n+1~2)Mpn_2,
n=23,...,
My(t) =1, DMy(t) =t—nd.

The normalized Meixner II polynomials ¢, (t) = (1), M., (t) satisfy
(n+n—1ecp — [t — 2 — 1) +1)dcn_1 + (62 +1)(n — 1)cp_a = 0.

This leads to the d.e.

(22 +202+ 8%+ 1)yl (2) + (nz — t+1)yh (2) — (nn+n(n— L)y, (2) = 0,

where y,,(z) belongs to the OPS generated by the sequence (¢, (t))5.
If we substitute z = is — §, we obtain the d.e.

(1= s*)vyi(s) + (=ns — it) v (s) + n(n +n — 1))vn(s) =0,

for v,(s) = yn(is — ). Comparing this to the d.e. for the Jacobi
polynomial Py(ba’ﬂ)(z), ie.,

(1—2%)y"(2) +[(B— ) — (a+B+2)2]y'(2) + n(n+a+B+1)y(z) =0,

we see

1
vn(s) = PP (s) = const. o Fy <—n,n+a+,8+ LB+1; ;Z> ,
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where
_ 72+1,t 6_7172 l't
T Tt PT T gt

The computation of the Turanian is similar to the Meixner I case.

7. Concluding remarks. 1. We have generated all classical
OPSs, including the Bessel OPS, from moment sequences consisting of
Laguerre, Hermite, ultraspherical, Charlier, or Meixner polynomials.
Consider the following table:

Moment sequence Generated OPS
Laguerre Bessel

Hermite Hermite
Ultraspherical Ultraspherical
Charlier Lagauerre
Meixner 1,11 Jacobi

2. The recurrence relations satisfied by the Jacobi polynomials and
the Bessel polynomials preclude application of Proposition I.
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