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GRADIENT THEORY OF PHASE TRANSITIONS
WITH GENERAL SINGULAR PERTURBATIONS"

NICHOLAS C. OWEN

1. Introduction. In this article we shall discuss some recent results
concerning the gradient theory of phase transitions in a Van der Waals
fluid. In particular, we shall be interested in singular perturbations of
the free energy of a more general form than €|Vu|?, which has been
studied in detail in [4, 10 and 14].

In the Van der Waals theory of phase transitions, the equilibrium
states of the system are given by the minimizers of the total free energy
I(u) = [, W(u)dz, where QCR™ is bounded and open, and u : @ — R
is the density of the fluid. The function W : (0,00) — R is the free-
energy per unit volume. We shall assume that W satisfies the following
conditions

W : (0,00) — [0,00) is C3,

W(r) — oo as T — 0, o0,

W(r) =0 if and only if 7 = a,b, where 0 < a < b < o0,

W' (a) >0, W"(b) > 0.

Hence, W is a nonconvex function with two minima of equal heights at
u = a,b. (For the case where the free-energy W has two local minima

of different heights, we consider the integrand W(r) — (ar + ), for
some a, 8 € R.) We refer to a and b as the phases of the fluid.

We shall look for minimizers of I in the class of functions satisfying
the constraint

(1) /Qu(w) dx = M;

that is, the total mass of the fluid is specified. If M € (a|Q],b/Q)),
where |Q| is the measure of €, then the minimizers of I subject to (1)
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are the piecewise constant functions

R a T€EA,
i(z) = b ze€B

where A, B are any disjoint measurable sets such that AU B = Q,
ANB = ¢ and |A| = (b|Q] — M)\(b — a), [B| = (M — a|Q)\(b - a).
Clearly, there are infinitely many such minimizers.

One method to resolve this nonuniqueness is to select as admissible

functions those which are limits of the minimizers, u., of the perturbed
energy functional,

(2) I(u) = / (W () + €2|Vul?} de,

as the parameter € goes to zero. The extra term ?|Vu|? represents
interfacial energy; its effect is to smooth the minimizers of I and
penalize large changes in u.

In the case n = 1, the pointwise limits of u. as ¢ — 0 have been
determined in [4]. In the case n > 1, there is a slightly weaker result:

Theorem 1 [10, 14]. Suppose u. € WH(Q) is a minimizer of I.

LY(Q
subject to (1) and suppose u. —(> )U() as € = 0. Then ug ts a solution
of the minimal surface problem

Minimize Perqg{u =a} foru e BV(Q),W(u(z)) =0 a.e.
and / udr = M.
Q

Here, BV (2) is the space of functions of bounded variation on €2 and
PergA = [, |VXal. If DA is smooth, then [, |[Vxa| = H* 1(0ANQ)
where H"~! is the n — 1 dimensional Hausdorff measure. (For further
details on functions of bounded variation see [6].) This theorem shows
that the effect of the ¢2|Vu|? perturbation is to pick out the minimizers
of I which have minimal surface area between the phases.

A natural question to consider is whether or not the same theorem is
true for a more general perturbation. By a more “general perturbation”
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we shall mean replacing the integrand in I, by f(u,eVu) where f is
a smooth function satisfying f(u,0) = W (u) and f(u,p) is a convex
function of p (precise hypotheses will be given in the next section).
Two examples of general perturbations are

(i) f(u,eVu) = W(u) + 2| Vul? + e*|Vul?,

(i) f(u,eVu) = W(u)+e2(AVu, Vu), where A is a positive definite
n X n matrix.
It turns out that the resulting variational problems that ug satisfies
for each of these examples are quite different. This is because in
example (i) the perturbation just depends on the magnitude of Vu,
whereas in example (ii) the direction of Vu is also considered. Thus, for
example (ii) we expect the limit problem to depend on the orientation
of the interfaces. We shall call a perturbation isotropic if it can be
written in the form f(u, Vu) = f(u,|Vu|). Otherwise, we shall call the
perturbation anisotropic.

The general problem of determining a limit functional of a sequence
of functionals is part of the theory of I'-convergence of nonlinear func-
tionals developed by De Giorgi. We refer to [1] (where I'-convergence
is called “epi-convergence”) for further information on I'-convergence.

2. General perturbations. We shall consider singularly perturbed
functionals of the form

Je(u) = /Qf(u,EVu) dz,
where f satisfies:
H1 f(u,p): (0,00) x R® — [0,00) is C3,
H2 f(u,0) = W(u), Yu € (0,0),
H3 f,,(4,0)=0,Vu e (0,00),i=1,2,...,n,
H4  fp.p, (u,p)nin; >0, Vu € (0,00), ¥p € R", Vn € R"\{0},
H5 There exists k; > 0 such that
f(u,p) > ky|p|? Yu € (0,00), ¥p € R",

H6 There exists N > 0, k3 > 0 and ¢p > 2 such that
f(u,p) < W(u) + ko |p|?° Vu € (0,00), ¥p € R"™ such that |p| > N.
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Note, by H2 and H3, a Taylor expansion of f(u,eVu) about (u,0)
gives

1
f(u,eVu) = W(u) + §fp,.pj (u,0)et 2, U 5,
(cf. (2)).
Since f is convex in its highest derivative (H4) it follows by the direct
method of the Calculus of Variations that there exists a minimizer of

J. in the class of functions W11(Q) satisfying the constraint (1). We
shall denote minimizers of J. subject to the constraint (1) by u..

Ll
Suppose u —(> ug as € — 0. In order to determine what limit
problem ug satisfies we need to construct two new functions as follows:
Let v € S ! = {y € R": |y| = 1}. By H5, the algebraic equation

(3) Vi fp (uymv) — f(u,rv) =0

can be solved for r € [0,00); that is, there exists a function 7 :
(0,00) x S"~1 — [0, 00) such that r = #(u,v) solves (3). Furthermore,
the function 7 is continuous and

7(a,v) = 7(b,v) =0, F(u,v) >0 Yu € (a,b),Vv € "1
Let p € R™"\{0} and s € [0,00). By the convexity of f(u,-),

f(u,sp) = f(u,7(u, 9)p) + D - fp(u, 7(u, p)P)(s — 7(u,p)),

where f, = V,f(u,p) and p = p/|p|. Setting s = |p| and using the
definition of #(u,p) gives

4)  fwp) = folu,7(u,p)p) = (f(u,7(u, p)P)\7(u, p))|p|.
Let

G(u,p) = { (f (u,7(u,p)P)\7(u, P))|p| u# a,band p# 0,

0 otherwise.
It is reasonably straightforward to show that G is continuous, and
G(u,-) is convex and positively homogeneous of degree 1.

From (4), we see that G(u,p) is just the tangent cone to f whose
vertex is at the origin.
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3. The isotropic case. In this section we shall consider the isotropic
perturbation f(u,p) = f(u,|p|). It follows that the functions 7 and G,
defined in the previous section, can now be written as 7(u,v) = 7(u)

and G(u,p) = (f(u, #(u))\*(u))p|-
The following result shows that for isotropic perturbations, the limit
function ug solves a simple geometry problem:

Theorem 2 [11]. If f(u,p) is isotropic, then ugy solves
Minimize Perqg{u =a} foru € BV(Q), f(u(z),0) =0 a.e.

and /udx =M.
Q

Comparing this result with Theorem 1 we see that ug satisfies the
same geometry problem. Hence, for isotropic perturbations there is no
loss of generality in just considering the simplest perturbation &2|Vu|?.

The first step in the proof of Theorem 2 is to scale and extend the
functional J.. Define

F.(u) = { Jo e f(u, e[ Vul) dz we WHY(Q), Joudz =M,

+00 otherwise,
and
KPerg{u=a} we BV(Q),f(u(z),0)=0a.e.,
Fo(u) = Jqude =M,

400 otherwise,

where K = [7 f(r,#(r))\() dr.

The functionals F. and Fy, which are both defined on L', are related
in the following way:

(A) For each v € L'(Q) and for each sequence {v.} in L'(Q) such
LY(9)
that v. = v as e — 0,

lim F (ve) > Fo(v)

e—0
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(B) For each w € L'(2), there exists a sequence {w,} in L!(2) such

LY(Q
that w, —(>)w as ¢ = 0 and

;% F.(we) = Fy(w).

In terms of the convergence of functionals, (A) and (B) are equivalent
to saying that Fy is the I-limit of F. as ¢ — 0 ([1]).

Theorem 2 follows immediately from (A) and (B) since if {w.} and
w are chosen as in (B), then

Fo(w) = lim F.(we) > lim Fe(ue) > Fo(uo),

e—0 e—0

where the last inequality follows by (A). The result follows since w is
arbitrary.

We give now a sketch of the proof of (A). Without loss of generality,
suppose {v.} C Whi(Q), fﬂ vedr = M and a < v, < b, Ve > 0.

1
Furthermore, suppose vsL—(>Q)v, where v € BV () satisfies fQ vde = M
and f(v(z),0) =0 a.e. By (4) and the homogeneity of G,

(5)
Fw) 2 [ e'GueVo)do = [ Glon Vo do = [ 960, da,

where ¢(s) = [7(f(r,7(r))\#(r))dr. By dominated convergence it

follows that qﬁ(va)L 9)¢( ), so that lower semicontinuity of the total
variation ([6]) and (5) imply

lim F.(ve) > lim | |V¢(ve)|dx > / [Vo(v)| de.
=0 e=0JQ
Part (A) now follows since
0 {v=al,
¢(v(z)) =
K {v=1},
= KX{v=b}-

4. The anisotropic case. When the perturbation depends on
the direction of Vu, the I'-limit will no longer be a simple geometry
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problem. Instead, the limit problem will be weighted in the sense that
there will be certain preferred directions for the normal to the interface.

In some recent work with P. Sternberg the limit problem for the
anisotropic case has been determined:

Theorem 3 [12]. If f is anisotropic, then uy satisfies
(6) Minimize Ho(u) for u € L*(Q),
where
b T
2 Jo [ G(s, %) dsd|p|(z) v e BV(Q), f(u(z),0) =0,
Ho(u) = Joudz =M,
+00 otherwise.

Here, p is the derivative measure of w, |u| is the total variation of u
and du(x)/d|p| is the associated Radon-Nikodym derivative (roughly
speaking, du(z)/d|u| lies in the normal direction to the boundary of

{u=a}).
One application of this theorem is to determine the existence and

structure of local minimizers of J. using the results of Kohn and
Sternberg [9] (see also the article by Peter Sternberg in this volume).

Some idea of the structure of solutions to (6) is given by the following
example in two dimensions. Let @ = [0,1] x [0,1] and consider the
perturbation

flu,eVu) = W(u) + e (4u?,, +u?, ).
Clearly, f satisfies H1-H6. The functions 7 and G are given by

W (u)

1/2
o] Gl =2 o,

7(u,v) = [

vesStt

(525 J2 W ()12 ds) Jo (403 (@) + 3(2)* d]u] ()
Ho(w) = we BV(Q), f(u(z),0) = 0, [, udz = M,
+o0o0  otherwise
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where v = dp/d|p|. Under the change of variables y; = 21/2, y2 = z2,
minimization of Hy reduces to solving the geometry problem:

(7)
Minimize |p|(Q') for w € BV ('), u € {a,b} and / udy = p\2,
QI

where ' = [0, 1] x [0,1]. Depending on the value of M, the boundary
of {u = a} will either be a line segment or a quarter-circle for a
solution of (7). Transforming back to z-coordinates shows that the
minimum of Hy will have either a line segment or an ellipse as its
interface. This should be compared with an example of Gurtin’s [7]
for the isotropic perturbation W (u) + €2|Vu|?, where the interface is
either a line segment or a quarter-circle. Other examples are discussed
in [12].

As in the isotropic case, the proof of Theorem 3 follows immediately
from showing that the rescaled functionals

H.(u) = { Joe Hf(u,eVu)dz ue Wl"l(Q), Jqudz =M,
+00, otherwise,

converge, in the sense of I'-convergence, to Hy. We shall give a brief
sketch of the proof of the lower semicontinuity property (A) of I'-
convergence. Details of the proof of (A) and (B) can be found in [12].
(The proof in [12] is actually for the case where f(u,eVu) is defined for
all v € R and there is no integral constraint on w; it is straightforward
to adapt the proof to the case considered here.) Suppose the sequence

1
{ve} € WH1(Q) and vy € L1(Q) are such that vsL—(>Q)v0 and H.(v),
Hy(vp) are finite. By (4) and the homogeneity of G,

He(vs)z/G(vs,Vvs)dx.
Q

Since G(u,-) is convex and homogeneous of degree one, we can apply
a representation result of Dal Maso [5, Theorem 3.4] to show that
the greatest L!-lower semicontinuous which is less than or equal to
Jo G(u, Vu) dz is Hy. Hence,

lim H.(ve) > lim | G(v, Vve)dz > Hy(v).

e—0 e—=0JQ
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In [12], nonhomogeneous perturbations of the form f(z,u,eVu) are
also considered. In this case, the limit problem is weighted spatially in
addition to the directional dependence.

Finally, we remark that it would be interesting to extend the method
of singular perturbations of nonconvex variational problems to the
theory of phase transformations in elastic solids. In elasticity theory,
the unknown u :  — R" is the displacement of the solid from some
reference state and the behavior of the solid is determined through

the stored-energy density function ®(Du), where Du = (g—f> The

functions ® that are of interest in phase transformations are those
which fail to be rank-one convex. (See [2] for a discussion of rank-
one convexity.) In this situation, the minimizer of [, ®(Du)dz will
not exist in a classical sense. However, the minimizing sequences
of [, ®(Du(z))dx indicate that equilibrium deformations of the solid
consist of fine bands of different phases. One possible way to determine
the geometric structure of these bands is to consider the perturbed
functional [,{®(Du) +¢e%|D?ul|?} dx, for which a minimizer exists. For
further details on phase transformations in solids see [3,7,8 and [13].
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