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STABILITY OF INTERFACES WITH
VELOCITY CORRECTION TERM

J. CHADAM™T AND G. CAGINALP"

ABSTRACT. We consider two-dimensional solidification
problems in which both surface tension and dynamical under-
cooling are incorporated into the temperature condition at the
interface. Our study indicates that the presence of a dynam-
ical undercooling term does not alter the stability-instability
spectrum. That is, a wave mode is unstable in the presence
of the dynamical undercooling and surface tension terms if
and only if it is unstable in the presence of the surface ten-
sion term alone. The magnitude of the exponential growth
or decay, however, is strongly influenced by the presence of
dynamical undercooling. Within the unstable mode regime,
dynamical undercooling tends to decrease the magnitude of
the instability. In this sense, then, it is a stabilizing influence.
Within the stable mode region, the influence of the dynamical
undercooling depends on the magnitude of the velocity.

1. Introduction. Mathematical models of solidification which
include the Gibbs-Thomson equilibrium conditions have been studied
for quite some time [8,9]. Here we study the shape stability of
planar fronts in the context of a simplified nonequilibrium model
which includes dynamical undercooling (interface attachment kinetics)
[1,4,6,11,12, and for a more general model, 7]. Specifically let the
curve in R?, described by

(1.1) z=R(y,t) or S(z,y,t)=z— R(y,t) =0

be defined as the interface which separates the liquid and solid phases.
With T denoting temperature (scaled so that it vanishes for a planar
interface at equilibrium), # = Vs/|Vs| the unit normal (in the direction
from solid to liquid), and v the normal component of the velocity
(positive if motion of the interface is toward the liquid side), one may
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write the system of equations as

R, YRy,
v=—q(T+76(5), gz =4 [T -
(1+R§)1/2 (1+R§)3/2
(1.3) onS=0
— Vs
(1.4) VT ~Lv, T,-T,R,=-LR, onS=0.

Here L, v, K are latent heat, surface tension and curvature, respectively.
The constant ¢ incorporates the surface tension and relaxation time
constants and must be positive. These equations are subject to the
initial and boundary conditions

(1.5) T(z,y,0) = Ty(z, y); T(z,y,t) > Too asz — oo.

Thus, when g &~ oo then, in order to obtain finite normal velocities, one
must have the boundary temperature maintained at the equilibrium,
Gibbs-Thomson value —yk(s). On the other hand, if ¢ < oo, then the
boundary temperature from (1.3) is

(1.6) T(s) = —yk(s) —v/g;
i.e., it is undercooled by the dynamical quantity v/q.

When g = oo, the shape stability of solidifying fronts has been carried
out in various geometries [8]. In the planar case independent linear
analyses [5,10] established the stability of evolving planar fronts to
cos my bumps if

2
ym

1.7 — > 1.

(1.7) T

In [5] the stability calculation was based on a planar solution with #!/2
growth; i.e.,

(1.8) R(t) = at'/?

where « is the unique solution of

o Too
(1.9) ae"‘2/4/ e v dy=—-—">=
a/2 L
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when the ambient temperature is such that —T,/L < 1or L+T >0
(no t1/2 solution otherwise) [2]. Similar results are obtained for ¢ < oo
[4] with only a change in the temperature profile. For small ambient
temperatures of this sort we also established [3] when ¢ = co that all
planar solutions lead asymptotically to this ¢!/2 solution. Moreover,
for larger ambient temperatures, —T/L > 1, we showed [3] that
planar solutions of problem (1.1-1.5) can blow up in finite time. It
is interesting then, in this context, that the first result in section 2 is to
show that when ¢ < co and —T,/L > 1 (large ambient temperatures)
we obtain an advancing travelling front solution; i.e.,

(1.10) R(t) = at
and the velocity is selected by the data through
(1.11) a=—-q(Tw + L).

This suggests that the equilibrium model (¢ = co) breaks down for large
ambient temperatures and must be replaced by the nonequilibrium
version (¢ < o0o). From another viewpoint, when ¢ < oo the t/2
growth changes to t growth when —T, /L crosses 1. We point out that
this transition from ¢'/2 to ¢t growth when the ambient temperature
—Ts/L crossed 1 was also observed from numerical simulation of a
spherical nonequilibrium model [11]. In sections 3, 4, 5 we study the
linearized stability of this ¢ < oo, =T, /L > 1 planar solution with
respect to shape perturbations and find that precisely the same modes
are unstable as in the ¢ = oo model but that the magnitude of the
exponential growth and decay is strongly influenced by the presence of
the dynamical undercooling. Similar results are mentioned in [12] and
worked out [6] in the case —T,,/L ~ 1. We remark that in a more
general model [7] it was observed that it is possible to have the onset
of oscillatory instabilities before those which are described here.

We thank the referee for informing us that Strain [13] recently also
treated oscillatory instabilities.

2. The planar traveling wave solution. We propose a solution
to (1.2)—(1.4) of the type

(2.1) T(z,y,t) = 7(xz — at), R(y,t) = at, a>0.
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Defining the new variable £ = x — at, one obtains the following
transformation of (1.2)—(1.4):

(2.2) ™ +ar'=0
(2.3) a=—qr at £€=0
(2.4) ' =—La

(2.5) T = Teo @S & —> 00

with primes denoting differentiation with respect to &.

One may readily verify that
(2.6) T(,y,t) = Too + (Tp — Tog)e ™"~

is the solution to (2.2)—(2.5) with T}, = T + L which is clearly the
value of the temperature at the interface. Furthermore, the consistency
relation

(2.7) a=—qT,

is forced on the velocity a.

We note that the positivity of the velocity a, along with substitution
of (2.6) into (2.4) implies

(2.8) To + L <O0.

That is, the temperature at infinity must be sufficiently low compared
with the latent heat.

The case ¢ = oo is the more traditional modification of the Stefan
model in which (1.3) is replaced by

(2.9) T=—vk

while (2.3) is replaced by 7 = 0 (since curvature is zero for the plane
wave). In this case the traveling wave 7(¢) = T\, + Be™% must satisfy
Too + B =0 and aB = —La so that a is arbitrary. For finite g, the
velocity a is selected by (2.7).
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3. Stability of a planar solution. Changing to moving coordi-
nates

(3.1) ¥ =z — at, Yy =y, t'=t
we may now rewrite the temperature profile 7 as
(3.2) TP (z') = Too + (Tp — Too)e %
with Ty = T + L and a = —qTp.

Transforming equations (1.2)—(1.4) via the moving coordinates (3.1),
one obtains (upon dropping the primes)

(3.3) T, = AT + aT, z > r(y,t)

a—+re YTyy
34) Tt |- e = r(y, t
S (e R e @3/2] po el
(3.5) T, —ryTy = —L(a+r)
(3.6) T—Ts asx— 00 T(z,y,0) = To(z,y)

where r(y,t) = R(y,t) — at has been defined.
We now assume a perturbed plane wave of the form
(3.7) T(z,y,t) = TP(x) + 6T (z, y, 1)
(3.8) r(y,t) = 0+ 67 (y, t)
where z,y,t are the moving coordinates and 0 is the planar front in

this coordinate system. Substituting (3.7), (3.8) into (3.3)—(3.6), one
obtains (upon dropping the tildes) the linearized equations

(3.9) T, = AT +aT,, x>0
(3.10)

ri(y,t) = —q[r(y, )TL(0) + T(0,y,t) — yryy(y,t)], =0
(3.11) TP (0)r + T(0,y,t) = —Lr(y,t), z=0.

We now assume the following sinusoidal form for the perturbation
(3.7), (3.8)

(3.12) T(z,y,t) =
(3.13) r(y,t) =

T(z)e” ™" cosmy,

o(m)t

e cosmy,
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i.e., we consider flow in a channel with zero flux boundary conditions.
Substituting (3.12) and (3.13) into (3.9)—(3.11), one obtains (upon
dropping the hats)

(3.14) oT =T"-m*T +al’, x>0
(3.15) o = —q[—aL + T(0) + ym?]
(3.16)

a’L +T'(0) = —Lo, z=0, T—0 asz— oo.

The solution to the differential equation (3.14) such that it satisfies
the asymptotic condition (3.17) is

a+ (a® + 4(o + m?))'/?

(3.18) T(z) = Ae” 1"l |n| = 5

The interfacial conditions (3.16), (3.17) imply the identity

1
(3.19) 2 [a —va?+4(oc+ mz)} [aL - % — ,ymz] = Lo +d’L.

The existence of a positive o solution to (3.19) for a particular wave
number m implies the instability of the mode. From (3.19) we can see
immediately that a necessary condition for instability is:

(3.20) aL — < — ym? > 0.
q

We note, first of all, that as ¢ — oo (neglecting the dynamical
undercooling) this approaches the known instability criterion [9,10]

2
ym

21 = — <1

(3.21) p aL <

Secondly, the presence of a finite ¢ in (3.20) makes it more difficult
to satisfy this criterion. However, this necessary condition is not
sufficient and hence one cannot yet infer that dynamical undercooling
is a stabilizing factor.

We now give the generalization of the analysis in [5,10] of instabilities
associated with real ¢’s. A separate, independent analysis for complex
o’s is given in [13].
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4. Analysis of spectrum (unstable regime). Our basic goal is
to find the general properties of the solution o to (3.19) and to examine
its dependence on m and ¢q. Writing identity (3.19) as
(4.1)

2L 2qL 2
g(m’o_) = _ /a2+4(0,+m2) _ ( Q+a)0+a qL+aym=q f(m,a),

—0o + aLg — ym3q

provided o # aLq — ym?q, we must determine the value o; at which
the curves f and g intersect. An instability will occur if this value of
o; is positive.

The minimum value of ¢ in the domain of g will be denoted by

2
(4.2) oo = T“ —m?.

The function f has vertical and horizontal asymptotes of

(4.3) o, = q(aL —ym?),
(4.4) fr=—(2qL + a),

respectively (see Figure 1). We note that (4.3) places an upper bound
on the value of ;. It is natural to consider separately the cases in which

S,
>

glaL— m?) >0
------------ - (2qL + a)

T-—-—-——4--—-=-=====-%-—-

N

FIGURE 1. Intersection of curves for p < 1.
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the vertical asymptote is on the left or right half plane. We define the
parameters

4. = = — — =
(4.5) p=To 0 TEa I

and consider first the case p < 1.
With f and g defined by (4.1) we let

(4.6) h(m,o) = g(m,o) — f(m, o).

An instability will occur for a particular value of m and the physical
parameters if and only if o;, the point of intersection of f and g, is
positive. By looking at the left portion of Figure 1, one sees that this
will occur if h(m,0) > 0. Similarly, stable growth will occur if o; is
negative, i.e., h(m,0) < 0.

Using (4.5) we may rewrite h(m,0) as

(4.7) h(m,0) =a {(1 + 47‘)1/2 B %}

so that the curve h(m,0) = 0 which separates stability and instability
is just the parabola

(4.8) s=(1-p)?, 0<p<l1

with the large s side describing the stable part of the spectrum, as
shown in Figure 2.

An interesting aspect of (4.8) is the absence of a role by ¢, the
dynamical undercooling. That is, in the region 0 < p < 1, the
stability or instability of each mode described by m is unaffected by
the magnitude of g.

The next question we address within the p < 1 regime is the
dependence of ¢; on g. That is, how does the actual growth rate of the
instability depend on ¢? From Figure 1 we see that as g decreases (i.e.,
increased dynamical undercooling) the horizontal asymptote moves
upward while the vertical asymptote moves to the left. In order to
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FIGURE 2.

see that the intersection o; moves to the left as g decreases, we may
rewrite (4.1) as

(2Lo + a®L + aym?) + ac/q
4. —Jar+ 4 2) = .
- AT S T L= md) o]

The left-hand side (i.e., g) is independent of g, while the right-hand
side (i.e., f) is a decreasing function of ¢ for 0 < ¢ < o,. Hence
the intersection, o;, occurs at a smaller value (see Figure 3). Hence,
in the unstable regime, the dynamical undercooling has a stabilizing
effect in that the exponential growth rate o; becomes smaller while
still remaining positive. The results are summarized below.

Theorem. If p satisfies 0 < p < 1, then the plane wave solution
(2.6) to (1.2)—(1.4) is stable if s > (1 —p)? and unstable if s < (1 —p)?
independently of q. Furthermore, o; varies monotonically with q¢ and
is bounded above by c;(00). If v =0 (p = s = 0), then the solution is
unstable with o; varying monotonically with q.

5. Analysis of spectrum (stable regime). We consider now
the regime p > 1. Once again, we seek a solution o; to (4.1), which
will necessarily be negative if it exists at all (see Figures 4a, b, c).
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FIGURE 3.

FIGURE 4a. No intersection and consequently no solution.
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FIGURE 4b. Intersection at negative value; stable growth.

FIGURE 4c. The borderline case f(o:) = 0.
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The function g is unchanged while f differs mainly in that the vertical
asymptote o, is now in the left half plane. A real intersection of the two
curves will occur, resulting in a stable solution if f(o.) < 0. Otherwise,
an intersection will not necessarily occur.

Substituting 0. = —a?/4 — m? into f(m,o), we write

(—% - m2> (2Lq + a) + (La + ym?)agq

I L o NN o T

We note that if either 7 or ¢ becomes large while a and m are
fixed, then f(o.) will be negative, resulting in stable growth of the
interface. Alternatively, if ¢ becomes very small (i.e., strong dynamical
undercooling term) then f(o.) ~ a > 0 which means that there is no
perturbed solution for a which is sufficiently large.

In the case where f(o.) < 0, we may examine the dependence of o;
on g. For an intersection in the second quadrant, equation (4.1) may
be written as

(5.2) T E (o T ) = (=2L 4 La® + aym?)/|o| + a/q‘

|La —ym?|/|o| +1/q

Hence, if a is sufficiently large, the right-hand side will increase as
q becomes smaller. This means that the solution will become even
more stable. If a is sufficiently small, the right-hand side will decrease,
resulting in a less negative rate of growth o;.

The conclusion for the p > 1 case then is that the role of finite
q is more ambiguous, with the dynamical undercooling exerting a
stabilizing influence for large velocities but destabilizing for small ones.
In either case, however, the influence is not capable of changing the sign
of the exponential growth, though it may change a stable perturbed
interface to one which does not correspond to a solution.
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