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RIEMANN INTEGRATION IN BANACH SPACES

RUSSELL GORDON

In this paper we will consider the Riemann integration of functions
mapping a closed interval into a Banach space. This problem was
first studied by Graves [4]. As new results in the theory of Banach
spaces appeared, various authors added to the theory of vector-valued
Riemann integration. Most of the results in this paper are a compilation
of the works of Graves [4], Alexiewicz and Orlicz [1], Rejouani [9, 10],
Nemirovski, Ochan, and Rejouani [7], and da Rocha [11].

Many of the real-valued results concerning the Riemann integral
remain valid in the vector case. However, in the vector case a Riemann
integrable function need not be continuous almost everywhere. It is an
interesting problem to determine which spaces have the property that
every Riemann integrable function is continuous almost everywhere and
an analysis of this problem will be one of the main focuses of this paper.
We will also examine the relationship between the Riemann integral and
other vector-valued integrals.

We begin with some terminology and notation. Throughout this
paper X will denote a real Banach space and X™ its dual.

Definition 1. A partition of the interval [a, b] is a finite set of points
{t; : 0 <i < N} in [a,b] that satisfy a =t) < t; <ty < -+ <ty_1 <
ty = b. A tagged partition of [a,b] is a partition {t; : 0 < i < N}
of [a,b] together with a set of points {s; : 1 < i < N} that satisfy
$; € [ti—1,t;] for each 3. Let P = {(s;, [ti—1,t]) 1 1 < i < N} be a
tagged partition of [a,b]. The points {¢; : 0 < ¢ < N} are called the
points of the partition, the intervals {[t; 1,%;] : 1 < i < N} are called
the intervals of the partition, the points {s; : 1 < i < N} are called
the tags of the partition, and the norm |P| of the partition is defined
by |P| = max{t; —t;—1 : 1 <i < N} If f: [a,b] — X, then f(P) will
denote the Riemann sum Efil f(si)(t; — t;—1). Finally, the (tagged)
partition P; is a refinement of the (tagged) partition P if the points
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924 R. GORDON

of P, form a subset of the points of P;. In this case we say that Py
refines Ps.

Definition 2. Let f : [a,b] — X.

(a) The function f is Rs integrable on [a,b] if there exists a vector
z in X with the following property: for each ¢ > 0 there exists § > 0
such that || f(P)— z|| < € whenever P is a tagged partition of [a, b] that
satisfies |P| < 6.

(b) The function f is Ra integrable on [a, b] if there exists a vector z
in X with the following property: for each € > 0 there exists a partition
P. of [a,b] such that ||f(P) — z|| < ¢ whenever P is a tagged partition
of [a, b] that refines P..

It is clear that the vector z is unique in either case and a standard
argument shows that a function integrable in either sense must be
bounded. An Rs integrable function is necessarily Ra integrable. The
converse is true as well.

Theorem 3. A function f : [a,b] = X is Ra integrable on [a,b] if
and only if it is Rs integrable on [a,b].

Proof. Suppose that f is Ra integrable on [a,b]. Let z be the Ra
integral of f on [a,b] and let M be a bound for f on [a,b]. Let € > 0
and choose a partition P, = {t; : 0 < k < N} of [a,b] such that
||f(P) —z|| < e/2 whenever P is a tagged partition of [a, b] that refines
P.. Let 6 =¢/(4M N). We will show that || f(P) — 2|| < € whenever P
is a tagged partition of [a, b] that satisfies |P| < . It then follows that
f is Rs integrable on [a, b].

Let P be such a tagged partition. Form a tagged partition P; of [a, b]
as follows. The points of P; are the points of both P and P.. The
tag of each interval of P; that coincides with an interval of P is the
same as the tag for P. The tags of P; for the remaining intervals are
arbitrary. Let {[ck,d;] : 1 < k < K} be the intervals of P that contain
points of P, in their interiors and note that K < N — 1. In the interval
[k, di] let cp = uf <uf <. <uf | <wuf = di where the points
{uF : 1 < i < ny—1} are the points of P in (c,d). Let s be the tag
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of P for [ck,dk]| and let vF be the tag of Py for [uf |, u¥]. Then

1P = £PO = || 07601 — ) 3 oyt — )|
<D0 (e — PRI — )
k=1i=1
<2M Z(dk — Ck)
< 2M(N — 1)
<z

Since P; is a refinement of P., we obtain
€

£ (P) =2l < [IF(P) = fF(POIl + £ (P1) — 2|| < §+ 5

= E.

This completes the proof. o

Definition 4. The function f : [a,b] — X is Riemann integrable on
[a,b] if f is either Rs or R integrable on [a,b].

The next theorem presents several Cauchy criteria for the existence
of the Riemann integral. As in the scalar case, these conditions are
quite useful in proving other properties of the Riemann integral.

Theorem 5. Let f :[a,b] = X. The following are equivalent:

(1) The function f is Riemann integrable on [a,b].

(2) For each € > 0 there exists § > 0 such that ||f(P1) — f(P2)|| < €
for all tagged partitions Py and Py of [a,b] with norms less than §.

(3) For each € > 0 there exists a partition Pe of [a,b] such that
[|f(P1) = f(P2)|| < € for all tagged partitions P1 and P2 of [a,b] that
refine Pe.

(4) For each € > 0 there exists a partition P. of [a,b] such that

[|f(P1) — f(P2)|| < € for all tagged partitions Py and Ps of [a,b] that
have the same points as P-.
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Proof. The proofs that (1) and (2) are equivalent and that (1) and (3)
are equivalent follow standard advanced calculus arguments using the
Rs and Ra definitions, respectively, of the Riemann integral and will
be omitted. To complete the proof we will show that (3) and (4) are
equivalent. Since (3) clearly implies (4) all that remains to be proved
is that (4) implies (3).

Let € > 0 and choose a partition P. = {¢; : 0 < i < N} of [a,d]
such that |[f(P1) — f(P2)|| < €/2 for all tagged partitions P; and
P2 of [a,b] that have the same points as P.. Let Py be the tagged
partition {(¢;,[ti—1,t;]) : 1 < ¢ < N}. For each 4, let W; be the set
{(ti = ti 1) f(t) = t € [ti_1,t;]} and let W = SN W;. Note that
||z]| < €/2 for all z in co (W — W) where co A denotes the convex hull
of A.

Let P = {(vk, [ug—1,ur]) : 1 < k < M} be a tagged partition of [a, b]
that refines P.. For each i, let k; be the index k for which u; = t;.
Then

N ki
F(Po) = F(P) =D {ft)(ti —tica) — D flok)(ur — up—1)}
=1 k=k;_1+1

— (ti —ti—1)f(vr)}

EZCO(Wi—Wi):CO(W—W)

i=1

and it follows that ||f(Po) — f(P)|| < /2. Now let Py and P, be tagged
partitions of [a,b] that refine P. and compute

1F(P1) = F(P)Il < {1F(Pr) = F(Po)l| + [1F(Po) = fF(P2)l| <e.

This completes the proof. o

A collection of standard definitions appears next. Measure and
measurable refer to standard Lebesque measure.
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Definition 6. Let f : [a,b] — X.

(a) The function f is scalarly measurable if z*f is measurable for
each z* in X™.

(b) The function f is of weak bounded variation on [a, ] if * f is of

bounded variation on [a, b] for each z* in X*.

(¢) The function f is of outside bounded variation on [a,b] if
sup{|| >_,(f(di) — f(cs))||} is finite where the supremum is taken over
all finite collections {[c;, d;]} of nonoverlapping intervals in [a, b].

(d) The function f is a scalar derivative of F : [a,b] — X on [a,b] if
for each z* in X* the function z*F is differentiable almost everywhere
on [a,b] and (z*F)" = z* f almost everywhere on [a, b].

The adjective outside is used in (c) to emphasize that the norm is
outside of the sum. It is well known that the notions of outside bounded
variation and weak bounded variation are equivalent.

The next two theorems summarize the basic properties of the Rie-
mann integral. All of the proofs are straightforward and will be omit-
ted.

Theorem 7. Let f : [a,b] = X be Riemann integrable on [a,b).

(a) The function f is Riemann integrable on every subinterval of
[a, b].

(b) If M is a bound for f, then ||f:f|| < M(b-a).

(¢) If T: X — Y is a continuous linear operator, then Tf is
Riemann integrable on [a,b] and f: Tf = T(f;J -

(d) For each z* in X*, the function z*f is Riemann integrable
on [a,b] and f;w*f = z* f:f Hence, the function f is scalarly
measurable, and for each x* in X* the function x*f is continuous
almost everywhere on [a, b].

Theorem 8. Let f : [a,b] — X be Riemann integrable on [a,b]

and let F(t) = fat f. Then F is absolutely continuous on [a,b] and f
is a scalar derivative of F' on [a,b]. Furthermore, at each point t of
continuity of f the function F' is differentiable and F'(t) = f(t).
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A Riemann integrable function need be neither measurable nor con-
tinuous almost everywhere. Before presenting examples to illustrate
this, we prove a theorem that gives a useful criterion for determining
whether or not a function is Riemann integrable. It is not difficult to
prove that a real-valued function of bounded variation is Riemann in-
tegrable. The vector analogue of this was first noticed by Alexiewicz
and Orlicz [1].

Theorem 9. If f : [a,b] = X is of outside bounded variation on
[a,b], then f is Riemann integrable on [a,b]. Consequently, a function
of weak bounded vartation is Riemann integrable.

Proof. We will show that f satisfies (4) of Theorem 5. Let ¢ > 0
be given. Let M be the outside variation of f on [a,b] and choose a
positive integer N such that (b — a)/N < ¢/M. Let P, = {t; : 0 <
i < N} be the partition of [a,b] for which ¢; = a + (i/N)(b — a). Let
Pl = {(ui, [tifl,ti]) | S ) S N} and Pz = {(’U,’, [t,;l,ti]) 01 S ) S N}
be tagged partitions of [a, b]. These partitions have the same points as
P. and we have

£ (P1) = f(P2)ll =

Z(f(ui) = f(vi))(ti — ti-1)

Hence (4) is satisfied and it follows that f is Riemann integrable on
[a, b]. O

The next few examples illustrate pathological characteristics of the
vector-valued Riemann integral. Examples 10 and 11 are due to
Rejouani [9]. Example 12 is due to Graves [4]. Example 13 is a
corrected version of an example of Alexiewicz and Orlicz [1]. Example
14 is due to Pettis [8]. We will use 6 to denote the zero in a Banach
space.
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Example 10. A measurable, Riemann integrable function that is
not continuous almost everywhere.

Let {r,} be a listing of the rational numbers in [0,1] and define
f:100,1] = ¢cop by f(t) = @ if ¢ is irrational and f(t) = e, if t = 7.
This function is Riemann integrable on [0,1] since it is of outside
bounded variation on [0,1], and it is clear that f is not continuous
almost everywhere on [0, 1].

Example 11. A measurable, Riemann integrable function that is
not of outside bounded variation:

Let {r,} be a listing of the rational numbers in [0,1] and define
f 00,1 — £y by f(t) = 6 if t is irrational and f(t) = e, if t = 7.
We show first that f is Riemann integrable on [0,1]. Let £ > 0 and let
§ = €% Let P = {(si,[ti—1,ti]) : 1 <i < N} be a tagged partition of
[0,1] with |P| < § and compute

1FP)]| = )t — i o\
< {é(tz — ti—1)2}%

& )

<P > =)

<e.

Hence, the function f is Riemann integrable on [0, 1] with integral 6.

To show that f is not of outside bounded variation on [0, 1], let NV be
a positive integer and for each positive integer ¢, let ¢; be an irrational
number in the interval (1/(¢ + 1),1/7). Then

£ (1)) |- (59 -

and this shows that f is not of outside bounded variation on [0, 1].

Note that f is weakly continuous almost everywhere on [0,1]. Fur-
thermore, all of the conclusions about f remain valid if the range of f
is any /¢, space for 1 < p < oo.
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Example 12. A Riemann integrable function that is not measurable
and not weakly continuous almost everywhere:

Define f : [0,1] — £[0,1] by f(t) = Xjo,q- It is easy to verify
that f is not measurable and that f is not weakly continuous almost
everywhere on [0, 1]. Since f is of outside bounded variation on [0, 1]
it is Riemann integrable on [0, 1].

Example 13. A measurable, Riemann integrable function that is
not weakly continuous almost everywhere:

Define f :[0,1] — CJ[0, 1] as follows. If ¢ is a dyadic rational number
of the form (2m — 1)27% with 2 < m < 2¢~1 then f(t) is the function
that equals 1 on the set {0,1,# — 271 ¢ 4 27k} equals 0 on the set
{t —27% ¢}, and is linear on the intervals between these points. If ¢ is
any other number, then f(t) is the constant function 1.

To show that f is Riemann integrable on [0,1], we will show that f
satisfies condition (4) of Theorem 5. Let ¢ > 0 and choose a positive
integer K > 2 such that 2% < ¢/5. For each n € {1,2,... 2K — 1}
let I, = 27K — 272K p2=K 4 2-2K] and let {J, : 1 < n < 2K} be
the remaining intervals of [0, 1] listed in increasing order. Let w,, and
v, be arbitrary points of I, and compute

i (f(vn) = f(un))p(In)|| < i 1 f(vn) = f(un)||(In)
< (28 —1)(2-27%)
<2.27K,

Now let u,, and v,, be arbitrary points of J,. It is easy to verify that
for each point s € [0,1] there are at most three integers n for which
(f(vn) = f(un))(s) # 0. It follows that for each point s in [0, 1] there
are at most three integers n for which (f(v,,) — f(un))(s) # 0. It follows
that

2K

D (F(wn) = f(un))p(Jn)

n=1

< 3max{u(J,)} <3-27K,

Let P. be the partition of [0,1] formed from the intervals {I,,} and
{Jn}. Let P; and P, be two tagged partitions of [0, 1] that have the
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same points as P.. The inequalities of the last paragraph show that
[|£(P1) — f(P2)|| <5-2 K < e. Therefore, the function f is Riemann
integrable on [0, 1].

To show that f is not weakly continuous almost everywhere on [0, 1],
we will show that f is not weakly continuous at any irrational point of
(0,1). Let s be an irrational number in (0,1) and let z* € C*[0, 1] be
defined by 2*¢ = ¢(s). For infinitely many integers k, there exists an
integer m > 2 such that (2m — 2)27% < s < (2m — 1)27*. For such k
let ¢, = (2m — 1)27%. The seqence {t;} converges to s and

Jim 2" f(ty) = lm f(tx)(s) = 0 # 1= 2"f(s).

Thus, the function z* f is not continuous at s and this shows that f is
not weakly continuous at s.

Example 14. A Riemann integrable function f such that ||f]|| is not
measurable and, hence, neither Riemann nor Lebesgue integrable:

Let E be a nonmeasurable set in [0, 1] and define f : [0, 1] — £[0, 1]
by f(t) =0 if t ¢ E and f(t) = X4y if t € E. Then it is easy to see
that f is of outside bounded variation and hence Riemann integrable
on [0,1]. However, the function ||f|| = Xg is not measurable.

A real-valued Riemann integrable function is Lebesgue integrable, but
a Riemann integrable function in the vector case is not always Bochner
integrable. Nevertheless, it is always Pettis integrable. This fact is
not obvious and Rejouani [10] appears to have the Dunford integral in
mind when he claims that it is obvious. (The reader should see Diestel
and Uhl [3] for the definitions of the Bochner, Pettis, and Dunford
integrals.)

Theorem 15. If f : [a,b] — X is Riemann integrable on [a,b], then
f 1is Pettis integrable on [a,b]. If, in addition, f is measurable, then f
is Bochner integrable on [a,b].

Proof. Since f is bounded and scalarly measurable, it is Dunford
integrable on [a,b]. The fact that f is bounded implies that the family
{z*f : ||z*|| < 1} is uniformly integrable on [a,b] and the Riemann
integrability of f implies that (D) [, f € X for every interval I C [a,b].
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Using these two facts, it is a standard measure theory argument to
show that (D) [, f € X for every measurable set E C [a,b]. Hence,
the function f is Pettis integrable on [a, b].

If f is measurable, then the bounded, measurable function ||f]| is
Lebesgue integrable on [a, b]. It follows that f is Bochner integrable on
[a, b]. O

The next result is due to Graves [4].

Theorem 16. Let F : [a,b] — X be differentiable at each point of
[a,b]. If F' is Riemann integrable on [a,b], then F(t) = F(a) + fat F'.

Proof. Since F is differentiable at each point of [a, b], the function F
is continuous on [a,b] and this in turn implies that F’ is measurable.
By Theorem 15, the function F’ is Bochner integrable on [a,b]. Since
F is absolutely continuous on [a,b] (F' is bounded), we have F(t) =
F(a)+(B) fat F’. Since the integrals (B) fcf F’" and (R) fat F' are equal,
the proof is complete. mi

It should be remarked that Graves did not prove the above theorem
using the Bochner integral because he did not have access to it. He
proves the theorem directly from the definition of the Riemann integral
using an argument that requires no properties of Banach spaces other
than the triangle inequality. His argument is a bit tedious and we have
chosen to omit it in favor of the above proof.

For real-valued functions the Riemann integral can be defined using
upper and lower sums. This Darboux approach leads to an integral
that is equivalent to the Riemann integral. For arbitrary vector-valued
functions the collection of Darboux integrable functions is contained in
but not equal to the collection of Riemann integrable functions. The
containment is proper since a function is Darboux integrable if and
only if it is bounded and continuous almost everywhere. We will prove
this fact after the necessary definitions. If f is defined on [a,b] and
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P ={t;: 0<i< N} is a partition of [a, ], then

N
W(f,P) =Y w(fslti1,ti))(ti —ti 1)
i=1
where w(f, [ti-1,t:]) = sup{||f(v) — f(u)|| : u,v € [ti—1,ti]} is the
oscillation of the function f on the interval [t;_1, t;].

Definition 17. Let f: [a,b] — X.

(a) The function f is Dj integrable on [a, b] if for each € > 0 there
exists 0 > 0 such that w(f,P) < e whenever P is a partition of [a, b]
that satisfies |P| < 6.

(b) The function f is Da integrable on [a,b] if for each € > 0 there
exists a partition P. of [a,b] such that w(f,P) < € whenever P is a
partition of [a,b] that refines Pe.

(¢) The function f : [a,b] — X is Darboux integrable on [a,b] if f is
either D5 or D integrable on [a, b].

The proof that a function is Dy integrable on [a,b] if and only if it
is Dp integrable on [a, b] is similar to the proof that a function is Ry
integrable on [a, b] if and only if it is R integrable on [a, b] and will be
omitted. It is not difficult to show that a function is Darboux integrable
on every subinterval of [a,b] if it is Darboux integrable on [a,b]. The
standard advanced calculus proof is valid here and shows that every
Darboux integrable function is Riemann integrable. The value of the
Darboux integral is the value of the Riemann integral.

In order to prove that a function is Darboux integrable if and only if
it is bounded and continuous almost everywhere, we introduce some
standard notation. Let f : [a,b] — X. For each t in (a,b), let
w(f,t) = lims_,o+ w(f,[t — §,t + 8]) be the oscillation of f at t. Let
w(fa a’) = 1im5—)0+ w(fa [0’7 a+ 5]) and w(fa b) = 1im5—>0+ w(fa [b - 57 b])
Note that f is continuous at ¢ if and only if w(f,¢) = 0. In addition,
the set {t € [a,b] : w(f,t) > a} is closed for each real number a.

Theorem 18. A function f : [a,b] — X is Darboux integrable on
[a,b] if and only if it is bounded and continuous almost everywhere on
[a, b)].
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Proof. The proof is standard, but we present it in detail.

Suppose that f is Darboux integrable on [a, b]. Then it is clear that f
is bounded. To show that f is continuous almost everywhere on [a, b],
let E, = {t € [a,b] : w(f,t) > 1/n} for each positive integer n and let
F = U,F,. Since each F, is closed, the set F is measurable and we
must show that u(E) = 0. If u(E) # 0, then there exist n > 0 and
a positive integer N such that u(Eyx) = 7. Let P be any partition of
[a,b] and let P; be the collection of intervals of P that contain points
of Ep in their interior. Then

W(f,P) > 3wl Du(l) > yon(Bx) =
IeP;

a contradiction to the Darboux integrability of f. Thus, the function
f is continuous almost everywhere on [a, b].

Now suppose that f is bounded and continuous almost everywhere
on [a,b], and let M be a bound for f. We will show that f is Da
integrable on [a, b].

Let ¢ > 0 and choose a positive integer N such that (b—a)/N < e/2.
Let En = {t € [a,b] : w(f,t) > 1/N}. We will construct a partition
P. of [a,b] such that the sum of the lengths of the intervals of P.
that intersect E is less than £/(4M) and the oscillation of f on each
interval of P, that does not intersect Ey is less than 1/N. Denote the
intervals of P that intersect Ey by P. and the remaining intervals
P! Since p(En) = 0, there exists a sequence {(c;, d;)} of disjoint open
intervals such that Ex C Uj(c;,d;) and Y (d; — ¢;) < €/(4M). Since
the set Ey is closed and bounded, it is compact and therefore a finite
number of the intervals {(c;, d;)} cover E. The closure of each interval
in the finite subcover intersected with [a,b] is an element of P.. Let
[, B] be an interval in [a,b] that is contiguous to the intervals of PL..
Since [a, B8] N En = ¢, for each t in [«, 8] there exists d; > 0 such that
w(f, [t — 6t t+ 6¢]) < 1/N. The collection {(t — ¢, t + ) : t € [e, B8]}
is an open cover of [, ] and thus there exists a finite subcover. The
endpoints of the intervals comprising the finite subcover that belong
to (a, ) together with o and 8 form a partition of [, 8]. Put the
intervals of this partition into P! and do this for all of the intervals in
[a,b] that are contiguous to P.. It is easily checked that the intervals
of P, and P! combine to form a partition P. of [a, b] with the desired
properties.
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Let P be a partition of [a, b] that refines P.. Let P’ and P” be the
intervals of P that are entirely contained within intervals of P, and P’
respectively, and compute

w(f,P) = Z w(f, Dp(I) + Z w(f, Du(I)
I€P! I€P"

€ 1
< 4~ (p—
<2M 4M+N(b a)

<5+€_
D) 2—5.

Thus the function f is Da integrable on [a, b]. o

Corollary 19. If f : [a,b] — X is Darbouz integrable on [a,b], then
f is measurable and ||f|| is Riemann integrable on [a,b]. Consequently,
the function f is Bochner integrable on [a, b].

Proof. By Theorem 18, the function f is continuous almost every-
where on [a, b] and hence measurable. The function || f|| is bounded and
continuous almost everywhere on [a,b] and hence Riemann integrable
on[a,b]. O

It is an interesting problem to determine spaces in which every
Riemann integrable function is continuous almost everywhere. This is
equivalent to determining those spaces in which a function is Riemann
integrable if and only if it is Darboux integrable. Since Lebesgue proved
that R has this property, we make the following definition.

Definition 20. A Banach space X has the property of Lebesgue if
every Riemann integrable function f : [a,b] — X is continuous almost
everywhere on [a, b].

The next theorem is useful in determining whether or not a given
space has the property of Lebesgue. Its easy proof will be omitted.
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Theorem 21. Let Y be a subspace of X.

(a) If X has the property of Lebesgue, then Y has the property of
Lebesgue.

(b) IfY does not have the property of Lebesque, then X does not
have the property of Lebesgue.

We begin by identifying those spaces that do not have the property
of Lebesgue.

Theorem 22. The following spaces do not have the property of
Lebesgue:

(a) the spaces cg, ¢, L, Cla, b],lx]a,b], and Ly|a,b],
(b) the spaces £, for 1 < p < oo,

(c) the space Ly[a,b], and

(d) the dual X* if X contains a copy of {1.

Proof. By Example 10, the space ¢y does not have the property
Lebesgue. Since ¢y imbeds in the remaining spaces of (a), we can apply
Theorem 21(b). Example 11 shows that £, for 1 < p < oo does not have
the property of Lebesgue. The theorem now follows since {5 imbeds in
Ly]a,b] and in X* if X contains a copy of ¢;. o

The next theorem is due to da Rocha [11]. In the proof we will
use the following special case of a result due to James [5]. If {z,} is
a normalized basis of the uniformly convex space X, then there exist
M > 0 and r > 1 such that ||Y, anz,|| < M(Y, |an|™)Y" for all
finitely nonzero sequences {a;,} of real numbers.

Theorem 23. An infinite dimensional, uniformly convex Banach
space does not have the property of Lebesgue.

Proof. Let X be an infinite dimensional, uniformly convex Banach
space. Since X is infinite dimensional, it contains a basic sequence {z, }
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and we may assume that ||z,|| = 1 for every n. Let Y be the closed
linear subspace generated by {z,}. Then Y is uniformly convex and
{z,} is a normalized basis of Y. To complete the proof it is sufficient
to prove that Y does not have the property of Lebesgue and apply
Theorem 21(b).

Let {r,} be a listing of the rational numbers in [0,1] and define
f:]0,1] = Y by f(t) = 6 if ¢ is irrational and f(t) = =, if t = r,. We
will show that f is Riemann integrable on [0, 1] with integral . Choose
M and r as in the remark preceding the theorem and let € > 0 be given.
Let § = (/M) ("=Y and let P = {(sk, [ti—1,tx]) : 1 <k < N} be a
tagged partition of [0, 1] that satisfies |P| < 6. Then

N

> fsk)(tr = th-1)

k=1

< M(i(tk - tkl)r>%

k=1

F(P)I =

Therefore, the function f is Riemann integrable on [0, 1]. Since it is
clear that f is not continuous almost everywhere on [0, 1], the space Y’
does not have the property of Lebesgue. u]

Corollary 24. The following spaces do not have the property of
Lebesgue.

(a) Infinite dimensional Hilbert spaces.

(b) The spaces Lyla,b] for 1 < p < oo.

Proof. These spaces are infinite dimensional and uniformly convex.
O

We next prove that a Lorentz sequence space does not have the
property of Lebesgue. Let 1 < p < oo and let w = {w,} be
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a nonincreasing sequence of positive numbers such that w; = 1,
lim, ,o w, =0, and ), w, = co. The Lorentz sequence space d(w, p)
is the Banach space of all sequences {a,} of real numbers for which
I{an}l| = sup{(X 0", |ao(n)|Pwn)'/P} is finite where the supremum
is taken over all permutations o of the positive integers. No Lorentz
sequence space is isomorphic to an ¢, space and for 1 < p < oo the space
d(w, p) is reflexive. For the proofs of these results see Lindenstrauss and
Tzafriri [6].

Da Rocha [11] states that d(w,p) does not have the property of
Lebesgue if p > 1 and offers a proof of this result, but the details
of his proof appear to be lacking. We offer another proof of this result
and extend the result to the case p = 1.

Theorem 25. A Lorentz sequence space does not have the property
of Lebesgue.

Proof. Let d(w,p) be a Lorentz sequence space. Let {r,} be a listing
of the rational numbers in [0,1] and define f : [0,1] — d(w,p) by
f(t) = 0 if t is irrational and f(t) = e, if ¢ = 7. It is clear that f is
not continuous almost everywhere on [0, 1]. To complete the proof it is
sufficient to prove that f is Riemann integrable on [0,1]. To this end,
we will show that f satisfies (4) of Theorem 5.

Suppose first that p > 1 and let € > 0 be given. Choose a positive
integer N such that N'/P~' < ¢/2 and let P. = {i/N : 0 <i < N}.
Let P be a tagged partition of [0, 1] that has the same points as P and
compute

N 1 p % 1 N % 1 . .
el (X (3) ) <3 (w) <1 wi<d
=1

i=1

If P; and P, are tagged partitions of [0, 1] that have the same points
as Pe, then [|f(P1) — f(P)I| < [[f (Pl + [f (P <e.

Now suppose that p = 1 and let £ > 0 be given. Since the Cesaro sums
(1/n) Y5 _, wi converge to 0, there exists a positive integer N such that
(1/n) Y p_qwr <e/2forn > N. Set P. = {i/N:0<i< N} LetP
be a tagged partition of [0, 1] that has the same points as P. and note
that ||f(P)]] < Zfil(l/N)wi < g/2. If P; and P, are tagged partitions
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of [0,1] that have the same points as P, then ||f(P1) — f(P2)|| < e.
This completes the proof. ]

As mentioned earlier, the space R has the property of Lebesgue.
By arguing in each coordinate, it is not difficult to prove that all finite
dimensional spaces have the property of Lebesgue. Nemirovski, Ochan,
and Rejouani [7] proved that ¢; has the property of Lebesgue. This
fact was discovered independently by da Rocha [11]. The two proofs
use the same technique and we reproduce this argument below.

Theorem 26. The space {1 has the property of Lebesgue.

Proof. Tt is sufficient to prove that a bounded function f : [0,1] — ¢4
that is not continuous almost everywhere on [0, 1] is not Riemann
integrable on [0,1]. Let f : [0,1] — ¢; be bounded but not continuous
almost everywhere on [0, 1]. There exist positive numbers a and 8 such
that u(H) = o where H = {t € [0,1] : w(f,t) > B}. We will prove that
for each & > 0 there exist tagged partitions P; and Py of [0, 1] with
|P1| < § and |P2| < ¢ such that || f(P1) — f(P2)|| > aB/4. By Theorem
5, the proof will be complete.

Let 6 > 0 be given. Choose a positive integer N such that 1/N < ¢
and let Py = {k/N :0 < k < N}. Let {[c;,d;] : 1 <i < p} be all of the
intervals of Py for which u(H N (¢;,d;)) > 0 and note that p/N > «.
For each positive integer j, let G; be the set of discontinuities of e; f
on [0,1]. If u(G;) # 0, then e;f and consequently f is not Riemann
integrable on [0,1]. Otherwise the set G = U;G; has measure zero
and every e;f is continuous on [0,1] — G. Let ¢ = af/16. We will
construct sets {u; : 1 < i < p} where u; € (H — G) N (c;,d;) for each
i, {v; : 1 <4 < p} where v; € (¢;,d;) for each ¢, and {n; : 0 < ¢ < p}
where each n; is an integer and 0 = ng < n; < --- < n, that have the
following properties. Let z; = f(u;) — f(v;) = {a;} Then ||z]|| > 8/2
foralld>1, 377 |af| < e27* for all i > 1, and Y 77" |af| < €27 for
all i > 2.

We proceed as follows. Let ng = 0 and choose u; € (H — G) N
(c1,d1). Since w(f,u1) > B there exists a point v; € (c1,d1) such
that [|f(u) — f(o)l| > B/2. Let 21 = f(u) — f(0n) = {al} and

choose an integer n; > ng such that 3222 aj| < €/2. Now choose
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ug € (H—G)N(ca,dz). Since w(f,uz) > B and since e; f is continuous
at uy for each 1 < j < n;, there exists vy € (cg,dz) such that
1f(u2) = f(v2)ll = B/2 and 3772, |ejf(uz) — €jf(v2)] < /4. Let
zy = f(uz) — f(v2) = {a3}; then St a3 < ¢/4. Choose an integer
ny > ny such that 3327 a3 < /4. We continue this process for p
steps and arrive at the desired sets.

n;—1 .
Lety; = >, aje; for each 1 <4 < p. Then
Jj=ni-1+1
ni—1
||z — yz|\—2\a\+2|a|<2€2’

Jj=ni

and 1
il = [lzill = [lzi =il = 58 — 227"

for all 1 <14 < p. Therefore,
P P
Zyi Z(yz - z;)
i i=1
|yl - ZH% — zil|
—B—2e27") =) 2e27¢
1<zﬂ )-%

pB — 4e.

P

>

i=1

M'@

1

7

M@

>

l\Jl»—t‘ﬁ'

Now let Py and P, be two tagged partitions of [0, 1] that have the
same points as Py. The tags of P; and P, are u; and v; respectively
in the intervals [¢;, d;] for 1 <i < p and the tags of P; and P, are the
same in the remaining intervals. Then |P;| < § and |Pz| < § and we
have

1
£> —a
2

P o1
R

i=1

||f(731)—f(732)||: N

This completes the proof. a
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The list of spaces that do not have the property of Lebesgue contains
all of the usual examples of infinite dimensional reflexive spaces. It is
natural to ask whether or not there are any infinite dimensional reflexive
spaces that have the property of Lebesgue. Such a space can contain
no copy of ¢y and can contain no infinite dimensional, uniformly convex
subspaces. The Tsirelson space has these properties and da Rocha [11]
proved that the Tsirelson space has the property of Lebesgue. We will
prove this result after presenting the definition of the Tsirelson space
as given by Casazza and Shura [2].

Let A and B be nonempty finite sets of positive integers. We will
write A < B if max{n : n € A} < min{n : n € B} and write A < B
if the inequality is strict. Let copg be the vector space of all sequences
of real numbers that are finitely nonzero, and let {e,,} be the standard
unit vector basis of ¢op. Given z = {a,} € cgo and a subset A of
positive integers let Az = » _, a,. We define a sequence of norms
{II"|lm : 0 <m < oo} inductively on cgp by letting ||z||o = max{||a,]| :
1< n < oo} and |[z||ms1 = max{||zllm, (1/2) sup{3°;_, || Aiz||m}} for
each m > 0 where the supremum is taken over all collections of finite
subsets {4;} of positive integers such that {k} < A; < Ay < -+ < A
and all positive integers k. It is easy to verify that these norms increase
with m on cgp and that ||z|]s, < ||z||m < ||z]le, for all z € ¢op and for
all m. Define ||z|| = lim;, o0 ||Z||m. The Tsirelson space T is the || - ||
completion of cyg.

We make note of the following properties of 7. All of the proofs can
be found in Casazza and Shura. The sequence {e,} is a normalized,
unconditional, Schauder basis of 7" and for each z € T we have
[|z|| = max{]||z||.,(1/2) sup{Z:f:1 ||A;z||}} where the supremum is
taken as above. The space T is reflexive, contains no copy of ¢y or £,
for 1 < p < oo, and contains no infinite dimensional, uniformly convex
subspaces.

The proof that Tsirelson space has the property of Lebesgue is similar
to the proof that /; has the property of Lebesgue. The idea for the proof
given below is due to da Rocha [11].

Theorem 27. The Tsirelson space T has the property of Lebesgue.
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Proof. Tt is sufficient to prove that a bounded function f :[0,1] — T
that is not continuous almost everywhere on [0,1] is not Riemann
integrable on [0,1]. Let f : [0,1] — T be bounded but not continuous
almost everywhere on [0, 1]. There exist positive numbers o and S such
that p(H) = a where H = {t € [0,1] : w(f,t) > B}. We will prove that
for each 6 > 0 there exist tagged partitions P; and Ps of [0,1] with
|P1| < § and |P2| < ¢ such that || f(P1) — f(P2)|| > /8. By Theorem
5, the proof will be complete.

Let 6 > 0 be given. Choose a positive integer N such that 1/N < ¢
and let Py = {k/N : 0 < k < N}. Let {[c;,d;] : 1 <14 < p} be all of the
intervals of Py for which u(H N (¢;,d;)) > 0 and note that p/N > a.
For each positive integer j, let G; be the set of discontinuities of e; f
on [0,1]. If u(G;) # 0, then e;f and consequently f is not Riemann
integrable on [0,1]. Otherwise the set G = U;G; has measure zero
and every e;f is continuous on [0,1] — G. Let ¢ = af/24. We will
construct sets {u; : 1 <14 < p}, where u; € (H — G) N (¢;,d;) for each
i, {v; : 1 <14 < p}, where v; € (¢;,d;) for each i, and {n; : 0 < i < p},
where each n; is an integer and p + 1 = ng < n; < --- < np, that have
the following properties. Let z; = f(u;) — f(vi) = {a}} = wi + z; + ;i

N1 i e S lo. P S leo.
where w; = > ;0 ajej, v =3 5L, L aje; and y; = Y7 aje; for

1 <4 <p. Then ||z|| > B/2, ||w;|| < e27% and ||y;|| < e27".

We proceed as follows. Let ng = p + 1 and choose vy € (H —
G) N (c1,dy). Since w(f,u1) > B and since e;f is continuous at u;
for each 1 < j < ng, there exists a point v; € (c1,d;) such that
f(ua) = f(v)l| = B/2 and 3752, Jejf(u) — € f(v1)] < /2. Let
5 = Flur) = Flog) = {alki then |02, ale,|l < S0, Jal] < &/2.
Since {e;} is an unconditional Schauder basis of T, there exists an
integer n; > ng such that ||>272  ajej|| < /2. Now choose uy €
(H — G) N (c2,dz). Since w(f,uz) > B, and since e;f is continuous
at ug for each 1 < j < n;, there exists a point vy € (cg,d2) such
that ||f(uz) — f(v2)ll 2 B/2 and 3771, lej f(uz) — €jf (v2)] < £/4. Tet
22 = f(uz) — f(v2) = {af}; then || 3272, aje;l] < 3772, [af| < e/4.
Choose an integer np > n; such that [|>°77 aejl| < /4. We
continue this process for p steps and arrive at the desired sets.



RIEMANN INTEGRATION 943

Let A, ={n;_1+1,...,n; — 1} for each 1 <14 < p. By the property
of the norm on 7T we find that

p p

1
o253 (L) =3 Kl
i=1 j=1 i=1
We then have
p p p
Doz 2| Do = | Do (wi )
=1 i=1 =1
1 p p
> §Z|Iwill—Z(Ilwillﬂlyill)
j=1 i=1
1 p p
> EZ(H%H = (Jlwsl] + [ly:ll)) Z [[wil] + |yil])
j=1 =1
1< 3 &
> QZII%II—§Z(Hwi|\+llyi|\)
j=1 i=1
> 1 8 —3
> 7P €

Now let Py and P, be two tagged partitions of [0, 1] that have the
same points as Pyn. The tags of P; and Py are u; and v;, respectively,
in the intervals [c;, d;] for 1 < i < p, and the tags of P; and P, are the
same in the remaining intervals. Then |Pi| < § and |Pz| < ¢ and we
have

ozB:a‘TB.

1F(Pr) = F(P2)|| = Sex B¢

|
> 5o

i=1

This completes the proof. o

We now take a brief look at weak versions of the Riemann integral.
Most of the results in this section are due to Alexiewicz and Orlicz [1].

Definition 28. Let f : [a,b] — X. The function f is scalarly
Riemann integrable on [a,b] if z*f is Riemann integrable on [a, ] for
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each z* in X*. If, in addition, for each interval I C [a,b] there is a
vector z7 in X such that z*(z;) = [, z*f for all z* in X*, then f is
Riemann—Pettis integrable on [a, b].

It is clear that every Riemann integrable function is Riemann—Pettis
integrable and that every scalarly Riemann integrable function is Dun-
ford integrable. A simple application of the Uniform Boundedness Prin-
ciple shows that every scalarly Riemann integrable function is bounded.
Consequently, a measurable, scalarly Riemann integrable function is
Bochner integrable and a Riemann—Pettis integrable function is Pettis
integrable (see the proof of Theorem 15).

Theorem 29. A measurable, scalarly Riemann integrable function
is Riemann—Pettis integrable. Consequently, in a separable space every
scalarly Riemann integrable function is Riemann—Pettis integrable.

Proof. Let f : [a,b] — X be measurable and scalarly Riemann
integrable on [a,b]. Then f is Bochner integrable and hence Pettis
integrable on [a,b]. It follows that f is Riemann-Pettis integrable on
[a, b]. o

Corollary 30. A bounded function that is weakly continuous almost
everywhere is Riemann—Pettis integrable.

Proof. Let f : [a,b] — X be bounded and weakly continuous almost
everywhere on [a,b]. Then f is measurable and scalarly Riemann
integrable on [a,b]. By Theorem 29, the function f is Riemann—Pettis
integrable on [a, b]. u]

Theorem 31. In a weakly sequentially complete space every scalarly
Riemann integrable function is Riemann—Pettis integrable.

Proof. Let X be weakly sequentially complete and let f : [a,b] — X
be scalarly Riemann integrable on [a,b]. Let [c,d] C [a,b]. We must
show that there exists a vector z in X such that z*(z) = fcd x* f for all
z*in X*.
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For each positive integer n, let P, be a tagged partition of [c,d]
with points {¢ + (k/n)(d —¢) : 0 < k < n}. Since each z*f is
Riemann integrable on [c,d], the sequence {f(P,)} is a weak Cauchy
sequence and since X is weakly sequentially complete this sequence
converges weakly to a vector z € X. For each z* in X* we have

z*(2) = limp 00 2* f(Pr) = fcd x* f. This completes the proof. o

The distinction between the Riemann integral and the Riemann—
Pettis integral is simply whether or not the Riemann sums converge
in the norm topology or in the weak topology. This observation leads
to the next two results. The first is due to Alexiewicz and Orlicz [1].

Theorem 32. A scalarly Riemann integrable function that has a
relatively compact range is Riemann integrable and in fact Darboux
integrable.

Proof. Let f : [a,b] = X be scalarly Riemann integrable on [a, b]
and suppose that the range of f is relatively compact. It is easily seen
that f is measurable and hence Riemann—Pettis integrable on [a, b] by
Theorem 29. Let z be the vector in X such that z*(z) = f; x* f for all
z* in X*. We first show that f is Riemann integrable on [a, b].

Let V = {f(t) : t € [a,b]}, let V} be the closed convex hull of the
closure of V, and let W = (b — a)V;. Then W is a compact set and
W contains all of the Riemann sums of f. Suppose that f is not
Riemann integrable on [a,b]. Then there exists n > 0 such that for
each § > 0 there exists a tagged partition Ps of [a, b] such that |Ps| < §
and ||f(Ps) — z|| > n. For each positive integer n, choose a tagged
partition P, of [a,b] such that |P,| < 1/n and ||f(P,) — z|| > n.
Since z is the Riemann-Pettis integral of f on [a,b], the sequence
{f(Pn)} converges weakly to z, and since W is compact the sequence
{f(Pr)} must converge in norm to z. This contradiction establishes
the Riemann integrability of f on [a, b].

Since f is bounded, to prove that f is Darboux integrable on [a, b], it
is sufficient to prove that f is continuous almost everywhere on [a, b].
Since Vj is separable, there exists a sequence {z}} in X such that
[lv|| = sup,, |z%(v)| for all v in Vi. For each n, let D,, be the set of
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discontinuities of z}, f on [a, ] and let D = U, D,,. Then (D) =0 and
we will show that f is continuous on [a,b] — D.

Let t € [a,b] — D and let {¢x} be a sequence in [a,b] that converges
to t. For each n, the sequence {z f(tx)} converges to =} f(t). Since
{z}} separates the points of V; and since V; is compact, the sequence
{f(tr)} converges in norm to f(¢). This shows that f is continuous at
t. O

Theorem 33. If X is a Schur space, then every function f : [a,b] —
X that is scalarly Riemann integrable on [a,b] is Riemann integrable
on [a,b].

Proof. Since a Schur space is weakly sequentially complete, the
function f is Riemann—Pettis integrable on [a, b] by Theorem 31. Since
every weakly convergent sequence in X converges in norm, the Riemann
integrability of f on [a,b] follows as in the first part of the proof of
Theorem 32. m]

The next theorem is due to da Rocha [11]. It shows in particular
that in ¢; scalar Riemann integrability and Darboux integrability are
equivalent notions.

Theorem 34. A Banach space X is a Schur space and has the
property of Lebesgue if and only if every scalarly Riemann integrable
function f : [a,b] = X is Darbouz integrable.

Proof. Suppose that X is a Schur space and has the property of
Lebesgue, and let f : [a,b] — X be scalarly Riemann integrable on
[a,b]. By the previous theorem, the function f is Riemann integrable
on [a, b] and hence Darboux integrable on [a, b] since X has the property
of Lebesgue.

Now suppose that X is not a Schur space. There exists a sequence
{z,} in X such that ||z,|| > 1 for all n and {z,} converges weakly
to 6. Let {r,} be a listing of the rational numbers in [0, 1] and define
f:]0,1] = X by f(t) = 0 if ¢ is irrational and f(t) = z, if t = r,.
Since f is not continuous almost everywhere on [0, 1], it is not Darboux
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integrable on [0,1]. However, the function f is bounded and weakly
continuous almost everywhere on [0, 1] and, therefore, scalarly Riemann
integrable on [0,1]. This completes the proof since the case in which
X does not have the property of Lebesgue is trivial. a

We conclude this paper with an example due to Alexiewicz and
Orlicz [1] to illustrate that weak continuity need not imply Rie-
mann integrability. Since by Corollary 30 a weakly continuous func-
tion is Riemann—Pettis integrable, the example also shows that a
Riemann—Pettis integrable function may fail to be Riemann integrable.

Example 35. A weakly continuous function that is not Riemann
integrable:

Let H be a perfect, nowhere dense subset of [0, 1] with u(H) > 3/4,
and let (0,1) — H = Ug(ag, b). For each pair of positive integers k and
n > 2, let

E} ={ag,ar + (by, — ar)/(2n), ar, + (bx, — ag)/n,
b, — (bk — ak)/n, b — (b — ar)/(2n), bi},

and let ¢} be the function that equals 1 at ap + (bx — ax)/(2n) and
by, — (br — ax)/(2n), equals 0 at the other points of E}, and is linear
on the intervals contiguous to E}'. For each n, let f,(t) = > 1 _; #7(¢).
Then the sequence {f,} converges pointwise to the zero function on

(0.1 and fy fo = iy Jy $7() = (1/n) Siia (br — ).

Define f : [0,1] — ¢ by f(t) = {fn(t)}. We will first prove that
f is weakly continuous. Let z* = {an} € {1, then z*f = > anfn.
Since each «,f, is continuous on [0,1] and |apfn| < |an| on [0,1],
the function z*f is continuous on [0,1] being the uniform limit of
continuous functions. This shows that f is weakly continuous.

To prove that f is not Riemann integrable on [0,1], it is sufficient
to prove that for each § > 0 there exist a tagged partition P of [0, 1]
and an integer jo such that |P| < ¢ and ||f;,(P) — fol fioll > 1/2. Let
0 > 0 be given. Since H is nowhere dense, there exists a partition
{tm : 0 < m < M} of [0,1] such that ¢, ¢ H for 1 <m < M —1
and t,, —tm-1 < 0 for 1 <m < M. Let {I;; : 1 < k < N} be the
intervals of this partition that contain points of H in their interiors and
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let {K;:1 < i< L} be the remaining intervals. For each k, there exists
ny such that (an,,bn,) C Ix. Let jo = max{n; : 1 < k < N}, and for
each k choose ty € (an,,bn,) such that qﬁf{’k (tx) = 1. Let s; € K; be
arbitrary and let P = {(¢, 1) : 1 < k < N} U{(s;, K;) : 1 < ¢ < L}
Then P is a tagged partition of [0, 1] with |P| < §, and we have

FoP) = [ f = Fultult) + - fulsnl) - [ 5
0 k=1 i=1 0

SONTAEED RN
k=1 0 k=1

> u(H) - (1 - u(H))

>

This shows that f is not Riemann integrable on [0, 1].
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