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EXISTENCE AND MULTIPLICITY RESULTS FOR
A CLASS OF ELLIPTIC PROBLEMS WITH
CRITICAL SOBOLEV EXPONENTS

D. COSTA AND G. LIAO

0. Introduction. In this paper we consider the boundary value
problem
(0.1) { —Au = u+ K(z)[u* 2u in Q ,

u=0 on 02

where Q is a bounded smooth domain in R™ (n > 3) or a compact
manifold with boundary, 2* = 2n/(n — 2) is the critical exponent for
the Sobolev embedding H}(Q) C LP(2) and K is a smooth function
on .

When K(z) = 1 and  is a domain, some remarkable results have
been obtained: Brézis and Nirenberg proved in [5] existence of a
positive solution of (0.1), with n > 4, for all A € (0,\1), where A
is the first eigenvalue for the negative Laplacian in €2 under Dirichlet
boundary conditions; in [6] it was proved that (0.1), with n > 4, has
a solution for any A > 0; later, in [7], the existence and multiplicity
problem for (0.1) with X near an eigenvalue \; was studied; their main
result was that (0.1) has at least m; pairs of solutions for A € (A, };),
where m; is the multiplicity of A; and the constant \; can be estimated.

Problem (0.1) has a deep root in Riemannian geometry and physics.
If one deforms a metric conformally in a closed manifold (M™,g) of
dimension n > 3 by a positive function u : M — R, then u satisfies
the equation

n—2

(0.2)
u>0 on M,

{ 4D Ay + Ru+ Kumt2/(n=2) =0 on M

where A and R are, respectively, the Laplacian and the scalar curvature
with respect to the metric g. The function K represents the scalar
curvature of the new metric u*/(*=2)g. An outstanding geometric
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1208 D. COSTA AND G. LIAO

problem is whether a given compact Riemannian manifold is necessarily
conformally equivalent to one of constant scalar curvature. This
problem was formulated by Yamabe [13] in 1960. In the case that the
scalar curvature R is nonpositive, the problem was solved by Trudinger
in 1968 [12]. In the case R > 0, T. Aubin [1] gave a positive answer
in many special cases in 1976. In 1984, R. Schoen introduced a new
global idea and was able to solve the problem in all remaining cases [11].
Using the same idea, J. Escobar and R. Schoen studied the problem
of conformally deforming metrics with prescribed scalar curvature, i.e,.
solving (0.2) with K a smooth function on M [9]. An extensive study
of (0.1) with w > 0 in €, with boundary, was done in [8].

The works mentioned above are all based on the following observation,
that the corresponding functionals

1 1 .
pa(u) = 5/(|Vu|2—)\u2)dV—2—*/ K|u* av
Q Q
and
- Vul* — u?)dV .
da(u) = Jo(IVe ¢ )2/2* (with / K|ul* av > 0>
(fQK‘u > dV) @

do satisfy some kind of compactness condition despite the fact that the
Sobolev embedding H} — L?" (£2) is not compact. It was first observed
in [5] that a Palais-Smale condition (PS). was satisfied for c in a certain
range. Later, a detailed proof for the functional ¢, was given in [7].
For the functional ¢y, an argument originated in [12] has been used
to show the existence of a solution u which realizes the infimum of the
constrained functional ¢y.

The purpose of this paper is two-fold. Firstly, in an attempt to under-
stand the nature of compactness of the constrained functional in terms
of the condition (PS),, we present here a “natural constraint” approach
to the variational problem of minimizing a “naturally constrained”
functional. More specifically, we consider the constraint ¥(u) = 0,
where

() :/Q(\Vu|2—)\u2—K|u|2*)dV.

Defining M = {u € H}(Q)\{0} | ¥(u) = 0}, we minimize ¢ on M
(from now on we write @ = ¢»). It can be shown that M is a natural
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constraint in the sense that 0 # u € H}(f2) is a critical point of ¢ if and
only if w € M and w is a critical point of ¢|M (cf. [3, Section 6.3 B],
[10], where similar arguments have been used). Furthermore, we show
that ¢|M satisfies the condition (PS). for ¢ € (0, (l/n)S;L{/Z), where
Sk = So,x and Sy i is defined by

Jo(IVul? = Au?) dV o
fi K 0).
TR o [ K >0

We then show that, if 0 < A < A1, we have infyr ¢ = (l/n)S;/Ig, and
that the intermediate results in [8] imply that Sy x € (0, Sk). "Hence,
I = infj; ¢ falls in the (PS). range and, by a basic result in the calculus
of variations, it follows that the infimum I is attained.

S)\,K = inf

Secondly, we study the bifurcation and multiplicity problem for (0.1)
removing the assumption K (z) = 1. Our main result is the following.

Theorem. For a nonnegative function K(z) such that K(z) > 0
almost everywhere in Q, a bounded smooth domain in R™ (n > 3),
problem (0.1) has at least m; pairs of solutions if A € (X\j, \;), where
\j can be estimated (cf. Theorem 2.1).

The proof given here is a modification of that in [7].

1. The natural constraint approach. In this section we consider
the boundary value problem

(1.1) { —Au=Mu+ K(z)[u? 2u inQ
u=20 on 09

where 2 C R™ (n > 3) is a bounded smooth domain, 2* = 2n/(n — 2),
A€ Rand K € C*(2). As is well known, the solutions of (1.1) are
precisely the critical points of the C! functional ¢ : H} (2) — R defined
by

1 1

(12)  o(u) = 5/Q(|vu|2 — ) da — 2—*/0K(x)|u|2* da.

On the other hand, if u is a (classical) solution of (1.1), then multi-
plying the given equation by u and integrating by parts shows that u
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satisfies the constraint
v = [ (Val? =3y do— [ K@)l do =0,
Q Q

where we note that
¢ € C'(Hy(),R)

and, as we shall see, 1'(u) # 0 € H~1(Q) whenever ¢(u) = 0, u Z 0
and 0 < A < A;. Therefore, it is natural to consider the submanifold
of H}(Q) = X given by

M = {u e X\{0} | $(u) = 0} C X
and look for the critical points of ¢|M. In fact, it turns out that M

is a natural constraint for ¢ in the sense that 0 # v € X is a critical
point of ¢ if and only if u € M and u is a critical point of ¢|M.

In what follows we will always assume that 0 < A < A1, K is positive
somewhere in (2, and denote the norms in X = H}, L? by

|u||—(/w|2dw) , |u|p—(/|u|f’dw)",
Q Q

respectively. We will also denote

) = [ K@)l de
whenever u € LP and define Sk by

Sx = nf{|Jul*/ (o ()*/*" | pi (w) > 0}.

Note that if K changes sign, then |p’;{|1/p is not a norm since we
have many nonzero u € LP such that |p% (u)] = 0. However, since
0 < A < Ay, it is immediate that p% (u) > 0 for every u € M. Also,
arguing by contradiction, it is not hard to show that Sx > 0.

Lemma 1.1. M C X is a (nonempty) C'-submanifold of codimen-
sion 1 and is such that O ¢ M.
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Proof. Let ug € X be such that ||up||? — Nuo|3 = Ay > 0, p% (ug) =
By > 0. Then, since 2* > 2, we have ¥(rug) = Aor? — Byr?” > 0 for
r > 0 small and ¢ (rug) < 0 for 7 > 0 big, so that ¥(rou) = 0 for some
ro > 0and M # ¢.

Now, let u € M and assume, by contradiction, that

P (u)-h= / 2(Vu - Vh — Auh) dx — / 2*K (z)|u|* 2uhdz =0
Q Q
for every h € X.
Then, letting h = u gives
2(1[ull® = Aul3) —27p% (u) =0
or
20% (u) — 2" p% (u) =0

since u € M. Hence, we obtain |lu||? — Mu|2 = p% (u) = 0 which

implies u = 0 since A < A;. This contradicts the fact that v € M and,
therefore, M C X is a C'-submanifold of codimension 1.

Finally, from the definition of Sk we obtain for u € M that

0 =9(u) = [Jull® — Nul3 — pk (u)| = [Jul|* = Alul3 — S~/ |Jul|*",

hence ot o
0> Callull® = Sx” /2 |[ul*",

where C, = 1 — X/A; > 0 since 0 < A < A;. The above inequality
implies
ul|¥ 72> 852 > 0

for every u € M, so that dist(0, M) > 0, that is, 0 ¢ M. O

Lemma 1.2. M is a natural constraint for ¢, that is, u € X\{0} is
a critical point of ¢ < u € M and u is a critical point of ¢|M.

Proof. If 0 # u € X is a critical point of ¢, then

(b'(u)-h:/Q(Vu-Vhf)\uh)dwf/QK(x)|u|2*72uhdx:0
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for every h € X and, letting h = u, we obtain ¥ (u) = 0, so that u € M
(and clearly u is a critical point of ¢|M).

Conversely, if u € M is such that (¢|M)'(u) = 0, then there is a
Lagrange multiplier x € R such that ¢'(u) = pyp'(u), i.e.,

/ (Vu-Vh — Auh) — / Klu|? ~2uh
Q Q
= 2,u/ (Vu-Vh — Auh) — 2*,u/ Klu|* ~2uh
Q Q

for every h € X. Letting h = u in the above gives

(1= 2p)(J[ul]* = Mul3) = (1 = 2" ) pic (w),
or, since u € M,

(1—2u)p% (u) = (1 = 2" ) pik (u).

Therefore, since pf(* > 0 for u € M, we obtain u = 0, so that
¢'(u)-h=0for all h € X, i.e., u is a critical point of ¢. o

Lemma 1.3. ¢ is bounded from below on M.

Proof. For u € M we have 9(u) = 0, so that

1 1 1

x 1
o) = (5 - ¢ ) o = IulP = Nl = ZCulul?,

where C, =1—X/)\; > 0. o
Remark . Note that, for u € M, it follows that
P (u) = Ox|lul|*.
Also, since the proof of Lemma 1.1 shows that

dist (0, M)? = 12{/[ Ilul? > Ci/(2*72)5g/(2*72) >0,
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we obtain from Lemma 1.3 that

1213

: L. o o [P 2 1 2% /(27 ~2)
= = — > — > —
I, :=inf ¢ nlnpr(u)_ nc)‘meu” > n(C)‘SK) ,

that is,
1
I, > E(C)\SK)H/Q > 0.

In the next lemma, we compute I, explicitly in terms of the number

Sxx = inf{|[ol[* — Aol3 | p (v) = 1}.

Lemma 1.4. I, :=infy; ¢ = (l/n)S;\L’/; > 0.

Proof. Let v, € > 0, be such that p% (v.) = 1 and
¢, (ve) := [[vel[* = Nvel3 = Sa i +0(1).
Let u, . = rv. and choose 7 = r. = (Sy & + 0(1))*/** =2 50 that

o*

r2 =rlq, (ve),

that is,
Pk (r, &) = ¢, (ur, o)-

Then, defining u. = u,, ., we obtain

. 1 * 1
B=int {20,000 Loy = 2 ()} < Lo (00
1 1 ._
= rta (o) = oy (01,

that is,

1 ¥ lox 1
I, < EqA(UE)Q /27=2) = E(SA,K +o(1))"/2,

hence, I < (l/n)S;/; Conversely, if u. # 0 is such that

q,(ue) = P%(* (ue)
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and 1
gy (ue) = L+ o(1),

1/2*

then, letting v, = u./p? (u.)'/?", we obtain p? (v.) =1 and

_ 1 _ 1-2/2*
Sxk < q,(ve) = W‘b (ue) = g, (ue) ,

that is,
S)\’K < n(I)‘ + O(l))(Q*_Q)/Q* = n(I)\ + 0(1))2/71

Therefore, we obtain
Syx < (ny)*™,

which, combined with the previously obtained I, < (1/ n)SZ/ ;, finishes
the proof. a

Proposition 1.5. ¢/M : M — R satisfies (PS). for ¢ € (0,
(1/n)SE?).

Proof. We want to show that if a sequence u; € M satisfies
1 n )
$(u;) = c € <0, EsK/z) ,(¢|M)' (u;) - 0 in X*,

then u; possesses a convergent subsequence (still labelled u;) in M :
U; — Uso € M. So, assume that

1 1 5« 1 .
(8 2l = Mul) =~ ) o< (0.25%?).

n

=o(1) € X.

(1.4) Ve (u;) — (V(]ﬁ(ui), Vi (u;) ) | V) (u;)

IVl ) [V (wi)l

Then, (1.3) implies that

(1.5) [lui;|| is bounded,
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so that, by passing to a subsequence, we have

U = Uoo Wweakly in X = H&
U; = Uy strongly in LP, 1 < p < 2",

Next, we claim that
(1.6) [IVo(ui)|l, |IV¥(u;)|| are bounded sequences.

Indeed, we have Vé(u) = u — Mu — A(K(z)|u|* ~2u), where the
operator A = (—A)"': 2" c H! — H} c L¥, 2F = 27/(2* — 1), is
bounded. Clearly, A : H} — H} is also bounded. Therefore, we can

estimate
2%_9o 2% /2t

IVo(u)l| < [lull + erl|ul] + ez fu 2"

ulyr = (14 c1)|ful] + cofu

where we used the fact that 27 is the conjugate exponent of 2*. The
above shows that |[|V¢(u;)|| is bounded. Similarly, we obtain that
Vp(ui) = 2(u; — Mu;) — 2* A(K ()|ui|> 2u;) is bounded. Thus (1.6)
holds.

Now, using (1.6), we can take the inner product of (1.4) with V¢(u;)
to get

(L7) |wmmn%:6wwmﬂé%%%)+dm

and, using (Vé(u;),u;) = 9¥(u;) = 0 (since u; € M), we take the inner
product of (1.4) with u; to get

<—V¢(u,-) Vip(ui) ) < Vip(ui) |,Ui) — o1),

IV ()l \ V()]
that is,
Lo V) Ny o e e aro T
||V¢(ul)|| <v¢( 1)7 |V1/1(uz)|> [Q(H z|| )“ 1|2) 2 pK( z)] (1)7
or yet,
(19) (2 - IOl o),

1V (ws) || K
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in view of (1.7) and the fact that ||u;]|> — Aus|3 = p% (us).

*

Therefore, since ||V#(u;)|| is bounded by (1.6) and p2% (u;) — nc # 0
by (1.3), we obtain from (1.8) that

(1.9) IV@(ui)|| = o(1).

From here on, the proof goes exactly as in Lemma 2.3 to give that (a
subsequence of) u; — us strongly in Hg. u]

Now, we show that the intermediate results in J. Escobar [8] for the
constrained functional
- fQ(\Vu|2 — \u?)dx q, (u)
a(u) = =

([ Klul* dm)z% (0% ()2~

(with p% (u) > 0) imply that
S)“K c (O,SK).

Indeed, a typical result in [8] is the following theorem:

Let M be a four dimensional Riemannian manifold with boundary,
which is locally conformally flat, and let K be a smooth function on M
which is positive somewhere and attains its mazimum at an interior
point. Then, for any A € (0,A1), there exists a solution of

Au+du+ K(z)u> =0 on M,
u>0 on M,
u=20 on OM.

Remark . In the above statement, the assumptions of M being locally
conformally flat and K attaining its maximum at an interior point were
included since they seem to be necessary for the proof in [8] to go
through.

In the proof of the above theorem (and many other results in [8]) the
main step was to show the strict inequality

(1.10) (max K)"=2/"8, ¢ < S,
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where S = inf{||v||? | |[v|2- = 1} is the best constant for the Sobolev
embedding H(Q) C L* (Q). We notice now that (1.10) implies

(1.11) Sk < Sk.
2. and

Sk = inf{|[v]]*/(p% ())*/* |k (v) > 0},
we clearly have

Indeed, since p% (v) < max K |v

SK > ]‘ lnf HUHZ — ]-
~ (max K)2/2" v£0 [v|2.  (max K)m—2)/n""

which combined with (1.10) gives (1.11). Therefore, by Lemma 1.4, we
obtain

. 1 n/2 1 n/2
1.12 0<I)y=infgp)=-S5 -5
(1.12) <A 1]1\14¢>\ BONE S PR

which shows that I falls into the range (0, (1/ n)S?{/ %) of validity of
the (PS). condition, cf. Proposition 1.5. Next, we recall the following
basic result in the calculus of variations:

Let ¢ : M — R be C', bounded from below and satisfy (PS). for

c€(a,y). If
a<I:i}1{1/If¢<7

then I is attained in M.

It follows from (1.12) and Lemmas 1.1, 1.3, 1.4 that there exists
ug € M such that

0 < ¢(u) = inf 6,

hence ug # 0 is a critical point of ¢|M. By Lemma 1.2, ug is a critical
point of the unconstrained functional ¢, hence a (classical) solution of
(1.1). We notice that, since ¢(u) = ¢(|u|) for all w € X and u € M if
and only if |u| € M, we may assume, as usual, that ug > 0 and, hence,
ug > 0 in Q by the maximum principle.

2. A multiplicity result. Here, we consider the question of
multiplicity of solutions for our problem

{ —Au = u+ K(z)[u* 2u in Q

2.1 ,
1) u=~0 on 0N
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where, as before, @ C R" (n > 3) is a bounded smooth domain,
2* =2n/(n—2) and K € C*(Q). This time we will assume that

(2.2) K(z) >0 a.e. inQ,

and show that (2.1) has multiple (pairs of) solutions if A is near (and to
the left of) an eigenvalue \; of —A under Dirichlet boundary condition.
More precisely, we prove

Theorem 2.1. Assume K € C%(Q) satisfies condition (2.2). Then,
for each j € N, there exists €; > 0 such that (2.1) has at least m;
(= multiplicity of \j) pairs of solutions +uk(X), k = 1,... ,m;, for
A€ (Nj—e€j,Aj). Moreover, ||ug(N)|] = 0 as A — ;.

This result and its proof are natural extensions of the ones in
Cerami-Fortunato—Struwe [7] for K(z) = 1, where the following vari-
ant is used due to Bartolo-Benci —Fortunato [4] of minimax results of
Ambrosetti-Rabinowitz [2].

Theorem 2.2. [4]. Let X be a Hilbert space and ¢ : X — R be
C*, even, and satisfy (PS). for ¢ € (0,83). Assume that ¢(0) = 0
and there exist closed subspaces V,W C X with codimV < +o0,
codimV < dimW, such that

(i) supw ¢ <4,
(ii) infynop, @ > & for somer >0,
where 0 < § < 8 < 3. Then, ¢ possesses at least
m = dim W — codim V'

pairs of critical points with critical values in [, ('].

In order to prove Theorem 2.1, we need to find a range of validity of
the (PS). condition for the functional

b(u) = 1/(|vu|2 ~ a?)da — i/ K(@)ul? dz
2 Ja 2* Ja
1 1,

= 5 (ul* = Nul3) = 50k (w),
u € Hy(Q) = X.
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Since K satisfies (2.2), we now have that (p% (u))*/?" := |u
weighted L? -norm and, in this case, the constant

2x K 1S a

2
. u
(2.3) SK = lnfueX\{O}&

5 — >0
Ul K

is the best constant in the embedding Hg(Q) C L* (Q, K dz).

It turns out that the counterpart of Lemma 2.1 [7] in our case
(compare also with Lemma 1.5) is

Lemma 2.3. ¢ : X — R satisfies (PS). for c € (0, (1/n)S?{/2).

For completeness, we include a proof which is a modification of the
one n [7].

Proof of Lemma 2.3. We want to show that if {u;} satisfies

(2.4) b(u;) = c € (0, %S}”) ,
(2.5) Vo(u;) =0 in X,

then {u;} possesses a convergent subsequence (still labeled w;), u; —
Uoo in X. From (2.4), (2.5) it follows (as in [5], [7]) that

(2.6) [lu;|| is bounded,

so that, by passing to a subsequence, we have

(2.7) U; — U Weakly in X
(2.8) U; = Uso strongly in LP, 1<p<2*.

From (2.7), (2.8) it can be shown that, for any 6 € C§°(Q2),
(Vo(uco) = Vé(ui), 0) = o(1),

hence

(Vo(uoo),0) =0,
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in view of (2.5). Therefore, uo, is a weak solution of (2.1) and, hence,
a classical solution of (2.1) (cf. [12]).

Now, let v; = u; — u and take the inner product of (2.5) with v; to
get
(2.9)

o1) = (Vo(u), i) = | VusTuit [ [Vuif = [ A v
Q Q Q
— / K (2)|too + vi|* "2 (oo + v3)v;.
Q
In view of (2.7), (2.8), the first and third terms in the last inequality

tend to zero, so that (2.9) becomes
(2.10)

||v,~||2:/QK(x)|uoo+vi|2**2(uoo+vi)vi dz+o(1) := F(uxo+vi,vi)+o(1).

On the other hand, we can write

|F (oo + vs,v5) — F(v;,0;)]

Uoo (T) 9 s
=\ [ Sl + 7 2+ 9ul g o

1
= (2" - 1)‘ // Klv; + tuoo\y_%iuoo dtdz
aJo

<C [ Kol + o) o
Q

where the last term tends to zero in view of (2.8) and the fact that us
is a smooth function. Therefore, (2.10) becomes

(2.11) vil|? = F(vi,v5) +o(1) = |v;

%K +o(1).
Next, from the fact that (V¢ (u;),u;) = o(1) by (2.5), (2.6), we obtain
Juil3- & = il = Muil3 + o(1),
which combined with the expression for ¢(u;) gives

(uall* = Alus[3) + o(1)

(I

P(ui) =
(2.12)

S|I=3|=
2
8
o

1
= Aluso3) + —[lvl[* + o(1).
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And, from the fact that us is a solution of (2.1), we obtain

||u00||2 - )‘|u00‘§ — |t gi,K = (Vé(uw), uco) = 0,

hence ||too||? = Altioo |3 = |tios [3- ¢ > 0. Therefore, (2.12) implies that
[loil|* < né(us) + o(1),
and so

(2.13) w2 < e < Sp/2

for all i large, in view of (2.4).

Finally, using (2.11) and the definition (2.3) of Sk, we can write

2% /2 *
Sy Pl 2 < [uil[* + o(1),

that is,

sl (S 72— Jfoall Y 2) < o(1),
where we observe that the coefficient of ||v;||? in the above is strictly
positive for 7 large, in view of (2.13). Thus, v; — 0 strongly in X, i.e.,
U; — U strongly in X. ]

Proof of Theorem 2.1. Let A; be given and assume that A\j_; < X < A;
(0 <A< Ap,if j=1). Defined the subspaces

J
V =P Ex, W = P Ex,
k=1

k>j

where Ej, denotes the \g-eigenspace. Clearly, we have
(2.14) dim W — codim V' = dim E; = m;,

the multiplicity of A;. In order to apply Theorem 2.2, we must verify
conditions (i), (ii).

Given u € W, we have the estimate

1, o

1 _ 1 «
2—*|u Kk < E(Aj - A)aj 1|u 5

2
2% K 2_*|U 2% K>

(A = Nlul3 -

DN | =

¢(u) <
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where a; := inf{|u[3. x/lul3 | 0 #u € W} > 0. (Any two norms are
equivalent in the finite-dimensional subspace W.) Therefore,
1 —11n/2 li
(2.15) sup < —[(\; — N)aj "2 = .
w n

J

On the other hand, for u € V' we have the estimate from below,

9t
2* K

o) > (13 ) I - gl

)\> 1 .
> (1= = )l = — lull* = @(|[ull),
< Aj 2+ 52/

and it is clear that there exists an r > 0 such that

2.1 inf >
(2.16) VOO, 29
where 0 < § < 8’ and (' is given by (2.15). Also, we must restrict 3’
so that f' < = (l/n)S?(/2 (cf. Lemma 2.3), that is, A € (X\j_1, ;)
must satisfy

)\j - < a]-SK.
Therefore, in view of (2.14)—(2.16) and Theorem 2.2, it follows that
Theorem 2.1 holds true with £; < a;Sk. We recall that

|u %*,K

2
2

aj:= in
WA\{0}

and, therefore, in the special case K(z) = 1, an easy application of
Hélder’s inequality to |u|3 shows that a; > (vol Q) =2/, O

Acknowledgments. Part of this work was done while the first au-
thor was visiting the University of Utah, whose hospitality he gratefully
acknowledges.

REFERENCES

1. T. Aubin, Nonlinear analysis on manifolds. Monge-Ampére equations,



ELLIPTIC PROBLEMS 1223

Springer-Verlag, New York, Heidelberg, Berlin, 1982.

2. A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point
theory and applications, J. Funct. Anal. 14 (1973), 349-381.

3. M.S. Berger, Nonlinearity and functional analysis, Academic Press, New York,
1977.

4. P. Bartolo, V. Benci, and D. Fortunato, Abstract critical point theorems
and applications to some nonlinear problems with Strong resonance at infinity,
J. Nonlinear Anal. T.M.A. 7 (1983), 981-1012.

5. H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations
involving critical Sobolev ezponents, Comm. Pure Appl. Math. 36 (1983), 437-477.

6. A. Capozzi, D. Fortunato and G. Palmieri, An exzistence result for nonlinear
elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal.
Non Linéaire (to appear).

7. G. Cerami, D. Fortunato and M. Struwe, Bifurcation and multiplicity results
for nonlinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H.
Poincaré 1 (1984), 341-350.

8. J.F. Escobar, Positive solutions for some semilinear elliptic equations with
critical Sobolev erponents, preprint.

9. J.F. Escobar and R. Schoen, Conformal metrics with prescribed scalar curva-
ture, Invent. Math. 86 (1986), 243—-254.

10. E-W.C. van Groesen, Applications of natural constraints in critical point
theory to periodic solutions of natural Hamiltonian systems, MRC Technical Report
#2593, 1983.

11. R. Schoen, Conformal deformation of a Riemannian metric to constant scalar

curvature, J. Differential Geom. 20 (1984), 479-495.

12. N. Trudinger, Remarks concerning the conformal deformation of Riemannian
structure on compact manifolds, Ann. Sc. Norm. Sup. Pisa, 22, 1968, p. 265-274.

13. H. Yamabe, On a deformation of Riemannian structures on compact mani-

folds, Osaka Math. J. 12 (1960), 21-27.

DEPARTAMENTO DE MATEMATICA, UNIVERSIDADE DE BRASILIA, 70.910 BRASILIA,
DF (BRAzIL)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS-ARLINGTON, ARLING-
TON, TX 76019



