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COVERING METRIC SPACES WITH CLOSED SETS

F.S. CATER AND JOHN DAILY

1. This paper concerns a theorem [3] about continua originally due
to W. Sierpinski. (For more discussion consult also [2, p. 173] and [1,
p. 440].)

Theorem. If a connected compact Hausdorff space has a countable
cover {X;} by pairwise disjoint closed sets, at most one of the sets X;
s nonvoid.

We will show (Corollary 1) that if X is a complete, connected, locally
connected metric space and if X is covered by countably many proper
closed sets E,,, then some two E,, must meet. Sierpinski has shown [4]
that “locally connected” cannot be deleted here. We increase slightly
the hypothesis on X (Theorem 1) and find that some two E,, must
meet in at least continuum many points. This last result applies
(Corollaries 2, 3 and 4) to several spaces frequently encountered in
functional analysis.

2. We prove

Proposition 1. Let X be a complete, locally connected metric space.
Let X be covered by a sequence of proper closed sets (E,) at least one
of which has a nonvoid boundary. Then there exist indices i,j, i # j,
such that E; N E; is nonvoid.

Proof. Let Y = US2; (boundary of E,,). By hypothesis, Y is nonvoid,
and Y is covered by the closed sets E,,. We claim there is a number
¢ > 0and a ygp € Y and an index ¢ such that E; contains the set
Y N S(yo, c) where S(yo,c) denotes the open ball in X with center yo
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and radius c¢. This follows from Baire’s theorem if Y is closed; if Y
is not closed, choose y; € (Y closure)\Y and observe that y; lies in
the interior of some F;, and the conclusion is clear. Because X is
locally connected, there is a connected neighborhood U of yy such that
yo € U C S(yo,0).

Now assume that the conclusion of Proposition 1 is false. Then E;
cannot contain U. For otherwise yy would be in the interior of F; and
also in the boundary of some Ej;, j # i. So we assume, without loss
of generality, that there is an index j # 4, such that E; meets U. But
yo ¢ E;, and U is connected. Hence, E; has a boundary point in U, in
Y N S(yo,c) and in E;. O

When we assume that X is also connected, we need not mention the
nonvoid boundary in our hypothesis.

Corollary 1. Let X be a complete, connected, locally connected
metric space. Let X be covered by a sequence of proper closed sets
(En). Then there exist 1,5, i # j, such that E; N E; is nonvoid.

Proof. Because X is connected, the boundary of each E,, is nonvoid.
The conclusion follows from Proposition 1. o

Sierpinski [4] provided an example of a complete, connected metric
space that is the union of a sequence of mutually disjoint proper closed
subsets. Thus, local connectedness cannot be omitted in Corollary 1.
His example is a closed subspace of Euclidean 3-space, R3.

3. We say that a topological space X is strongly locally connected
if for each z € X and each neighborhood V of z, there exists a
neighborhood U of x such that U C V and either U = {z} or the
difference U\{z} is connected. Thus, for example, Euclidean n-space
is strongly locally connected for n > 1, but the real line is not strongly
locally connected.

It is easy to see that if X is strongly locally connected, then X is
locally connected. For suppose, in the preceding paragraph, z is not an
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isolated point of X. Then z is in the closure of U\{x} and the union
{z}U(U\{z}) = U is also a connected set. We begin with two lemmas.

Lemma 1. Let E be a closed subset of a strongly locally connected
metric space X. Then the boundary of the interior of E is a perfect
set.

Proof. We assume, without loss of generality, that this boundary is
nonvoid. Let B denote the boundary of the interior of F, and let y € B.
Choose any ¢ > 0. Because y is in the boundary of a set, y is not an
isolated point of X. Hence, there is a neighborhood U of y such that
U C S(y,c), where S(y,c) is the open ball with center y and radius
¢, and U\{y} is a connected set. Moreover, (U\{y}) N (interior F) is
nonvoid because U is a neighborhood of a boundary point of interior E.
But interior E cannot contain the set U\{y}, for otherwise the closed
set E would contain U and interior E would contain y. Because U\{y}
is connected U\{y} must contain a boundary point z of interior E.

It follows that z € S(y,c¢) N B. Thus the set B is dense in itself. And
B is clearly closed, so B is a perfect set. a

In Lemma 2, X need not be a strongly locally connected space. For
example, X could be the real line.

Lemma 2. Let X be a complete, connected, locally connected metric
space. Let X be covered by a sequence of proper closed sets (Ey,) such
that the boundary of the interior of each E, is a perfect set. Then there
exist indices ¢,7, 1 # j, such that E; N E; contains at least continuum
many points.

Proof. By Baire’s theorem, the interior of some F,, is nonvoid, and by
connectedness, the boundary of this interior is nonvoid. Let Y = U22 ;
(boundary of interior E,). Then Y is nonvoid. Again, by Baire’s
theorem, there is an index ¢, a point y € Y, and a positive number ¢
such that E; D Y NS(y,c). Now y is not an isolated point of X because
y is on the boundary of a set, so there is a neighborhood U of y such
that U C S(y,c¢) and U\{y} is connected.
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We assume, without loss of generality, that y is on the boundary
of interior E;. For otherwise there is a k (k # i) such that y is
on the boundary of interior Ej and (because X is complete and this
boundary is a perfect set) S(y,c) contains continuum many points in
the boundary of interior Ej, and all these points lie in Y N S(y, ¢) and
in E;. But E; cannot contain the set U\{y} for otherwise y would be
in interior Fj;.

There is a nonvoid open set Z C U\{y} such that Z N E; is void. By
Baire’s theorem, there is an index j (j # ¢) such that ZN (interior E;)
is nonvoid. Thus, (U\{y}) N (interior E;) is also nonvoid. We may
assume, without loss of generality, that E; does not contain U\{y}.
For if it did, interior E; would contain continuum many of the points
in the perfect set (boundary of interior E;).

Because U\{y} is connected, U\{y} contains a boundary point of
interior E;. It follows that U contains continuum many points of the
boundary of interior E; and so do Y N S(y,c) and E;. i

We turn again to strongly locally connected metric spaces.

Theorem 1. Let X be a complete, connected, strongly locally
connected metric space. Let X be covered by a sequence of proper closed
sets (E,). Then there exist indices i, j (i # j) such that E;NE; contains
at least continuum many points.

Proof. By Lemma 1, the boundary of the interior of each E, is a
perfect set. Moreover, X is locally connected because X is strongly
locally connected. The conclusion follows from Lemma 2. O

Certain metric spaces encountered in functional analysis are strongly
locally connected.

Lemma 3. Let X be the unit sphere of a normed linear space not of
dimension 1 or 2. Then X is strongly locally connected.

Proof. By the segment joining vectors z and y in X for which z+y # 0
we mean the set of vectors {(tz+ (1 —t)y)/||tz+ (1 —t)y|| : 0 <t < 1},
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Now let u = tz + (1 — t)y for some ¢, 0 < t < 1. Clearly, ||Ju|| < 1.
Also, z — u/l|ul| = (& — u) + u([[u]] = 1)/][u]] and |lz = u/||u]|[| <
||z = ull + 1 — [[u]]. Moreover, [[u]| = ||z|| — ||z —u|| > 1 - |lz - y]|. Tt
follows that ||z — u/||ul]]| < 2||z — y||-

Choose any number ¢ > 0. Let U = {y € X : ||z — v|| < c for all v
in the segment joining = and y}. It follows that any y € X for which
[lz —y|| < (1/2)clies in U, so U is a neighborhood of = containing the
open ball S(z,(1/2)c).

Now let y and z be vectors in U. Because the vector space does
not have dimension 1 or 2, it follows that y and z can be joined by
a connected path in U that avoids z in the ball S(z,(1/2)c). Clearly,
U\{z} is connected and X is strongly locally connected. o

By a convex body in a normed linear space we mean a convex set with
nonvoid interior.

Lemma 4. Let X be a convex body in a normed linear space not of
dimension 1. Then X is strongly locally connected.

Proof. The argument is much like the proof of Lemma 3 only it is
easier because we do not normalize the vector u. So we leave it. O

In Corollaries 2, 3 and 4 we need not assume that X is complete.

Corollary 2. Let X be the unit sphere of a normed linear space
not of dimension 1 or 2. Let X be covered by a sequence of proper
closed sets (E,,). Then there exist indices i,j (i # j) such that E; N E;
contains at least continuum many points.

Proof. Choose vectors x and y in X and let T' denote the segment
joining z and y as in the proof of Lemma 3. Let z € X such that z —y,
z — y are linearly independent. Let IV be an index such that TN Ey
is uncountable. But E is closed so T'N En contains continuum many
points. Choose w € X\Ey. Let X, be the unit sphere of the finite
dimensional subspace generated by the vectors z,y, z,w. We assume,
without loss of generality, that no E; contains Xy; for if it did, then
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E; N En contains continuum many points. Finally, X, is compact and
hence complete, and the rest follows from Lemma 3 and Theorem 1.
O

Corollary 3. Let X be a convex body in a normed linear space not
of dimension 1. Let X be covered by a sequence of proper closed sets
(En). Then there exist indices i,j (¢ # j) such that E; N E; contains
at least continuum many points.

Proof. Choose vectors x and y in X and let 7" denote the set
{tz+(1—t)y:0 <t <1}. Let z € X such that z —y, z — y are linearly
independent. Let N be an index such that 7' N Ey is uncountable.
But Ey is closed so T N E contains continuum many points. Choose
w € X\En. Let X be the smallest convex set containing the vectors
z,y,z,w. Then Xy is compact and is homeomorphic to a convex body
in some finite dimensional normed linear space not of dimension 1. We
assume, without loss of generality, that no E; contains Xy; for if it did,
then F; N Ey contains continuum many points. The rest follows from
Lemma 4 and Theorem 1. ]

We turn now to a special kind of normed linear space, the inner
product spaces.

Corollary 4. Let X be a convex body in an inner product space not of
dimension 1. Let X be covered by a sequence of closed balls (By,). Then
there exist indices i,j (i # j) such that (interior B;) N (interior Bj) is
nonvoid.

It follows easily from the geometry of an inner product space, that
if the balls B; and B; have more than one common point, then the
distance between the centers of B; and B; is less than the sum of the
radii of B; and B; and there interiors must meet. The proof then is an
easy consequence of Corollary 3, so we leave it.

It is well to note that we cannot state Corollary 4 for general normed
linear spaces. Consider the plane with the norm of (u,v) equal to
|u|+|v]. Then the balls are just squares in the plane, and an appropriate
tiling of the plane provides our counterexample.
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