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EQUIVARIANT PATH FIELDS ON G-COMPLEXES
PETER WONG

ABSTRACT. A classical theorem of Wecken states that a
finite connected polyhedron X satisfying the so-called Wecken
condition admits a fixed point free deformation if, and only
if, its Euler characteristic X(X) vanishes. More generally,
Fadell showed that X(X) = 0 implies the existence of a
nonsingular simple path field on X. As an application of path
fields, Schirmer showed that every nonempty closed subset of
a Wecken complex is the fixed point set of a deformation. In
this note, we introduce the appropriate notions of G-Wecken
complexes and G-path fields, and we generalize these results
to finite G-complexes.

1. Preliminaries. Throughout G will denote a finite group and X
will be a finite G-(simplicial) complex (see [1]). For any subgroup H <
G, we denote by NH the normalizer of H in G and by WH = NH/H,
the Weyl group of H in G. The conjugacy class of H denoted by (H)
is called the orbit type of H. If x € X, then G, denotes the isotropy
subgroup of z, i.e., G, = {g € G|gz = z}. For each subgroup H of G,
XH ={re X|lhz=zforallh€ H}and Xy = {z € X|G, = H}. Let
{(H;)} denote the set of isotropy types of X. If (H;) is subconjugate
to (H;), we write (H;) < (H;). We can choose an admissible ordering
on {(H;)} so that (H;) < (H;) implies ¢ < j. Then we have a
filtration of G-subcomplexes X7 C Xo C ... C X = X, where
X, = {z € X|(G;) = (H;) for some j < i}. For each H = H,,
Xy = {z € X|(G.) = (H)}. Suppose C is a connected component
of X(m)/G, we let Xg o =p~'(C) N X" where p: X — X/G is the
orbit map. Since X is a compact G-ENR, all the X are compact
ENRs and so are X7 — X u,c for each C. Thus the Euler characteristic
X(XH, XH — Xpo) = x(XH) — x(XH” — Xpg ) is well defined. Let
A(X,G) be the free abelian group generated by the set {((H),C)|C
connected component of X z)/G}.

Definition 1.1. The equivariant Euler characteristic xg(X) of X is
defined to be the unique element in A(X,G) whose coefficient of the
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((H), C)-th entry is given by X(X#, X" — Xy ¢).

Proposition 1.2. If f : X — X is G-homotopic to the iden-
tity 1x (i.e., a G-deformation of X) with isolated fived points, then
X(XH, X" — Xy ) is the fized point index of f|Xu c. In particular,
if f is a fized point free G-deformation of X then Xg(X) = 0.

Proof. For the proof of this, see [6, 2.1]. O

Let A be the diagonal in X x X. We define a special neighborhood
of A by n(A) = {(z,y) € X x X|o(z) and o(y) have a common vertex}
where o(z) is the carrier of z. A map f: X — X is called a prozimity
map if (z, f(z)) € n(A) for every x € X. Since n(A) is an invariant
neighborhood of A with the diagonal action and X7 is the space of
paths on X with the compact open topology and the natural G-action
given by (g-7v)(t) = g(y(t)) for v € X!, we may state the equivariant
analog of [3, 2.1] as follows.

Lemma 1.3. There ezists a G-map o : n(A) — X! such that
(1) a(z,y) is a path from z to y;
(2) a(z,x) is the constant path at ;

(3) the track of a(x,y) has the form [z, z]U [z, y] where z depends on
r and y;

(4) a(y,z) is the reverse of a(z,y);
(5) ifz#vy, a(z,y) is a simple path.

Proof. The proof is just as in [3, 2.1] with the observation that « as
defined there is automatically equivariant. o

Definition 1.4. A G-path field on X is a G-map ¢ : X — X7
such that ¢(2)(0) = = and if ¢(z)(t) = = for some t > 0, then ¢ is
the constant path. We say that ¢ is nonsingular if ¢(z) is never the
constant path and is simple if ¢(x) is a simple path for each z. A
singular orbit of ¢ is an orbit Gz so that ¢(z) is the constant path.
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Proposition 1.5. Suppose that there exists a fized point-free proz-
imity self G-map, then X admits a nonsingular simple G-path field.

Proof. Define p(x) = a(z, f(x)) to be the nonsingular simple G-path
field where « is as in Lemma 1.3 and f is a fixed point-free proximity
G-map. O

2. The G-Wecken condition. In this section we will show that
every finite G- Wecken complex admits a G-path field which has at
most one singular orbit in p~!(C') where C is a connected component
of X(g)/G and p : X — X/G is the orbit map. We first recall the
Wecken condition in classical fixed point theory. A (locally finite)
simplicial complex K is said to satisfy the Wecken condition or simply
be a Wecken complez if (i) every maximal simplex is of dimension at
least two; (ii) for every two maximal simplices o, 0’ there exists a finite
chain of maximal simplices o = 01,09, ... ,0, = ¢’ such that o; N1
is of dimension at least one for i =1,... ,n — 1.

K is sometimes called a space of type W or is two dimensionally
connected (see [2]). It is easy to verify that (i) and (ii) are invariant
under subdivisions. Next we prove a lemma which is essential in
applying the “Wecken trick” equivariantly.

Lemma 2.1. Let x and y be two distinct points of a Wecken complex
K, each lying in the interior of some mazimal simplex. Then there
exists a simple polygonal path from x to y such that the interior of each
broken line segment lies in some mazximal simplex and the endpoints lie
in some simplices of dimension at least one.

Proof. If z and y both lie inside the same maximal simplex, then the
assertion is obvious. Suppose o071, ... , 0% is a chain of maximal simplices
with z € int o1,y € int o, and o; N 0,41 is at least one dimensional for
i=1,...,k—1. Let vy;_1 and vy; be the barycenters of o; and o;N0o; 41,
respectively. Let « be the polygonal path from vy to ver_1 given by
[v1,v2] U+ U [vgk—2,v2r—1] Wwhere [a,b] denotes the line segment from
a to b. Let o be a maximal tree of the connected graph «. For
1 < i < 2k — 1, if the vertex v; is of degree 1 we remove v; and the
edge incident to it. By applying the procedure successively, we arrive
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at a subtree 8 of o’ so that all vertices have degree 2 except for v; and
vog_1. Thus (8 is a subpath of o and it is simple. The required path is
obtained by adjoining 8 with the segments [z, v;] and [vag 1, ] O

Definition 2.2. A G-complex X is said to satisfy the G-Wecken con-
dition if for each isotropy type (H) and every connected component C
of X(m)/G, every connected component of Xy ¢ is a Wecken complex.
Such an X is called a G-Wecken complex.

Given any admissible ordering (Hy) > - -+ > (H}) and its correspond-
ing filtration X; C ... C X = X, Xﬁil is a subcomplex of XZH and
Xpg, = XM — x| where X; = {z € X|(G,) = (H;), j < i}. There is
a canonical (locally finite) triangulation on Xp induced by the trian-
gulation of X*#. Thus, the notion of G-Wecken complex is well defined.
Note that if K is a Wecken complex, then so is K/G.

3. Uniting fixed orbits. Let X be a G-space, f : X — X a G-map.
A fized orbit is of the form Gz where f(x) = z. We show in this section
how to coalesce two fixed orbits of a G-map which is G-homotopic to
the identity map.

Lemma 3.1. Let A be an invariant subcomplexr of a finite G-
complex X such that the action of G in X — A is free. Suppose
that each connected component of X — A is a Wecken compler and
(X — A)/G is connected. Then given any € > 0 there exists a G-map
f:(X,A) = (X, A) equivariantly e-homotopic (relative to A) to 1x,
which has at most one fized orbit in X — A.

Proof. By an equivariant version of the Hopf’s construction (see [8
or 7]) we may assume that we have a G-map f' : (X,4) — (X, A)
equivariantly e-homotopic (relative to A) to 1x which has a finite
number of fixed points in X — A, each lying in the interior of some
maximal simplex in X — A. Let Gz1,...,Gz, be the isolated fixed
orbits of ' in X — A. Choose distinct z;, z; and denote by Z and § the
images of z; and z; under the orbit map p : X — X/G. Since z;, z;
lie in the interior of maximal simplices, so do Z and 7 in (X — A)/G
which is also a Wecken complex. By Lemma 2.1, there exists a simple
polygonal path which can be lifted to a cross-section o from z; to gz;
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for some g € GG, we can coalesce these two fixed points inside a small
contractible neighborhood of « in X — A using the Wecken method (see
[2]). By taking all the G-translates of this neighborhood, we unite the
fixed orbits Gz; and Gz;. The assertion follows by repeating the above
process finitely many times. O

Theorem 3.2. Let X be a finite G-Wecken complex. There exists
a prozimity G-map f such that for each isotropy type (H) and each
connected component C of Xgy/G, f has at most one fived orbit in
p~1(C) where p: X — X/G is the orbit map.

Proof. Let (Hy) > --- > (Hy) be an admissible ordering on the
isotropy types of X and put Xg = @. We may assume inductively that
there exists a proximity G-map f which has at most one fixed orbit in
p *(C) for each isotropy type (H;) and each connected component
C of X(Hj)/G for 7 < i. Let C be a connected component of
X(n,)/G = Xu,/WH;. Since the connected components of Xy, ¢ are
Wecken complexes, C is also a Wecken complex. Thus we can apply
Lemma 3.1 because Xpg, ¢ is a free W H;-space. Then fH: is WH;-
equivariantly e-homotopic (relative to Xif{ ‘) to a map which has at
most one fixed W H;-orbit in p; 1(C) for each connected component C'
in Xy, /WH,; where p; : Xg, = Xg,/W H; is the W H;-orbit map. We
extend this homotopy to a G-homotopy to obtain the required map.
Induction completes the proof. ]

Theorem 3.3. If X is a finite G- Wecken complez, then there exists
a G-path field ¢ on X with at most one singular orbit in p~1(C) for
every connected component C in X gy/G for each isotropy type (H).
Moreover, X admits a nonsingular simple G-path field if, and only if,
X (X) vanishes.

Proof. Let f be the map obtained in Theorem 3.2. Define p(z) =
a(z, f(x)) to be the required G-path field where « is as in Lemma 1.3.
If A\ is a nonsingular simple G-path field, then we define a G-map A on
X by A(z) = A(z)(1). The map A is a fixed point-free G-deformation
and thus Xg(X) = 0 by Proposition 1.2. If Xg(X) = 0, the map from
Theorem 3.2 can be G-deformed to a fixed point-free proximity map
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since any fixed orbit of index zero can be removed (see [4]). Applying
Proposition 1.5 completes the proof. u]

Corollary 3.4. Let X be a finite G- Wecken complex. There exists a
fized point-free prozimity self G-map of X if, and only if, Xg(X) = 0.

Note that if M is a compact triangulable G-manifold with a locally
smooth G-action (see [1]) such that every connected component of M
is of dimension at least two, then M is a finite G-Wecken complex.
Therefore, by Theorem 3.3, M admits a nonsingular simple G-path
field if, and only if, Xg(M) = 0. In the smooth case, a nonvanishing
G-vector field gives rise to a fixed point-free proximity G-map via the
exponential map which is G-invariant. On the other hand, given a
fixed point-free proximity G-map f, let v, be the unique geodesic in
M with 7,(0) = z and 7,(1) = f(z) for each x € M. Then the tangent
vectors . (0) define a nonsingular G-vector field. The above arguments
together with Corollary 3.4 yield the following

Theorem 3.5. M admits a nonsingular G-vector field if, and only
if, Xg(M) vanishes.

Theorem 3.5 was also obtained by Wilczyiiski [7, Theorem B] using
a different method.

4. Application. In [5] Schirmer proved, using path fields, that
every Wecken complex has the complete invariance property, i.e., every
nonempty closed subset is the fixed point set of a deformation. In this
section we give conditions when a nonempty closed invariant subset of
a finite G-Wecken complex can be the fixed point set of G-deformation.

Theorem 4.1. Let A be the nonempty closed invariant subset of a
finite G-Wecken complex X. Suppose that for every isotropy type (H)
and connected component C' of X m)/G, X(XE, XH — Xyco) #0 =
AT Np~Y(C) # @ where p: X — X/G is the orbit map. Then given
any € > 0, there exists a G e-deformation h : X — X with Fixh = A.
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Proof. Suppose that X(X, X — Xy o) # 0 implies AZ Np~1(C) #
@. By Theorem 3.3, there is a G e-deformation f with exactly one
essential fixed orbit in p~!(C). Since a fixed point can be chosen
arbitrarily on a two dimensionally connected space (see [5]), the fixed
orbit of f in p~(C) can be chosen so that it lies inside 4 N p~*(C).
Thus we may assume that Fix f C A. Consider the G-path field
o(x) = a(z, f(z)) where « is as in Lemma 1.3. Let d be the metric
of X. We may assume that d is bounded and d < 1. Define the G-
map h : X — X with fixed point set A by h(z) = ¢(z)(t;) where
t, = d(x, A). Since the track of ¢(z) is a broken line segment from z
to f(z) and f is sufficiently close to 1x, h is also close to 1x. O
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