A CONGRUENCE FOR $c\phi_{h,k}(n)$

LOUIS WORTHY KOLITSCH

ABSTRACT. This paper is a sequel to a recent paper [2] on congruences for generalized Frobenius partitions. With the aid of some congruence properties for compositions, we will derive a congruence, modulo h^2 , for $c\phi_{h,k}(n)$, the number of generalized Frobenius partitions of n with h colors and at most k repetitions, provided (h, k+1) = 1.

Introduction. Let $c\phi_{h,k}(n)$ be the number of generalized Frobenius partitions, F-partitions for short, of n with h colors and (at most) k repetitions as introduced in [3]. These combinatorial objects are an extension of two classes of F-partitions introduced by Andrews [1]. In two recent papers [3, 4] the generating functions and the Hardy-Ramanujan-Rademacher expansions for $c\phi_{h,k}(n)$ were derived. In this paper we will prove two congruences for $c\phi_{h,k}(n)$ which are similar to congruences for two other classes of F-partitions.

It has been shown [2] that $\sum_{d|(h,n)} \mu(d) \operatorname{c}_{\emptyset_h/d}(n/d) \equiv 0 \pmod{h^2}$ and $\sum_{d|(h,n)} \mu(d) \operatorname{k}_{\emptyset_h/d}(n/d) \equiv 0 \pmod{h^2}$ where $\operatorname{c}_{\emptyset_h}(n) (\operatorname{k}_{\emptyset_h}(n))$ are the number of F-partitions of n with h colors without (with unrestricted) repetitions. In this paper we will prove the following.

Theorem 1.

$$\sum_{d \mid (h,n)} \mu(d) \operatorname{c\phi}_{h/d,k}\left(\frac{n}{d}\right) \equiv 0 (\operatorname{mod} h)$$

Theorem 2.

$$\sum_{d \mid (h,n)} \mu(d) \operatorname{c\phi}_{h/d,k} \left(\frac{n}{d} \right) \equiv 0 (\operatorname{mod} h H)$$

Copyright ©1992 Rocky Mountain Mathematics Consortium

Received by the editors on October 30, 1989, and in revised form on January 8, 1990.

where H is the product of all the prime power factors of h which are relatively prime to k + 1.

As an immediate corollary, we have

Corollary.

$$\sum_{d \mid (h,n)} \mu(d) \operatorname{c} \emptyset_{h/d,k} \left(\frac{n}{d} \right) \equiv 0 \pmod{h^2}$$

provided(h, k + 1) = 1.

We begin by introducing the idea of a color chart associated with a colored F-partition. Let

$$\lambda_1 \dots \lambda_1 \quad \dots \quad \lambda_s \dots \lambda_s$$

 $\beta_1 \dots \beta_1 \quad \dots \quad \beta_t \dots \beta_t$

be an arbitrary F-partition using h colors where in each row if the colors are ignored the λ_i 's and the β_j 's represent distinct nonnegative integers with $0 \le \lambda_s < \dots < \lambda_1$ and $0 \le \beta_t < \dots < \beta_1$. The color chart associated with this colored F-partition is an h-column, (s+t)-rowed array where the ith row, $1 \le i \le s$, gives the color distribution for λ_i and the (s+j)th row, $1 \le j \le t$, gives the color distribution for β_j .

For example, the color chart associated with

an F-partition of 23 using 4 colors (the colors are designated by subscripts) is

Proof of Theorem 1. The proof of Theorem 1 is easy since if d|(h, n) then the F-partitions enumerated by $c\phi_{h/d,k}(n/d)$ can be viewed as

F-partitions of n with h colors and k repetitions in the following way: repeat each entry d times and increment the color by h/d each time. This amounts to just repeating the color chart of an F-partition enumerated by $\mathrm{c}\phi_{h/d,k}(n/d)$ d times to form a color chart having h columns. Thus the F-partitions of n with h colors and k repetitions enumerated by $\mathrm{c}\phi_{h/d,k}(n/d)$ have order dividing h/d under cyclic permutation of the columns of its color chart.

A simple inclusion/exclusion argument shows that $\sum_{d|(h,n)} \mu(d) \cdot c\phi_{h/d,k}(n/d)$ enumerates the F-partitions of n with h colors and k repetitions whose order is h under cyclic permutation of the columns of its color chart. Therefore, this sum is congruent to zero modulo h. \square

Before we begin our proof of Theorem 2, we need to introduce some intermediate results concerning the number of compositions of a positive integer into positive parts.

Intermediate results. Let c(r, s; n) be the number of compositions of n into exactly r positive parts each less than or equal to s. Define b(r, s, t; n) to be the number of compositions of n into exactly r positive parts each less than or equal to s whose order under cyclic permutation is t. When t = r, we will simply write b(r, s; n).

Properties of b(r, s; n).

- (1) For d a positive integer b(r, s; n) = b(dr, s, r; dn).
- (2) The number of compositions of n into exactly r nonnegative parts each less than or equal to s whose order under cyclic permutation is r is b(r, s + 1; n + r).
 - (3) $b(r, s; n) = \sum_{d \mid (r, n)} \mu(d) c(r/d, s; n/d).$
 - (4) For D|r with (D, s) = 1,

$$b(r,s;n) \equiv 0 \begin{cases} \mod rac{r(D,n)}{(2,D)} & n \equiv r-2 \equiv 0 \pmod 4 \\ \mod r(D,n) & \text{otherwise} \end{cases}$$

(5) If
$$n \equiv r - 2 \equiv 0 \pmod{4}$$
 and $(2, s) = 1$,
$$\frac{1}{r}b(r, s; n) + \frac{2}{r}b\left(\frac{r}{2}, s; \frac{n}{2}\right) \equiv 0 \pmod{2}.$$

The first and second properties for b(r, s; n) are obvious and the third follows by observing that c(r/d, s; n/d) is the number of compositions of n into exactly r parts each less than or equal to s whose order under cyclic permutation divides r/d.

In order to prove the fourth property, it is sufficient to show that if (p,s)=1, $c(R,s;N)\equiv c(R/p,s;N/p) \pmod{p^{t+j+c}}$ where p^t exactly divides R, p^j divides (R,N) and c=0 unless p=2, t=1, and 4 divides N in which case c=-1. The proof of this will be based on the following four theorems in which \sum_i represents a sum of terms q^j with $(p^t,j)=p^i$.

Theorem 1. If (m,p) = 1, then $(1+q)^{mp^t} = (1+q^p)^{mp^{t-1}} + p^t \sum_0 + p^{t+1} \sum_1 + \cdots + p^{2t} \sum_t$ for all odd primes $p, t \geq 1$ and for p = 2, t = 1.

Theorem 2. If (m, p) = 1, then $(1 - q)^{mp^t} = (1 - q^p)^{mp^{t-1}} + p^t \sum_0 + p^{t+1} \sum_1 + \dots + p^{2t} \sum_t$ for all odd primes $p, t \geq 1$ and for $p = 2, t \geq 2$.

Theorem 3. If (m, p) = 1, then $(q + q^2 + ...)^{mp^t} = (q^p + q^{2p} + ...)^{mp^{t-1}} + p^t \sum_0 + p^{t+1} \sum_1 + ... + p^{2t} \sum_t \text{ for all odd primes } p, t \ge 1$ and for $p = 2, t \ge 2$.

Theorem 4. If (m,2) = 1, then $(q + q^2 + ...)^{2m} = (q^2 - q^4 + q^6 - ...)^m + 2\sum_0 + 4\sum_1$.

The generating function for c(r,s;n) is given by $(q+q^2+\cdots+q^s)^r$. Thus we have $\sum [c(R,s;N)-c(R/p,s;N/p)]q^N=(q+\cdots+q^s)^R-(q^p+\cdots+q^ps)^{R/p}=(1-q^s)^R(q+q^2+\cdots)^R-(1-q^{ps})^{R/p}(q^p+q^{2p}+\cdots)^{R/p}=[(1-q^s)^R-(1-q^{ps})^{R/p}](q+q^2+\cdots)^R+(1-q^{ps})^{R/p}[(q+q^2+\cdots)^R-(q^p+q^{2p}+\cdots)^{R/p}]=(p^t\sum_0+\cdots+p^{2t}\sum_t)\sum_0 \binom{j-1}{R-1}q^j+\sum_0(-1)^{j/p}\binom{R/p}{j/p}q^{sj}(p^t\sum_0+\cdots+p^{2t}\sum_t)=p^t\sum_0+\cdots+p^{2t}\sum_t$ provided p is an odd prime, $t\geq 1$ or $p=2,\ t\geq 2$ and (p,s)=1.

If 2 exactly divides R and (2,s)=1, we have $\sum [c(R,s;N)+(-1)^{N/2}c(R/2,s;N/2)]q^N=(q+\cdots+q^s)^R+(-q^2+q^4-\cdots-q^{2s})^{R/2}=$

$$\begin{array}{l} (1-q^s)^R(q+q^2+\dots)^R-(1+q^{2s})^{R/2}(q^2-q^4+\dots)^{R/2}=[(1-q^s)^R-(1+q^{2s})^{R/2}](q+q^2+\dots)^R+(1+q^{2s})^{R/2}[(q+q^2+q^3+\dots)^R-(q^2-q^4+\dots)^{R/2}]=\\ (2\sum_0+4\sum_1)\sum \binom{j-1}{R-1}q^j+\sum \binom{R/2}{j/2}q^{sj}(2\sum_0+4\sum_1)=\\ 2\sum_0+4\sum_1. \end{array}$$

From the above results, the congruence for c(R, s; N) follows immediately and hence property four is verified.

The fifth property follows by observing that

$$\begin{split} &\frac{1}{r} \sum_{d \mid (r,n)} db \left(\frac{r}{d}, s; \frac{n}{d} \right) \\ &= \frac{1}{r} \sum_{f \mid (r,n)} d \sum_{e \mid (r/d,n/d)} \mu(e) c \left(\frac{r}{de}, s; \frac{n}{de} \right) \\ &= \frac{1}{r} \sum_{f \mid (r,n)} c \left(\frac{r}{f}, s; \frac{n}{f} \right) \sum_{d \mid f} d\mu \left(\frac{f}{d} \right) \\ &= \frac{1}{r} \sum_{f \mid (r,n)} \phi(f) c \left(\frac{r}{f}, s; \frac{n}{f} \right) \\ &= \frac{1}{r} \sum_{f \mid (r/2, n/2)} \phi(f) \left[c \left(\frac{r}{f}, s; \frac{n}{f} \right) + c \left(\frac{r}{2f}, s; \frac{n}{2f} \right) \right]. \end{split}$$

From the last result, we see that the expression in brackets is divisible by 4 when 2 exactly divides r, 4 divides n and (2, s) = 1 since in this situation f will be odd. This sum will therefore be even.

Thus,

$$\frac{1}{r} \sum_{d \mid (r,n)} db \left(\frac{r}{d}, s; \frac{n}{d} \right) = \sum_{d \mid (r/2, n/2)} \left[\frac{d}{r} b \left(\frac{r}{d}, s; \frac{n}{d} \right) + \frac{2d}{r} b \left(\frac{r}{2d}, s; \frac{n}{2d} \right) \right]$$

is even and since d is odd in this last sum we see that 2 exactly divides r/d and 4 divides n/d. Hence, we can proceed by induction on the size of R = r/d and N = n/d so that (1/R)b(R,s;N) + (2/R)b(R/2,s;N/2) will be even for d > 1 and since the whole sum is even we must have (1/r)b(r,s;n) + (2/r)b(r/2,s;n/2) is even.

Proof of Theorem 2. To extend the divisibility to hH, we begin by considering an arbitrary uncolored F-partition of n

$$\lambda_1 \dots \lambda_1 \quad \dots \quad \lambda_s \dots \lambda_s$$

 $\beta_1 \dots \beta_1 \quad \dots \quad \beta_t \dots \beta_t$

where λ_i appears $f_i > 0$ times and β_j appears $f_{s+j} > 0$ times. We note that $f_1 + \cdots + f_s = f_{s+1} + \cdots + f_{s+t}$ since the lines of the array are of equal length. We will now count the number of ways of coloring this F-partition using h colors and (at most) k repetitions so that its order is h under cyclic permutation of the h colors.

It is easy to see that the number of ways of coloring this F-partition using h colors and k repetitions so that h is the order of its color chart under cyclic permutation of the columns is $\sum \prod_{i=1}^{s+t} b(h, k+1, h/d_i; h+f_i)$ where the sum is over all sets of positive integers $\{d_1, \ldots, d_{s+t}\}$ such that d_i divides both h and f_i and $\lim_{s \to \infty} (h/d_1, h/d_2, \ldots, h/d_{s+t}) = h$. By property 1 we immediately see that

$$\sum \prod_{i=1}^{s+t} b\left(h, k+1, \frac{h}{d_i}; h+f_i\right) = \sum \prod_{i=1}^{s+t} b\left(\frac{h}{d_i}, k+1; \frac{h+f_i}{d_i}\right).$$

Now we fix $\{d_1,\ldots,d_{s+t}\}$ and consider the prime factorization of h. Let p^e be the highest power of a prime dividing H. Since $\operatorname{lcm}(h/d_1,\ldots,h/d_{s+t})=h$, there exists d_j such that p does not divide d_j . Let p^a , $a\geq 0$, be the highest power of p which divides $(d_1,\ldots,d_{j-1},d_{j+1},\ldots,d_{s+t})$. Then p^a divides f_j since p^a divides all f_i , $i\neq j$, and $f_1+\cdots+f_s=f_{s+1}+\cdots+f_{s+t}$. Furthermore, p^a divides f_j/d_j since p does not divide d_j . Also, p^{e-a} divides some h/d_i , $i\neq j$. Unless p=2, e=1, a=1 and p^{e-a} divides f_j , we have p^{e+a} divides p^{e

In the exceptional case if 4 divides $b(h/d_j, k+1; (h+f_j)/d_j)$ we are done; so we assume $b(h/d_j, k+1; (h+f_j)/d_j)/2$ is odd. Now let $\{f_{i_1}, \ldots, f_{i_{2u}}\}, i_1 < i_2 < \cdots < i_{2u}$, be the set of f_i 's such that 2 exactly divides f_i . The cardinality of this set is even since $f_1 + \cdots + f_s = f_{s+1} + \cdots + f_{s+t}$ and in the situation we are considering all of the f_i 's are even. Suppose $f_j = f_{i_r}$. Consider $b(h/d_{i_{r'}}, k+1; (h+f_{i_{r'}})/d_{i_{r'}})$

where r'=r+1 if r is odd and r'=r-1 if r is even. If $b(h/d_{i_{r'}},k+1;(h+f_{i_{r'}})/d_{i_{r'}})$ is even we have the needed factor of 2; so we assume $b(h/d_{i_{r'}},k+1;(h+f_{i_{r'}})/d_{i_{r'}})$ is odd.

The set $\{d'_1,\ldots,d'_{s+t}\}$ where $d'_i=d_i,\ i\neq j,\ i_{r'},\ d'_j=2d_j,$ and $d'_{i_{r'}}=d_{i_{r'}}/2$ is among the set of d_i 's over which we are summing and we have $b(h/d'_j,k+1;(h+f_j)/d'_j)$ and $b(h/d'_{i_{r'}},k+1;(h+f_{i_{r'}})/d'_{i_{r'}})/2$ are odd by property 4 for b(r,s;n). Hence, $\prod_{i=1}^{s+t}b(h/d_i,k+1;(h+f_i)/d_i)+\prod_{i=1}^{s+t}b(h/d'_i,k+1;(h+f_i)/d'_i)$ is divisible by 4.

Noting that the pairing of sets as described above is a well-defined operation, we can therefore conclude that $\sum \prod_{i=1}^{s+t} b(h/d_i, k+1; (h+f_i)/d_i)$ where the sum extends over all sets of positive integers $\{d_1, \ldots, d_{s+t}\}$ such that d_i divides both h and f_i and $\operatorname{lcm}(h/d_1, \ldots, h/d_{s+t}) = h$ is congruent to zero modulo hH. This is sufficient to prove Theorem 2.

REFERENCES

- 1. G.E. Andrews, Generalized Frobenius partitions, Mem. Amer. Math. Soc. 301, Providence, RI, 1984.
- 2. Louis W. Kolitsch, An extension of a congruence by Andrews for generalized Frobenius partitions, J. Combin. Theory, Ser. A. 45 (1987), 31–39.
- 3. Padmavathamma, On Andrew's generalized Frobenius partitions, Fibonacci Quart., to appear.
- 4. ——, The Hardy-Ramanujan-Rademacher expansion for $c\phi_{m,m'}(n)$, J. Ramanujan Math. Soc. 3 (1988), 161–180.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, THE UNIVERSITY OF TENNESSEE AT MARTIN, MARTIN, TN 38238