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A CONGRUENCE FOR cgp k(n)

LOUIS WORTHY KOLITSCH

ABSTRACT. This paper is a sequel to a recent paper [2]
on congruences for generalized Frobenius partitions. With the
aid of some congruence properties for compositions, we will
derive a congruence, modulo h?, for cgp, x(n), the number of
generalized Frobenius partitions of n with A colors and at most
k repetitions, provided (h,k + 1) = 1.

Introduction. Let cgp x(n) be the number of generalized Frobenius
partitions, F-partitions for short, of n with h colors and (at most) &
repetitions as introduced in [3]. These combinatorial objects are an
extension of two classes of F-partitions introduced by Andrews [1].
In two recent papers [3, 4] the generating functions and the Hardy-
Ramanujan-Rademacher expansions for cgy i (n) were derived. In this
paper we will prove two congruences for cgj ,(n) which are similar to
congruences for two other classes of F-partitions.

It has been shown [2] that 3, . #(d)cor/a(n/d) = 0(mod h?) and
> d|(hyn) Md)kop/a(n/d) = 0(mod h?) where cgp(n)(kon(n)) are the
number of F-partitions of n with h colors without (with unrestricted)
repetitions. In this paper we will prove the following.

Theorem 1.

Z p(d)coh /a,k (%) = 0(mod h)

d|(h,n)

Theorem 2.

Z /,L(d)C(Z)h/dyk (g) = O(mod hH)
d|(h,n)
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where H 1s the product of all the prime power factors of h which are
relatively prime to k + 1.

As an immediate corollary, we have

Corollary.

Z 1(d)con /ax (%) = O(mod h?)

d|(h,n)

provided (h,k+1) = 1.

We begin by introducing the idea of a color chart associated with a
colored F-partition. Let

Ao Al e Aseai A
BroiBr oo Bue.. B

be an arbitrary F-partition using h colors where in each row if the
colors are ignored the A;’s and the 3;’s represent distinct nonnegative
integers with 0 < A\; < --- < Ay and 0 < By < --- < B1. The color chart
associated with this colored F-partition is an h-column, (s + t)-rowed
array where the ith row, 1 < i < s, gives the color distribution for \;
and the (s + j)th row, 1 < j <t, gives the color distribution for ;.

For example, the color chart associated with

24 22 21 13 03 01
31 31 13 13 12 12

an F-partition of 23 using 4 colors (the colors are designated by
subscripts) is

ON = O
NO OO
N O~ =O
Coocoo =

Proof of Theorem 1. The proof of Theorem 1 is easy since if d|(h,n)
then the F-partitions enumerated by cgy/q(n/d) can be viewed as
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F-partitions of n with h colors and k repetitions in the following
way: repeat each entry d times and increment the color by h/d
each time. This amounts to just repeating the color chart of an F-
partition enumerated by c@j/q(n/d) d times to form a color chart
having h columns. Thus the F-partitions of n with h colors and k
repetitions enumerated by cgy, 4 1(n/d) have order dividing h/d under
cyclic permutation of the columns of its color chart.

A simple inclusion/exclusion argument shows that >, ., ) u(d) -
CBh/d,k(n/d) enumerates the F-partitions of n with h colors and k
repetitions whose order is h under cyclic permutation of the columns
of its color chart. Therefore, this sum is congruent to zero modulo h. O

Before we begin our proof of Theorem 2, we need to introduce
some intermediate results concerning the number of compositions of
a positive integer into positive parts.

Intermediate results. Let ¢(r, s;n) be the number of compositions
of n into exactly r positive parts each less than or equal to s. Define
b(r, s,t;m) to be the number of compositions of n into exactly r positive
parts each less than or equal to s whose order under cyclic permutation
is t. When ¢t = r, we will simply write b(r, s;n).

Properties of b(r, s;n).

(1) For d a positive integer b(r, s;n) = b(dr, s,r; dn).

(2) The number of compositions of n into exactly 7 nonnegative parts
each less than or equal to s whose order under cyclic permutation is r
isb(r,s+1;n+r).

(3) b(r,s5n) = 3 4)(rm) 1(d)c(r/d, 530/ d).

(4) For D|r with (D,s) =1,

mod T((fbrg) n=r—-2=0 (mod 4)
modr(D,n) otherwise

b(r,s;m) =0 {

(6) If n=r—-2=0 (mod 4) and (2,s) =1,

1 2. /r n\ _
;b(r, s;m) + ;b (5,3, 5) =0 (mod 2).
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The first and second properties for b(r, s; n) are obvious and the third
follows by observing that ¢(r/d, s;n/d) is the number of compositions
of n into exactly r parts each less than or equal to s whose order under
cyclic permutation divides r/d.

In order to prove the fourth property, it is sufficient to show that if
(p,s) = 1, ¢(R,s;N) = c¢(R/p, s; N/p)(mod p**i*¢) where p’ exactly
divides R, p’ divides (R,N) and ¢ = 0 unless p = 2, t = 1, and 4
divides N in which case ¢ = —1. The proof of this will be based on the
following four theorems in which ), represents a sum of terms ¢¢ with

(n',5) =p".

Theorem 1. If (m,p) = 1, then (14 ¢)™" = (14 ¢?)™?'"" +
Pt Y+ 4+ p* Y, for all odd primes p, t > 1 and for
p=2,t=1.

Theorem 2. If (m,p) = 1, then (1 — ¢)™" = (1 — qp)mpt’l +
Py o+ -+ p? Y, for all odd primes p, t > 1 and for
p=2,t>2.

Theorem 3. If (m,p) = 1, then (q+ ¢+ ...)™" = (¢ + ¢*? +

..37;pt1 +pt >+ -+ PP Y, for all odd primes p, t > 1
and forp=2,t > 2.

Theorem 4. If (m,2) =1, then (¢ +¢*> +...)*™ = (¢*> — ¢* + ¢° —
)24

The generating function for c(r, s;n) is given by (g +¢® +--- + ¢*)".
Thus we have Y [¢(R, s; N)—c(R/p, s; N/p)lg"N = (¢+---+¢°) B —(¢? +
b P ) BP = (1-¢°)R(g+¢* +. . ) = (1—gP*) /P (P +¢*P +.. . ) /P =
(1 =g = (1= ) ?l(g+ ¢* +..)" + (1 — ¢*)*/?[(g + ¢* +

TN
___)R _ (qp+q2p+ ___)R/p] — (ptZo"'"' +P2tZt)Z<é_1>q] +

S0 (2 ) (0 Sg 452 ) = ' T+ + % 5, pro-
vided p is an odd prime, t > 1 or p=2,¢ > 2 and (p,s) = 1.

If 2 exactly divides R and (2,s) = 1, we have > [¢(R,s;N) +
(~DN2e(R/2,5,N/2)|gN = (a+-+¢*) P+ (—a*+q* - —¢*)F/ =
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(1*qS)R(q+q2+...)R*(1+q28)R/2(q2*q4+...)R/2 — [(lqu)Rf
(1+¢*) ) (g+¢*+.. )R+(1+q25)R/2[(q+q2+q3+---)R—(q2—q4+
L = @, HE) T (30) @ + X (Te) a2+ %) =
23 0t4>.

From the above results, the congruence for ¢(R, s; N) follows imme-
diately and hence property four is verified.

The fifth property follows by observing that

LS a(;a0)

d|(rn

LSS (i)

fI(T n) el(r/d,n/d)

2 () s (l)

fl( d|f
= - Z ¢ ( - >
fI(Tn /
1 n r n
= - ¢(f) |:C<—,S;—>+C<—,S;—>:|.
" fl(r/;mﬂ) U 202

From the last result, we see that the expression in brackets is divisible
by 4 when 2 exactly divides r, 4 divides n and (2, s) = 1 since in this
situation f will be odd. This sum will therefore be even.

Thus,

SORICRE IO RETIERE )

d|(ryn) dl(r/2,n/2)

is even and since d is odd in this last sum we see that 2 exactly divides
r/d and 4 divides n/d. Hence, we can proceed by induction on the size
of R=r/dand N = n/d so that (1/R)b(R, s; N)+(2/R)b(R/2, s; N/2)
will be even for d > 1 and since the whole sum is even we must have
(1/r)b(r, s;m) + (2/7)b(r/2,5;n/2) is even.
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Proof of Theorem 2. To extend the divisibility to hH, we begin by
considering an arbitrary uncolored F-partition of n

Ao A e Ase )
Bi...Br .. Bi-.. B

where \; appears f; > 0 times and 3; appears fs;; > 0 times. We note
that f1 +--++ fs = fs41+ -+ + fsy¢ since the lines of the array are of
equal length. We will now count the number of ways of coloring this
F-partition using h colors and (at most) k repetitions so that its order
is h under cyclic permutation of the A colors.

It is easy to see that the number of ways of coloring this F-partition
using h colors and k repetitions so that A is the order of its color chart
under cyclic permutation of the columns is ) Hfif b(h,k+1,h/d;; h+
/i) where the sum is over all sets of positive integers {dy, ... ,ds1¢} such
that d; divides both h and f; and lem (h/dy, h/ds, ... ,h/dsyt) = h. By
property 1 we immediately see that

s+t s+t

h h h+ f;
ZHb(h,k+l,d—i;h+fi> :Zil:[lb<d—i,k+l; i )

Now we fix {dj,...,ds;+} and consider the prime factorization of
h. Let p° be the highest power of a prime dividing H. Since
lem (h/dy, ... ,h/dsy) = h, there exists d; such that p does not di-
vide d;. Let p*, a > 0, be the highest power of p which divides
(dv,...,dj—1,dj41,... ,dsyt). Then p® divides f; since p* divides
all fi, i # j, and f1 + -+ fs = feq1 + -+ + fsrs. Further-
more, p* divides f;/d; since p does not divide d;. Also, p*~° di-
vides some h/d;, i # j. Unless p = 2, e = 1, a = 1 and 2
exactly divides fj, we have p°t® divides b(h/d;, k + 1;(h + f;)/d;)
and p°~* divides [],; b(h/di,k + 1;(h + f;)/d;). Hence, p** divides
121 b(h/disk + 15 (h + £)/ds).

In the exceptional case if 4 divides b(h/d;,k + 1;(h + f;)/d;) we
are done; so we assume b(h/d;, k + 1;(h + f;)/d;)/2 is odd. Now let
{firy-- s finu by 11 <2 < -+ < igy, be the set of f;’s such that 2 exactly
divides f;- The cardinality of this set is even since f; + --- + fs =
fs+1+ -+ fs4¢ and in the situation we are considering all of the f;’s
are even. Suppose f; = f; . Consider b(h/d; ,,k + 1;(h + fi,)/d; )
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where ' = r 4+ 1 if r is odd and ' = r — 1 if r is even. If
b(h/d; ,,k 4+ 1;(h + fi,)/d; ) is even we have the needed factor of
2; so we assume b(h/d; ,,k+1;(h+ f; ,)/d; ) is odd.

The set {d},...,d, ,} where d; = d;, i # j, i/, d; = 2d;, and
d; , = d;, /2 is among the set of d;’s over which we are summing and
we have b(h/d}, k+1; (h+ f;)/d}) and b(h/d ,k+1; (h+ fi,)/d; )/2
are odd by property 4 for b(r,s;n). Hence, Hfg b(h/d; k + 1; (h +
£i)/di) + T2 b(h/dl k + 15 (R + f;)/d}) is divisible by 4.

Noting that the pairing of sets as described above is a well-defined
operation, we can therefore conclude that Y [[72] b(h/d;i, k + 1; (h +
fi)/d;) where the sum extends over all sets of positive integers {d1, ...,
ds4+} such that d; divides both h and f; and lecm (h/dy, ... ,h/dsi) = h
is congruent to zero modulo hH. This is sufficient to prove Theorem
2. m]
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