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A CLASS OF STARLIKE FUNCTIONS

ALBERT E. LIVINGSTON

ABSTRACT. We study the class of functions f which are
analytic and univalent in the unit disk U, which map U onto a
starlike domain and are normalized by f(0) = 1 and f(p) = 0,
0 < p < 1. We obtain sharp bounds on the integral means
of f and its derivatives centered at zero and p. These lead to
sharp bounds on |f(™)(2)| for n =0,1,2,... .

1. Introduction. The class of functions which are meromorphic and
univalent in U = {z : |2| < 1} with a simple pole at z =p, 0 < p < 1,
and which map U onto the complement of a starlike domain has been
studied in a series of papers [1, 5, 6 and 7]. The reciprocals of these
functions are a subclass of weakly starlike 1-valent functions, which
were studied by Hummel [3, 4] in a more general setting. The functions
in this subclass have the property that they map U onto a starlike
domain and are normalized by f(0) = 1 and f(p) = 0. (Hummel did
not require f(0) = 1). We will consider several extremal problems in
this class. We obtain sharp bounds on the integral means of a function
and its derivatives and also sharp bounds on the coefficients of the
power series expansions about z = 0 and z = p.

2. The class S*(p). We denote by S*(p) the class of functions
f which are analytic and univalent in U with f(0) = 1 and f(p) = 0,
0 < p < 1, and which map U onto a starlike domain. (A starlike
domain will always mean a domain starlike with respect to the origin.)

Theorem 1. A function f with f(0) =1, f(p) =0,0<p <1, isin
S*(p) if and only if for z in U,

(z=p) (1 =pz)f'(2)

(2.1) Re I8

> 0.
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290 A.E. LIVINGSTON

Proof. Let f be in S*(p), and let h be defined by

v =1(52)

1+ pz

then h(0) = f(p) = 0 and h maps U onto a starlike domain and,
therefore, Re [zh/(2)/h(z)] > 0 for z in U. We have

zh' (2) (Lﬁz)i <+ )
h(z) (1+p> '

Thus,

(171)2) hl(i:i) _ (z=p)(1 —p2)f'(2)
n(2=2) (e

It now follows that (2.1) is satisfied.
Conversely, suppose that f, with f(0) = 1 and f(p) = 0, satisfies

(2.1) and, again, let
zZ+p
h(z) = .
@=1(:2)

Replacing z by (z +p)/(1 + pz) in (2.1), we obtain

(1 z+
(11502)2 f (1+sz)
(&%)
for z in U. Inequality (2.2) implies that Re zh'(z)/h(z) > 0 for z in U.
Thus, h is univalent in U and maps U onto a starlike domain. Thus,

f(2) = h((z—p)/(1 —pz)) is also univalent and maps U onto a starlike
domain. Therefore, f is in S*(p). O

(2.2) >0

The next theorem is contained in [4] as part of more general consid-
erations. We will give here a fairly simple proof. We let S* be the class
of functions f analytic and univalent in U with f(0) = 0 and f/(0) =1
and which map U onto a starlike domain.
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Theorem 2. f is in S*(p) if and only if there exists g in S* such
that

—(z —p)(1 —p2)
pz

(2-3) f(z) = 9(z).

Proof. Suppose f satisfies (2.3). For 0 < r < 1, let

—(z—p)(1 —pz)

fr(2) = D2

g(rz).

Since g is in S*, g(rz) maps |z| = 1 onto a starlike curve. Since
—(z — p)(1 — pz)/(pz) is negative on |z| = 1, f.(z) also maps |z| =1
onto a starlike curve. Thus, f,. maps U onto a starlike domain. Letting
r tend to 1, it follows that f maps U onto a starlike domain. Therefore,

f is in S*(p).
Conversely, suppose f is in S*(p), and let

_ 1 z+p
hz) = (1 p2)f’(p)f<1 +pZ>’

then h is in S*. For 0 < r < 1, let h,.(z) = h(rz), then h, is analytic
for |z| <1 and maps |z| = 1 onto a starlike curve. Define g, by

gr(2) = (%) (1 =) f'(p)hr (ﬂ)

z—p)(1—pz 1—pz

As above, it follows that g, is analytic for |z| < 1 and maps |z| =1
onto a starlike curve. Thus, g, maps U onto a starlike domain. Letting
r tend to 1, it follows that

_ .
B =aa

maps U onto a starlike domain and, hence, is a member of S*. ]
The extreme points of the closed convex hull of S*(p) are now easily

obtained from known results. Let P be the set of probability measures
on X ={z:z|=1}.
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Theorem 3. The closed convex hull of S*(p) is the class

G- {/X —(z—p)(L — pz) du(z), peP}

p(l —xz)?
and the extreme points of G are the functions
—(z—p)(1 —p2)
= == 1

which are members of S*(p).

Proof. This follows immediately from Theorem 2 and known results
about the closed convex hull of S* and its extreme points [2], and from
the fact that J defined by J(g) = —(2 — p)(1 — pz)g(2)/(pz) defines a
linear homeomorphism between S* and S*(p). O

3. Integral means. Let ¢ be nonnegative and Lebesque integrable
on [—a, a], and let ¢* be its symmetrically decreasing rearrangement as
defined in [2]. We will make use of the following [2].

Lemma 1. Let ¢1,¢2,...,¢, be nonnegative and integrable on
[—a,a], then

" 1(@)6a(0) - du(@)dr < [ 61(2)d(a) - 6 (z) da

—a —a

Theorem 4. Let f be in S*(p), then for A real and 0 <r < 1,
[ isenypas < [ rgeypan

where F(z) = —(z — p)(1 — p2)/p(1 + 2)? is a member of S*(p).

Proof. Suppose first that A > 0. Since f is in S*(p), there exists g
in S* so that f(z) has the representation (2.3). Since g is in S* there
exists m(t) increasing on [, 7] with [ dm(t) =1 such that

g(2) = zexp [/W ~2log(1 — e=it2) dm(t)|.

—T
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_ —(z—p)d —pz) exp [/w —2log(1 — e z) dm(t)]-

p -7

Making use of the continuous form of the arithmetic geometric mean
inequality [8], we have

) Ire® — M1 — prei A
f(re’)* = X
p
- exp [/ log |1 — e~ ipei?|=2A dm(t)}
|rei97p|>‘|lfprei9|>‘ g 1
<
> 2 L= rei=n]2a dm(t).
Thus,
T ™ ™ 10 A 0|\
0\ (A [re’” —p|*|1 — pre*’|
[w |f(re )‘ a6 S /;77 [w p)\‘]‘ - rei(ﬁ—t)|2)\ @ dm(t)
™ ™ |Tei9—p|)“1—p7'6w|)‘
. <
@ <[ s | e ()

1 T |ret? — pr1 — pret? |
=X Sup i(0_1) 2 df.
P” —n<t<nw ‘]- —Tre |

—_T

Now making use of Lemma 1, we obtain for any ¢,

(3 2) T |,,,€i6 —p|>‘|1—p7“€i0‘)‘ 9 < g |,,,€i6 +p|)\|1 +p7‘6i0‘)‘ "
: — rei(0—1)|2X = — reif]22 :
|1 —re | |1 —reif|

—T —T

Combining (3.1) and (3.2) and making an appropriate change of vari-
ables, we get

™ . T lreid + plM1 + preif|t
_/27r | — rei® 4 p[ML — prei? )
o 1+ rei? 22
:/’r [re® — p[[1 — pre?A

p)\|l+,r.ei9|2)\

—T —T

do

do

—T

- / |F(rei®) do.

—T
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Now suppose A < 0, then
1

[seenra= [

But 1/f(z) is a member of A*(p), the class of meromorphic starlike
functions with pole at p [6]. According to Theorem 5 of [6], for r # p,
1

[ e 0=

and the Theorem follows for A < 0 and r # p. The case r = p is
obtained by taking limits. o

-

—A —A

1 d9,

F(re')

Note that the first part of the proof implies that Theorem 5 in [6]
while stated only for positive powers is also true for negative powers.
Also note that, for A > 1, Theorem 4 could be obtained using extreme
points.

We will next consider integral means of derivatives. We will restrict
ourselves to powers of A > 1 and therefore will only need to consider
extreme points. For this purpose, we need the following Lemma.

Lemma 2. Let F(z,z) = —(z — p)(1 —pz)/p(1 — z2)?, |z| = 1, then
forn >1, F™(z,z) = —(A,(x) + Bn(z)2)/p(1 — z2)"+? where

(3.3) A,(z) = —p(n+ Dlz™ + nn!)(1 +p*)z" ' — (n — nlpz™ 2

and

(3.4) B,(z) = (1 +p*)nlz™ — 2pnlz™ L.

In particular, A,(-1) = (=1)""YA,(-1)] and B,(-1) =
(—1)™|Bn(—1)|. Also

(3-5) [An(@)| < [An(=1)[;  [Bn(2)] < |Bn(-1)]

and

5 < || <[z
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Proof. We have

—(1—2zp+p®) - (1 +p*)z — 2p)2
p(l —z2)? '

FO(z,z) =

Thus, A;(z) =1 — 2zp + p? and By (z) = (1 + p?)z — 2p. Thus, (3.3)
and (3.4) are satisfied for n = 1 and (3.5) is easily checked. Moreover,
for any z,

z((1+ p*)z — 2p)
(1+p?)z—2p

=1

‘(1 +p°) — 2xp
(L+p?)z—2p

Thus, (3.6) is satisfied for n = 1.

We now suppose the Lemma is true for some value of n, then
F™M(z,2) = —[An(x) + Bn(2)2]/p(1 — 22)"*? and (3.3), (3.4), (3.5)
and (3.6) are satisfied. We then have

F(”+1)(z, 2) = —[Bn(z) + (n+2)zA,(2)] — (n+ 1)zB,(z)z

p(1 — zz)+?
_ —Anta1(z) — Bnya(2)2
 p(l -zt

where
(3.7)
Api1(z) = Bp(2)+(n+2)zA,(z) and Bpii(z) = (n+1)zB,(z).

Since A, (z) and B, (z) satisfy (3.3) and (3.4), we easily obtain from
(3.7) that (3.3) and (3.4) hold with n replaced by (n + 1). Thus, (3.3)
and (3.4) hold for all n. The fact that A,(—1) = (=1)"*1A,(-1)|;
B,(-1) = (-1)"|Bnp(-1)| and (3.5) hold for all n are now easily
established from (3.3) and (3.4).
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Now assume that (3.6) is true for some n. From (3.7) we have

Ana(z)| _ ‘Bn( z) + (n+ 2)zAn(2)
B, 4+1(2) (n+ 1)xB,(z)

1 n-+2 A (z)
(n+1 n+1)\ By(z)

<
_n+1

(= 1”+1A -1
(=1 -1
(n+ )”“A( 1)
(n+1)( "B ( 1)
-1
-1

_ A (1)
) [Braa(-1)

and

v
Il

n+l n+1
This establishes (3.6) for all n. o

Lemma 3. With A, (z) and B, (z) as in Lemma 2 and 0 <r < 1,

An(_l)

= B.D)

+re' +re'?|.

Proof. The inequality of the Lemma is equivalent to
2

‘An(m) A (z) 9
+ 2r cosf+r
B, (z) B, (z)
Ay (-1) 7 A, (-1) )
< ‘Bn(—l) +27“Bn(_1) cosf +r-.
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This in turn is equivalent to

2

w5 |

since, by Lemma 2, |A,,(—1)/B,(—1)| — |An(2)/Bn(z)| > 0. The last
inequality is implied by

An(x)

Bo(z) + 2rcosé.

Again, by Lemma 2, |A,(z)/B,(z)| > 1 for all z, |z| = 1. Thus,

An(—1 A,
‘BnE_1;‘+‘BnEi; +2rcosf > 2+ 2rcosf > 0.
This then proves the Lemma. u]

Theorem 5. Let f be a member of the closed convex hull of S*(p),
then form > 1 and \ > 1,

/Tr |7 (ret?)|* df < /Tr [P (rei®)| d6
where F(2) = —(z — p)(1 — p2)/p(1 + 2)? is in S*(p).

Proof. Since A > 1 we need only consider extreme points [2]
F(z,z) = —(z — p)(1 — pz)/p(1 — zz)?. By Lemma 2,

T ™ LIAPY
/ \F(n)(rew,x”)‘d@:/ [An(z) + Bn(z)re”|

. p)\|]_ _ x,r.620|(n+2))\

A
w |Bu(@)| |52 + ret®
(38) Zw )\|1 _ IT619|(n+2)/\ 9
An(z) i0
B, ‘ B (z +re
< [Ba(=1)] ) .

p —x |1 — zrei?|(nt2)A
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The symmetrically decreasing rearrangement of |A,(z)/Bn(z) + retf A
is ||An(z)/B,(2)| +re®|* and the rearrangement of 1/|1 — zre®®|(»+2)A
is 1/]1 — re®®|(*2A Thus (3.8) with Lemma 1 gives

" s 0p |15
n i0 A n\— n\Z
(3.9) /LF‘F( )('r'e ,x)| df < p/\ /;Tr |1—T‘ei9|("+2))‘ do.

Making use of Lemma 3, we obtain from (3.9),

A
An(=1) i0
™ A ™ + re
(n) (.0 NI | Bn(—1)] ‘Bn(—l)‘
Kﬂ |F™ (re”, x)[* df < = T e 9
T AR (=D)] + [Ba(=1)|re™ A
(3.10) —/_7r P = rei do

[ A G Bt

M1 — reif|(n+2)A

—T

Making the substitution # = @ + 7 in the last integral of (3.10), we
obtain

T T n+1 n+1 10|
() (0 A ()" An (1) + ()" Bn(A)re"”
/_W|F (re%@)|"db < /_,r A1 + reif|(n2)A df

-/,

_ / [P (rei®, —1)* df

—T

= / |[F™) (i) A db.

—T

An(=1) + B,(=1)re® A
—p(1+ reif)n+2

do

Corollary 1. Let f be a member of the closed, convex hull of S*(p),
then form=0,1,2,..., and 0 < r <1,

2 2
£ ()] < p(n+ 1)+ [n(1 4 p?) + (n — 1)p|n! + (1 + p) n!r.
p(l —r)nt?
The inequality is sharp in S*(p), with equality attained by F(z) =
—(z—p)(1 = pz)/p(1 + 2)* when 0 = 7.
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Proof. Raising the inequality in Theorem 4 or Theorem 5 to the 1/A
and letting A tend to co gives

max | f(") (rew) | < max \F(") (rew) ),

which implies the desired inequality. u]

Remark . The cases n = 0,1 of Corollary 1 are also given by Hummel
[4].

Corollary 2. Let f be a member of the closed convezr hull of S*(p)
and suppose f(z) =1+ > a,2z™ for z in U, then for n > 1,

an < PLEP)
N p

The inequality is sharp in S*(p), equality being attained for all n by
F(z) = —(z —p)(1 —pz)/p(1 + 2)*.

Remark . The inequality of Corollary 2 appears as part of Theorem
1 of [4].

4. Integral means centered at p. We will consider integral
means of the form f:r |f™) (p + re*?)|* d. For this purpose, we need
the following lemma.

Lemma 4. Let

(1 —p* — pz)/? — n
Az 1) = (1 — peit — e~itz)u = Z cn(t)2",

for |z| <1 —p, where —m <t < 7w and p > 0, then |c,(t)| < ¢, (0) for
all n.
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Proof. Consider

zh (z,t) —ppz N petz
h(z,t)  2(1—p2—pz) 1—pe-it —e~ity
—puz ety

20— )1 — 55) | (1—peit)(1— o)

1—pe—it
i by (t)2"

n=1

o (k)

1 D "
+5<1—ﬁ>]'
Thus, for any n,
(4.1)

s[5 () ()

= b,,(0).

Now we have

Té nen(t)2" = (g bn(t)z”> (i Cn(t)zn>'

n=0

Comparing coefficients, we obtain

(4.2) c1(t) = co(t)bi(t) and ne,(t) = Zbk(t)cn,k(t).
k=1
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We first note that ¢,(0) > 0 for all n. We have ¢;(0) = (1 —
p?)H/2/(1 — p)* > 0. Also, b,(0) > 0 for all n. Thus, ¢;(0) =
¢0(0)b1(0) > 0. Suppose c,(0) > 0 for £ = 0, 1,...(n — 1), then
nen(0) = Y re 1 br(0)ern—k(0) > 0.

Next we note that
(1—p?)r/?

e

and from (4.1) and (4.2), we obtain
ler ()] = [eo(@)][b1(8)] < ¢0(0)b1(0) = ¢1(0).
Now suppose |cx(t)] < ¢x(0) for £ =0,1,...(n — 1), then

(1—p?)r/?
(1—p)m

< = CO(U)a

nlea(t)] <D [k (t)llen—r(t)]

< zn: bk(O)cn,k(O)
k=1
= nc,(0).

This completes the proof of the Lemma. u]

Theorem 6. If f is a member of S*(p) and X > 0, then for
O0<r<l1l-p,

/|f(p+rei9)|>‘d0§/ |G (p + re'®)|* db

—T —T

where G(z) = —(z — p)(1 — p2)/p(1 — 2)*.

Proof. As in the proof of Theorem 4,

—(z —p)(1— ™ )
f(z) = (z=p)(1 = p2) exp [/ —2log(1 — e "2) dm(t)
p -
where m(t) is increasing on [~m, 7] and ["_ dm(t) = 1. Using the
continuous form of the arithmetic geometric mean inequality [8],
M1 — p? — prei?) /w

|f(p+7‘€i9)‘)‘ < |1_pe—it_7,ei(9—t)|—2/\ dm(t).

p —
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Therefore,

o ; T)\ T
(4.2) /_W f(p+re®)|Ndo < = /_ﬂ I(t) dm(t)
where

T |1_p2_p,,,ei9|)\
I(t) = /7r 1 pe i —rei@-02x do.

Making use of Lemma 4, we obtain

o- .

o0

=21 |ea(t)]Pr™"
n=0
o0

<2 Z lcn (0)]2r2"
n=0
= 1(0).
Combining (4.2) and (4.3) gives

2
do

(1 _ p2 _ pre“’))‘ﬂ

(1 —pe it — rei@-D)X

/W fp+re?)rdo < ;—A/ﬂ 1(0) dmi(t)

- —m

_ / IG(p+ rei®) de.

—T

This completes the proof of the theorem. a

If we let A*(p) be the class of functions meromorphic and starlike in
U with pole at p [7], then we have the following corollary, which was
conjectured to be true in [7].

Corollary 3. If f is a member of A*(p), then for p < 0 and
O<r<l-p,

| retias < [+ e a0

—T —T
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where H(z) = —p(1 — 2)2/(z — p)(1 — pz).

Proof. If f is a member of A*(p), then 1/f is a member of S*(p).
Now make use of Theorem 6. O

Theorem 2 in [7] immediately gives us the following

Theorem 7. If f is a member of S*(p) and A < 0,0<r <1—p,
then

/|f(p+rei9)|)‘d0§/ |F(p+ re'®)|* db

where F(z) = —(z — p)(1 — pz)/p(1 + 2)%.

Lemma 5. For|z| =1, let A,,(z) and B,(x) be as in Lemma 2, and

let
Ap( B, (z B,(z)z A2 ;
h(z) - < ( ()1 p]f/,p ( CE)Z)TH—z( ) > = ]g Ob_] (J))Z]

for |z| <1—p and XA >0, then |bj(x)| < b;(1) for all j.

Proof. Consider
2k (z) A

_A [ B, (z)z
h(z) 2 | A, () + pBn(z) + B, (z)z

A Sy Ba@) Y
‘2{2 V(i am)
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From (3.3) and (3.4) of Lemma 2, we obtain after straightforward
computations

Bu(x) _ z[(1 +p*)a — 2p]
Ap(2) +pBn(z) — [(n—p?)z — (n—1)p|(1 - zp)’

Combining (4.4) and (4.5), we eventually obtain

¢i(2) :% [(n+2)<lxxp>j ~ (n (1::{3 +p<P— (%)))J] .

Let y = (x —p)/(1 — zp), then |y| = 1 and ¢; as a function of y is given

(4.5)

by
j y+p2 J
cits) = 5 |+ 2) (L5 —(nly‘jp@—y))]
A [(n+2)(y +p)  (y+p)p—y) }
2 (1 —p?)i (1 —p?)i(ny +p)
B Ay + p)! i (p— )
= 0= i (ny 5P [(n+2)(ny +p)’ — (p — )]
. )‘(y""p d i J—
- s nﬁpgz( ) Ept((n 4+ 2)ni

=0
+ (_1)j7k+1)‘
Since |(y +p)/(ny + p)| < (1 + p)/(n + p) for |y| = 1, we obtain

A1+ p)! ! J\ . n j—k j—k+1
|c]-<y>sz(l_pZ)j(Hp)j];(k)p(<n+z>n + (—1ik)

= Cj(].).
Since y = 1 corresponds to = 1, then for all 7,

(4.6) l¢j ()] < ¢ (1).

We now have

_Zjb = ci(x)2? > bi(x)

j=1 j=0
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Comparing coefficients, we obtain for 7 > 1,

(4.7) Z be()ej—i(

We first note that

A, (z) + pB,(x A2
- (St

[ ) )

where we have used (3.3) and (3.4). Thus,

n.\n A2
(el < () =)

Suppose we have proven |by(z)| < bg(1) for (k = 0,...,j5 — 1), then
from (4.7) we have

7lbj (@ \<Z\bk z)|lej—x(@)]

<Zbk CJ k
=ij( )

This completes the proof of the lemma. o

Theorem 8. If f is a member of the closed convex hull of S*(p),
then for A\>1 andn=1,2,3,..., andr <1 —p,

[ et < [ E e as

—T

where F(z) = —(z — p)(1 — pz)/p(1 — 2)? is a member of S*(p).
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Proof. Since A > 1, we need only prove the theorem for extreme
points F(z,z) = —(2 — p)(1 — pz)/p(1 — z2)? [2]. Using Lemma 2 and
Lemma 5, we obtain

™ . 1 ™
/ [F) (p+re®, 2)] df = p—/

2

An(2)+pBn (2)+ By (z)rei®\
(1 — zp — zre?)n+2

|
3

I
Y
.Mg

~
Il
©

b () [*r®

by (1)2r%

IA
Y
.Mg

~
Il
o

A(1)+9Bo (1) + Ba(re?\ 2|
< (1 —p—reif)n+2 >

Il
3~
I
3 3

/ |F™) (p+re 1) do

—T

:/ IF™ (4 re®)Pds. o

—T

Corollary 4. If f is a member of the closed convex hull of S*(p),
then forn=0,1,2,... and 0 <7 <1 —p,

n(1—p)2n+p+r)

£ e < P

Equality is attained by F(z) = —(z — p)(1 — pz)/p(1 — 2)* when 6 = 0.

Proof. Taking the A-th root of both sides of the inequality in Theorem
6 or Theorem 8 and then letting A tend to +o0o0, we get

mgx\f(")(p—i-rewﬂ < mgX|F(n)(p+rei9)|'
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Using Lemma 2, we have

. A1 B, (1) + B, (1)re*
|F(n)(p+r610)‘ n(1) +pBn(1) + (Lre

—p(1 — p — reif)n+z
n!(1—p?)(n +p+ re¥f)
—p(1 — p — ret?)n+2
n!l(1—p?)(n+p+r)

pl—p—r)nt2 ~

Corollary 5. If f is a member of the closed convez hull of S*(p) and
if f(z) =300 bu(z — p)™ for |z —p| < 1—p, then forn=1,2,...,

_ntp
p(1—p)n

Equality is attained for all n by F(z) = —(z — p)(1 — pz)/p(1 — 2)%.

b | <
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