A CLASS OF STARLIKE FUNCTIONS

ALBERT E. LIVINGSTON

ABSTRACT. We study the class of functions f which are analytic and univalent in the unit disk U, which map U onto a starlike domain and are normalized by f(0) = 1 and f(p) = 0, 0 . We obtain sharp bounds on the integral means of <math>f and its derivatives centered at zero and p. These lead to sharp bounds on $|f^{(n)}(z)|$ for $n = 0, 1, 2, \ldots$.

- 1. Introduction. The class of functions which are meromorphic and univalent in $U = \{z : |z| < 1\}$ with a simple pole at $z = p, \ 0 , and which map <math>U$ onto the complement of a starlike domain has been studied in a series of papers [1, 5, 6 and 7]. The reciprocals of these functions are a subclass of weakly starlike 1-valent functions, which were studied by Hummel [3, 4] in a more general setting. The functions in this subclass have the property that they map U onto a starlike domain and are normalized by f(0) = 1 and f(p) = 0. (Hummel did not require f(0) = 1). We will consider several extremal problems in this class. We obtain sharp bounds on the integral means of a function and its derivatives and also sharp bounds on the coefficients of the power series expansions about z = 0 and z = p.
- **2.** The class $S^*(p)$. We denote by $S^*(p)$ the class of functions f which are analytic and univalent in U with f(0) = 1 and f(p) = 0, 0 , and which map <math>U onto a starlike domain. (A starlike domain will always mean a domain starlike with respect to the origin.)

Theorem 1. A function f with f(0) = 1, f(p) = 0, $0 , is in <math>S^*(p)$ if and only if for z in U,

(2.1)
$$\operatorname{Re}\left[\frac{(z-p)(1-pz)f'(z)}{f(z)}\right] > 0.$$

Received by the editors on May 27, 1990.

Copyright ©1993 Rocky Mountain Mathematics Consortium

Proof. Let f be in $S^*(p)$, and let h be defined by

$$h(z) = f\left(\frac{z+p}{1+pz}\right)$$

then h(0) = f(p) = 0 and h maps U onto a starlike domain and, therefore, $\text{Re}\left[zh'(z)/h(z)\right] > 0$ for z in U. We have

$$\frac{zh'(z)}{h(z)} = \frac{\frac{(1-p^2)z}{(1+pz)^2}f'\left(\frac{z+p}{1+pz}\right)}{f\left(\frac{z+p}{1+pz}\right)}.$$

Thus,

$$\frac{\left(\frac{z-p}{1-pz}\right)h'\left(\frac{z-p}{1-pz}\right)}{h\left(\frac{z-p}{1-pz}\right)} = \frac{(z-p)(1-pz)f'(z)}{(1-p^2)f(z)}.$$

It now follows that (2.1) is satisfied.

Conversely, suppose that f, with f(0) = 1 and f(p) = 0, satisfies (2.1) and, again, let

$$h(z) = f\left(\frac{z+p}{1+pz}\right).$$

Replacing z by (z+p)/(1+pz) in (2.1), we obtain

(2.2)
$$\operatorname{Re}\left[\frac{\frac{(1-p^2)^2z}{(1+pz)^2}f'\left(\frac{z+p}{1+pz}\right)}{f\left(\frac{z+p}{1+pz}\right)}\right] > 0$$

for z in U. Inequality (2.2) implies that $\operatorname{Re} zh'(z)/h(z) > 0$ for z in U. Thus, h is univalent in U and maps U onto a starlike domain. Thus, f(z) = h((z-p)/(1-pz)) is also univalent and maps U onto a starlike domain. Therefore, f is in $S^*(p)$.

The next theorem is contained in [4] as part of more general considerations. We will give here a fairly simple proof. We let S^* be the class of functions f analytic and univalent in U with f(0) = 0 and f'(0) = 1 and which map U onto a starlike domain.

Theorem 2. f is in $S^*(p)$ if and only if there exists g in S^* such that

(2.3)
$$f(z) = \frac{-(z-p)(1-pz)}{pz}g(z).$$

Proof. Suppose f satisfies (2.3). For 0 < r < 1, let

$$f_r(z) = \frac{-(z-p)(1-pz)}{pz}g(rz).$$

Since g is in S^* , g(rz) maps |z|=1 onto a starlike curve. Since -(z-p)(1-pz)/(pz) is negative on |z|=1, $f_r(z)$ also maps |z|=1 onto a starlike curve. Thus, f_r maps U onto a starlike domain. Letting r tend to 1, it follows that f maps U onto a starlike domain. Therefore, f is in $S^*(p)$.

Conversely, suppose f is in $S^*(p)$, and let

$$h(z) = \frac{1}{(1-p^2)f'(p)} f\left(\frac{z+p}{1+pz}\right),$$

then h is in S^* . For 0 < r < 1, let $h_r(z) = h(rz)$, then h_r is analytic for $|z| \le 1$ and maps |z| = 1 onto a starlike curve. Define g_r by

$$g_r(z) = \left(\frac{-pz}{(z-p)(1-pz)}\right)(1-p^2)f'(p)h_r\left(\frac{z-p}{1-pz}\right).$$

As above, it follows that g_r is analytic for $|z| \leq 1$ and maps |z| = 1 onto a starlike curve. Thus, g_r maps U onto a starlike domain. Letting r tend to 1, it follows that

$$g(z) = \frac{-pz}{(z-p)(1-pz)}f(z)$$

maps U onto a starlike domain and, hence, is a member of S^* .

The extreme points of the closed convex hull of $S^*(p)$ are now easily obtained from known results. Let P be the set of probability measures on $X = \{z : |z| = 1\}$.

Theorem 3. The closed convex hull of $S^*(p)$ is the class

$$G = \left\{ \int_X \frac{-(z-p)(1-pz)}{p(1-xz)^2} \, d\mu(x), \ \mu \in P \right\}$$

and the extreme points of G are the functions

$$f(z) = \frac{-(z-p)(1-pz)}{p(1-xz)^2}, \qquad |x| = 1$$

which are members of $S^*(p)$.

Proof. This follows immediately from Theorem 2 and known results about the closed convex hull of S^* and its extreme points [2], and from the fact that J defined by J(g) = -(z-p)(1-pz)g(z)/(pz) defines a linear homeomorphism between S^* and $S^*(p)$.

3. Integral means. Let ϕ be nonnegative and Lebesque integrable on [-a, a], and let ϕ^* be its symmetrically decreasing rearrangement as defined in [2]. We will make use of the following [2].

Lemma 1. Let $\phi_1, \phi_2, \ldots, \phi_n$ be nonnegative and integrable on [-a, a], then

$$\int_{-a}^{a} \phi_1(x)\phi_2(x)\cdots\phi_n(x) \, dx \leq \int_{-a}^{a} \phi_1^*(x)\phi_2^*(x)\cdots\phi_n^*(x) \, dx$$

Theorem 4. Let f be in $S^*(p)$, then for λ real and 0 < r < 1,

$$\int_{-\pi}^{\pi} |f(re^{i\theta})|^{\lambda} d\theta \le \int_{-\pi}^{\pi} |F(re^{i\theta})|^{\lambda} d\theta$$

where $F(z) = -(z - p)(1 - pz)/p(1 + z)^2$ is a member of $S^*(p)$.

Proof. Suppose first that $\lambda > 0$. Since f is in $S^*(p)$, there exists g in S^* so that f(z) has the representation (2.3). Since g is in S^* there exists m(t) increasing on $[-\pi, \pi]$ with $\int_{-\pi}^{\pi} dm(t) = 1$ such that

$$g(z) = z \exp \left[\int_{-\pi}^{\pi} -2 \log(1 - e^{-it}z) \, dm(t) \right].$$

Thus,

$$f(z) = \frac{-(z-p)(1-pz)}{p} \exp\left[\int_{-\pi}^{\pi} -2\log(1-e^{-it}z) dm(t)\right].$$

Making use of the continuous form of the arithmetic geometric mean inequality [8], we have

$$\begin{split} |f(re^{i\theta})|^{\lambda} &= \frac{|re^{i\theta} - p|^{\lambda}|1 - pre^{i\theta}|^{\lambda}}{p^{\lambda}} \\ & \cdot \exp\left[\int_{-\pi}^{\pi} \log|1 - e^{-it}re^{i\theta}|^{-2\lambda} \, dm(t)\right] \\ & \leq \frac{|re^{i\theta} - p|^{\lambda}|1 - pre^{i\theta}|^{\lambda}}{p^{\lambda}} \int_{-\pi}^{\pi} \frac{1}{|1 - re^{i(\theta - t)}|^{2\lambda}} \, dm(t). \end{split}$$

Thus,

$$\int_{-\pi}^{\pi} |f(re^{i\theta})|^{\lambda} d\theta \leq \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{|re^{i\theta} - p|^{\lambda} |1 - pre^{i\theta}|^{\lambda}}{p^{\lambda} |1 - re^{i(\theta - t)}|^{2\lambda}} d\theta dm(t)
\leq \int_{-\pi}^{\pi} \sup_{-\pi \leq t \leq \pi} \int_{-\pi}^{\pi} \frac{|re^{i\theta} - p|^{\lambda} |1 - pre^{i\theta}|^{\lambda}}{p^{\lambda} |1 - re^{i(\theta - t)}|^{2\lambda}} d\theta dm(t)
= \frac{1}{p^{\lambda}} \sup_{-\pi \leq t \leq \pi} \int_{-\pi}^{\pi} \frac{|re^{i\theta} - p|^{\lambda} |1 - pre^{i\theta}|^{\lambda}}{|1 - re^{i(\theta - t)}|^{2\lambda}} d\theta.$$

Now making use of Lemma 1, we obtain for any t.

$$(3.2) \quad \int_{-\pi}^{\pi} \frac{|re^{i\theta} - p|^{\lambda}|1 - pre^{i\theta}|^{\lambda}}{|1 - re^{i(\theta - t)}|^{2\lambda}} d\theta \leq \int_{-\pi}^{\pi} \frac{|re^{i\theta} + p|^{\lambda}|1 + pre^{i\theta}|^{\lambda}}{|1 - re^{i\theta}|^{2\lambda}} d\theta.$$

Combining (3.1) and (3.2) and making an appropriate change of variables, we get

$$\begin{split} \int_{-\pi}^{\pi} |f(re^{i\theta})|^{\lambda} \, d\theta &\leq \int_{-\pi}^{\pi} \frac{|re^{i\theta} + p|^{\lambda}|1 + pre^{i\theta}|^{\lambda}}{p^{\lambda}|1 - re^{i\theta}|^{2\lambda}} \, d\theta \\ &= \int_{0}^{2\pi} \frac{|-re^{i\varnothing} + p|^{\lambda}|1 - pre^{i\varnothing}|^{\lambda}}{p^{\lambda}|1 + re^{i\varnothing}|^{2\lambda}} \, d\varnothing \\ &= \int_{-\pi}^{\pi} \frac{|re^{i\theta} - p|^{\lambda}|1 - pre^{i\theta}|^{\lambda}}{p^{\lambda}|1 + re^{i\theta}|^{2\lambda}} \, d\theta \\ &= \int_{-\pi}^{\pi} |F(re^{i\theta})|^{\lambda} \, d\theta \, . \end{split}$$

Now suppose $\lambda < 0$, then

$$\int_{-\pi}^{\pi} |f(re^{i\theta})|^{\lambda} d\theta = \int_{-\pi}^{\pi} \left| \frac{1}{f(re^{i\theta})} \right|^{-\lambda}.$$

But 1/f(z) is a member of $\Lambda^*(p)$, the class of meromorphic starlike functions with pole at p [6]. According to Theorem 5 of [6], for $r \neq p$,

$$\int_{-\pi}^{\pi} \left| \frac{1}{f(re^{i\theta})} \right|^{-\lambda} d\theta \le \int_{-\pi}^{\pi} \left| \frac{1}{F(re^{i\theta})} \right|^{-\lambda} d\theta,$$

and the Theorem follows for $\lambda < 0$ and $r \neq p$. The case r = p is obtained by taking limits. \square

Note that the first part of the proof implies that Theorem 5 in [6] while stated only for positive powers is also true for negative powers. Also note that, for $\lambda \geq 1$, Theorem 4 could be obtained using extreme points.

We will next consider integral means of derivatives. We will restrict ourselves to powers of $\lambda \geq 1$ and therefore will only need to consider extreme points. For this purpose, we need the following Lemma.

Lemma 2. Let $F(z,x) = -(z-p)(1-pz)/p(1-xz)^2$, |x| = 1, then for $n \ge 1$, $F^{(n)}(z,x) = -(A_n(x) + B_n(x)z)/p(1-xz)^{n+2}$ where

(3.3)
$$A_n(x) = -p(n+1)!x^n + n(n!)(1+p^2)x^{n-1} - (n-1)n!px^{n-2}$$

and

(3.4)
$$B_n(x) = (1+p^2)n!x^n - 2pn!x^{n-1}.$$

In particular, $A_n(-1) = (-1)^{n+1} |A_n(-1)|$ and $B_n(-1) = (-1)^n |B_n(-1)|$. Also

$$(3.5) |A_n(x)| \le |A_n(-1)|; |B_n(x)| \le |B_n(-1)|$$

and

$$(3.6) 1 \le \left| \frac{A_n(x)}{B_n(x)} \right| \le \left| \frac{A_n(-1)}{B_n(-1)} \right|.$$

Proof. We have

$$F^{(1)}(z,x) = \frac{-(1-2xp+p^2) - ((1+p^2)x - 2p)z}{p(1-xz)^3}.$$

Thus, $A_1(x) = 1 - 2xp + p^2$ and $B_1(x) = (1 + p^2)x - 2p$. Thus, (3.3) and (3.4) are satisfied for n = 1 and (3.5) is easily checked. Moreover, for any x,

$$\left| \frac{A_1(x)}{B_1(x)} \right| = \left| \frac{(1+p^2) - 2xp}{(1+p^2)x - 2p} \right| = \left| \frac{x((1+p^2)\bar{x} - 2p)}{(1+p^2)x - 2p} \right| = 1.$$

Thus, (3.6) is satisfied for n = 1.

We now suppose the Lemma is true for some value of n, then $F^{(n)}(z,x) = -[A_n(x) + B_n(x)z]/p(1-xz)^{n+2}$ and (3.3), (3.4), (3.5) and (3.6) are satisfied. We then have

$$F^{(n+1)}(z,x) = \frac{-[B_n(x) + (n+2)xA_n(x)] - (n+1)xB_n(x)z}{p(1-xz)^{n+3}}$$
$$= \frac{-A_{n+1}(x) - B_{n+1}(x)z}{p(1-xz)^{n+3}}$$

where (3.7) $A_{n+1}(x) = B_n(x) + (n+2)xA_n(x) \quad \text{and} \quad B_{n+1}(x) = (n+1)xB_n(x).$

Since $A_n(x)$ and $B_n(x)$ satisfy (3.3) and (3.4), we easily obtain from (3.7) that (3.3) and (3.4) hold with n replaced by (n+1). Thus, (3.3) and (3.4) hold for all n. The fact that $A_n(-1) = (-1)^{n+1}|A_n(-1)|$; $B_n(-1) = (-1)^n|B_n(-1)|$ and (3.5) hold for all n are now easily established from (3.3) and (3.4).

Now assume that (3.6) is true for some n. From (3.7) we have

$$\begin{aligned} \left| \frac{A_{n+1}(x)}{B_{n+1}(x)} \right| &= \left| \frac{B_n(x) + (n+2)xA_n(x)}{(n+1)xB_n(x)} \right| \\ &= \left| \frac{1}{(n+1)x} + \left(\frac{n+2}{n+1} \right) \left(\frac{A_n(x)}{B_n(x)} \right) \right| \\ &\leq \frac{1}{n+1} + \left(\frac{n+2}{n+1} \right) \left| \frac{A_n(x)}{B_n(x)} \right| \\ &\leq \frac{1}{n+1} + \left(\frac{n+2}{n+1} \right) \left| \frac{A_n(-1)}{B_n(-1)} \right| \\ &= \frac{1}{n+1} + \left(\frac{n+2}{n+1} \right) \frac{(-1)^{n+1}A_n(-1)}{(-1)^nB_n(-1)} \\ &= \frac{(-1)^nB_n(-1) + (n+2)(-1)^{n+1}A_n(-1)}{(n+1)(-1)^nB_n(-1)} \\ &= \frac{(-1)^nA_{n+1}(-1)}{(-1)^{n-1}B_{n+1}(-1)} = \frac{|A_{n+1}(-1)|}{|B_{n+1}(-1)|} \end{aligned}$$

and

$$\left| \frac{A_{n+1}(x)}{B_{n+1}(x)} \right| = \left| \frac{1}{(n+1)x} + \left(\frac{n+2}{n+1} \right) \left(\frac{A_n(x)}{B_n(x)} \right) \right|$$

$$\geq \left(\frac{n+2}{n+1} \right) \left| \frac{A_n(x)}{B_n(x)} \right| - \frac{1}{n+1}$$

$$\geq \frac{n+2}{n+1} - \frac{1}{n+1} = 1.$$

This establishes (3.6) for all n.

Lemma 3. With $A_n(x)$ and $B_n(x)$ as in Lemma 2 and $0 \le r < 1$,

$$\left\| \frac{A_n(x)}{B_n(x)} \right| + re^{i\theta} \right| \le \left\| \frac{A_n(-1)}{B_n(-1)} \right| + re^{i\theta} \right|.$$

Proof. The inequality of the Lemma is equivalent to

$$\left| \frac{A_n(x)}{B_n(x)} \right|^2 + 2r \left| \frac{A_n(x)}{B_n(x)} \right| \cos \theta + r^2$$

$$\leq \left| \frac{A_n(-1)}{B_n(-1)} \right|^2 + 2r \left| \frac{A_n(-1)}{B_n(-1)} \right| \cos \theta + r^2.$$

This in turn is equivalent to

$$0 \le \left| \frac{A_n(-1)}{B_n(-1)} \right|^2 - \left| \frac{A_n(x)}{B_n(x)} \right|^2 + 2r \cos \theta \left[\left| \frac{A_n(-1)}{B_n(-1)} \right| - \left| \frac{A_n(x)}{B_n(x)} \right| \right]$$

since, by Lemma 2, $|A_n(-1)/B_n(-1)| - |A_n(x)/B_n(x)| \ge 0$. The last inequality is implied by

$$0 \le \left| \frac{A_n(-1)}{B_n(-1)} \right| + \left| \frac{A_n(x)}{B_n(x)} \right| + 2r \cos \theta.$$

Again, by Lemma 2, $|A_n(x)/B_n(x)| \ge 1$ for all x, |x| = 1. Thus,

$$\left|\frac{A_n(-1)}{B_n(-1)}\right| + \left|\frac{A_n(x)}{B_n(x)}\right| + 2r\cos\theta \ge 2 + 2r\cos\theta \ge 0.$$

This then proves the Lemma.

Theorem 5. Let f be a member of the closed convex hull of $S^*(p)$, then for $n \ge 1$ and $\lambda \ge 1$,

$$\int_{-\pi}^{\pi} |f^{(n)}(re^{i\theta})|^{\lambda} d\theta \le \int_{-\pi}^{\pi} |F^{(n)}(re^{i\theta})|^{\lambda} d\theta$$

where $F(z) = -(z-p)(1-pz)/p(1+z)^2$ is in $S^*(p)$.

Proof. Since $\lambda \geq 1$ we need only consider extreme points [2] $F(z,x) = -(z-p)(1-pz)/p(1-xz)^2$. By Lemma 2,

(3.8)
$$\int_{-\pi}^{\pi} |F^{(n)}(re^{i\theta}, x)|^{\lambda} d\theta = \int_{-\pi}^{\pi} \frac{|A_n(x) + B_n(x)re^{i\theta}|^{\lambda}}{p^{\lambda}|1 - xre^{i\theta}|^{(n+2)\lambda}}$$

$$= \int_{-\pi}^{\pi} \frac{|B_n(x)| \left| \frac{A_n(x)}{B_n(x)} + re^{i\theta} \right|^{\lambda}}{p^{\lambda}|1 - xre^{i\theta}|^{(n+2)\lambda}} d\theta$$

$$\leq \frac{|B_n(-1)|}{p^{\lambda}} \int_{-\pi}^{\pi} \frac{\left| \frac{A_n(x)}{B_n(x)} + re^{i\theta} \right|^{\lambda}}{|1 - xre^{i\theta}|^{(n+2)\lambda}} d\theta.$$

The symmetrically decreasing rearrangement of $|A_n(x)/B_n(x)+re^{i\theta}|^{\lambda}$ is $||A_n(x)/B_n(x)|+re^{i\theta}|^{\lambda}$ and the rearrangement of $1/|1-xre^{i\theta}|^{(n+2)\lambda}$ is $1/|1-re^{i\theta}|^{(n+2)\lambda}$. Thus (3.8) with Lemma 1 gives

$$(3.9) \quad \int_{-\pi}^{\pi} |F^{(n)}(re^{i\theta}, x)|^{\lambda} d\theta \leq \frac{|B_n(-1)|^{\lambda}}{p^{\lambda}} \int_{-\pi}^{\pi} \frac{\left| \left| \frac{A_n(x)}{B_n(x)} \right| + re^{i\theta} \right|^{\lambda}}{|1 - re^{i\theta}|^{(n+2)\lambda}} d\theta.$$

Making use of Lemma 3, we obtain from (3.9),

$$\int_{-\pi}^{\pi} |F^{(n)}(re^{i\theta}, x)|^{\lambda} d\theta \leq \frac{|B_{n}(-1)|^{\lambda}}{p^{\lambda}} \int_{-\pi}^{\pi} \frac{\left| \left| \frac{A_{n}(-1)}{B_{n}(-1)} \right| + re^{i\theta} \right|^{\lambda}}{|1 - re^{i\theta}|^{(n+2)\lambda}} d\theta
(3.10)
$$= \int_{-\pi}^{\pi} \frac{||A_{n}(-1)| + |B_{n}(-1)| re^{i\theta}|^{\lambda}}{p^{\lambda}|1 - re^{i\theta}|^{(n+2)\lambda}} d\theta
= \int_{-\pi}^{\pi} \frac{|(-1)^{n+1} A_{n}(-1) + (-1)^{n} B_{n}(-1) re^{i\theta}|^{\lambda}}{p^{\lambda}|1 - re^{i\theta}|^{(n+2)\lambda}} d\theta.$$$$

Making the substitution $\theta = \emptyset + \pi$ in the last integral of (3.10), we obtain

$$\begin{split} \int_{-\pi}^{\pi} |F^{(n)}(re^{i\theta}, x)|^{\lambda} \, d\theta &\leq \int_{-\pi}^{\pi} \frac{|(-1)^{n+1} A_n(-1) + (-1)^{n+1} B_n(-1) r e^{i\theta}|^{\lambda}}{p^{\lambda} |1 + r e^{i\theta}|^{(n+2)\lambda}} \, d\theta \\ &= \int_{-\pi}^{\pi} \left| \frac{A_n(-1) + B_n(-1) r e^{i\theta}}{-p(1 + r e^{i\theta})^{n+2}} \right|^{\lambda} \, d\theta \\ &= \int_{-\pi}^{\pi} |F^{(n)}(re^{i\theta}, -1)|^{\lambda} \, d\theta \\ &= \int_{-\pi}^{\pi} |F^{(n)}(re^{i\theta})|^{\lambda} \, d\theta. \end{split}$$

Corollary 1. Let f be a member of the closed, convex hull of $S^*(p)$, then for $n = 0, 1, 2, \ldots$, and $0 \le r < 1$,

$$|f^{(n)}(re^{i\theta})| \leq \frac{p(n+1)! + [n(1+p^2) + (n-1)p]n! + (1+p)^2n!r}{p(1-r)^{n+2}}.$$

The inequality is sharp in $S^*(p)$, with equality attained by $F(z) = -(z-p)(1-pz)/p(1+z)^2$ when $\theta = \pi$.

Proof. Raising the inequality in Theorem 4 or Theorem 5 to the $1/\lambda$ and letting λ tend to ∞ gives

$$\max_{\theta} |f^{(n)}(re^{i\theta})| \le \max_{\theta} |F^{(n)}(re^{i\theta})|,$$

which implies the desired inequality.

Remark . The cases n=0,1 of Corollary 1 are also given by Hummel [4].

Corollary 2. Let f be a member of the closed convex hull of $S^*(p)$ and suppose $f(z) = 1 + \sum_{n=1}^{\infty} a_n z^n$ for z in U, then for $n \geq 1$,

$$|a_n| \le \frac{n(1+p)^2}{p}.$$

The inequality is sharp in $S^*(p)$, equality being attained for all n by $F(z) = -(z-p)(1-pz)/p(1+z)^2$.

Remark . The inequality of Corollary 2 appears as part of Theorem 1 of $[\mathbf{4}].$

4. Integral means centered at p. We will consider integral means of the form $\int_{-\pi}^{\pi} |f^{(n)}(p+re^{i\theta})|^{\lambda} d\theta$. For this purpose, we need the following lemma.

Lemma 4. Let

$$h(z,t) = \frac{(1-p^2-pz)^{\mu/2}}{(1-pe^{-it}-e^{-it}z)^{\mu}} = \sum_{n=0}^{\infty} c_n(t)z^n,$$

for |z| < 1 - p, where $-\pi \le t \le \pi$ and $\mu > 0$, then $|c_n(t)| \le c_n(0)$ for all n.

Proof. Consider

$$\frac{zh'(z,t)}{h(z,t)} = \frac{-p\mu z}{2(1-p^2-pz)} + \frac{\mu e^{-it}z}{1-pe^{-it}-e^{-it}z}$$

$$= \frac{-p\mu z}{2(1-p^2)(1-\frac{pz}{1-p^2})} + \frac{\mu e^{-it}z}{(1-pe^{-it})(1-\frac{e^{-it}z}{1-pe^{-it}})}$$

$$= \sum_{n=1}^{\infty} b_n(t)z^n$$

where

$$b_n(t) = \frac{-\mu p^n}{2(1-p^2)^n} + \frac{\mu e^{-int}}{(1-pe^{-it})^n}$$

$$= \mu \left[\left(\frac{e^{-it}}{1-pe^{-it}} \right)^n - \left(\frac{p}{1-p^2} \right)^n + \frac{1}{2} \left(\frac{p}{1-p^2} \right)^n \right]$$

$$= \mu \left[\left(\frac{e^{-it}(1-pe^{it})}{(1-p^2)(1-pe^{-it})} \right) \sum_{k=0}^{n-1} \left(\frac{e^{-it}}{1-pe^{it}} \right)^{n-1-k} \left(\frac{p}{1-p^2} \right)^k + \frac{1}{2} \left(\frac{p}{1-p^2} \right)^n \right].$$

Thus, for any n,

$$|b_n(t)| \le \mu \left[\frac{1}{1 - p^2} \sum_{k=0}^{\infty} \left(\frac{1}{1 - p} \right)^{n - 1 - k} \left(\frac{p}{1 - p^2} \right)^k + \frac{1}{2} \left(\frac{p}{1 - p^2} \right)^n \right]$$

$$= b_n(0).$$

Now we have

$$\sum_{n=1}^{\infty} nc_n(t)z^n = \left(\sum_{n=1}^{\infty} b_n(t)z^n\right) \left(\sum_{n=0}^{\infty} c_n(t)z^n\right).$$

Comparing coefficients, we obtain

(4.2)
$$c_1(t) = c_0(t)b_1(t)$$
 and $nc_n(t) = \sum_{k=1}^n b_k(t)c_{n-k}(t)$.

We first note that $c_n(0) > 0$ for all n. We have $c_0(0) = (1 - p^2)^{\mu/2}/(1-p)^{\mu} > 0$. Also, $b_n(0) > 0$ for all n. Thus, $c_1(0) = c_0(0)b_1(0) > 0$. Suppose $c_k(0) > 0$ for k = 0, 1, ..., (n-1), then $nc_n(0) = \sum_{k=1}^{\infty} b_k(0)c_{n-k}(0) > 0$.

Next we note that

$$|c_0(t)| = \left| \frac{(1-p^2)^{\mu/2}}{(1-pe^{-it})^{\mu}} \right| \le \frac{(1-p^2)^{\mu/2}}{(1-p)^{\mu}} = c_0(0),$$

and from (4.1) and (4.2), we obtain

$$|c_1(t)| = |c_0(t)||b_1(t)| \le c_0(0)b_1(0) = c_1(0).$$

Now suppose $|c_k(t)| \le c_k(0)$ for $k = 0, 1, \dots (n-1)$, then

$$|n|c_n(t)| \le \sum_{k=1}^n |b_k(t)||c_{n-k}(t)|$$

$$\le \sum_{k=1}^n b_k(0)c_{n-k}(0)$$

$$= nc_n(0).$$

This completes the proof of the Lemma.

Theorem 6. If f is a member of $S^*(p)$ and $\lambda > 0$, then for 0 < r < 1 - p,

$$\int_{-\pi}^{\pi} |f(p+re^{i\theta})|^{\lambda} d\theta \le \int_{-\pi}^{\pi} |G(p+re^{i\theta})|^{\lambda} d\theta$$

where
$$G(z) = -(z - p)(1 - pz)/p(1 - z)^2$$
.

Proof. As in the proof of Theorem 4,

$$f(z) = \frac{-(z-p)(1-pz)}{p} \exp\left[\int_{-\pi}^{\pi} -2\log(1-e^{-it}z) dm(t)\right]$$

where m(t) is increasing on $[-\pi, \pi]$ and $\int_{-\pi}^{\pi} dm(t) = 1$. Using the continuous form of the arithmetic geometric mean inequality [8],

$$|f(p+re^{i\theta})|^{\lambda} \leq \frac{r^{\lambda}|1-p^2-pre^{i\theta}|^{\lambda}}{p^{\lambda}} \int_{-\pi}^{\pi} |1-pe^{-it}-re^{i(\theta-t)}|^{-2\lambda} dm(t).$$

Therefore,

(4.2)
$$\int_{-\pi}^{\pi} |f(p+re^{i\theta})|^{\lambda} d\theta \leq \frac{r^{\lambda}}{p^{\lambda}} \int_{-\pi}^{\pi} I(t) dm(t)$$

where

$$I(t) = \int_{-\pi}^{\pi} \frac{|1 - p^2 - pre^{i\theta}|^{\lambda}}{|1 - pe^{-it} - re^{i(\theta - t)}|^{2\lambda}} d\theta.$$

Making use of Lemma 4, we obtain

(4.3)
$$I(t) = \int_{-\pi}^{\pi} \left| \frac{(1 - p^2 - pre^{i\theta})^{\lambda/2}}{(1 - pe^{-it} - re^{i(\theta - t)})^{\lambda}} \right|^2 d\theta$$
$$= 2\pi \sum_{n=0}^{\infty} |c_n(t)|^2 r^{2n}$$
$$\leq 2\pi \sum_{n=0}^{\infty} |c_n(0)|^2 r^{2n}$$
$$= I(0).$$

Combining (4.2) and (4.3) gives

$$\int_{-\pi}^{\pi} |f(p+re^{i\theta})|^{\lambda} d\theta \leq \frac{r^{\lambda}}{p^{\lambda}} \int_{-\pi}^{\pi} I(0) dm(t)$$
$$= \frac{r^{\lambda}}{p^{\lambda}} I(0)$$
$$= \int_{-\pi}^{\pi} |G(p+re^{i\theta})|^{\lambda} d\theta.$$

This completes the proof of the theorem.

If we let $\Lambda^*(p)$ be the class of functions meromorphic and starlike in U with pole at p [7], then we have the following corollary, which was conjectured to be true in [7].

Corollary 3. If f is a member of $\Lambda^*(p)$, then for $\mu < 0$ and 0 < r < 1 - p,

$$\int_{-\pi}^{\pi} |f(p+re^{i\theta})|^{\mu} d\theta \leq \int_{-\pi}^{\pi} |H(p+re^{i\theta})|^{\mu} d\theta$$

where $H(z) = -p(1-z)^2/(z-p)(1-pz)$.

Proof. If f is a member of $\Lambda^*(p)$, then 1/f is a member of $S^*(p)$. Now make use of Theorem 6. \square

Theorem 2 in [7] immediately gives us the following

Theorem 7. If f is a member of $S^*(p)$ and $\lambda < 0, 0 < r < 1 - p$, then

$$\int_{-\pi}^{\pi} |f(p+re^{i\theta})|^{\lambda} d\theta \le \int_{-\pi}^{\pi} |F(p+re^{i\theta})|^{\lambda} d\theta$$

where $F(z) = -(z - p)(1 - pz)/p(1 + z)^2$.

Lemma 5. For |x| = 1, let $A_n(x)$ and $B_n(x)$ be as in Lemma 2, and let

$$h(z) = \left(\frac{A_n(x) + pB_n(x) + B_n(x)z}{(1 - xp - xz)^{n+2}}\right)^{\lambda/2} = \sum_{j=0}^{\infty} b_j(x)z^j$$

for |z| < 1 - p and $\lambda > 0$, then $|b_j(x)| \le b_j(1)$ for all j.

Proof. Consider

$$\frac{zh'(z)}{h(z)} = \frac{\lambda}{2} \left[\frac{B_n(x)z}{A_n(x) + pB_n(x) + B_n(x)z} + (n+2) \frac{xz}{1 - xp - xz} \right]
= \frac{\lambda}{2} \left[\sum_{j=1}^{\infty} (-1)^{j+1} \left(\frac{B_n(x)}{A_n(x) + pB_n(x)} \right)^j z^j \right]
+ (n+2) \sum_{j=1}^{\infty} \left(\frac{x}{1 - xp} \right)^j z^j \right]
= \sum_{j=1}^{\infty} c_j(x) z^j$$

where (4.4)

$$c_{j}(x) = \frac{\lambda}{2} \left[(n+2) \left(\frac{x}{1-xp} \right)^{j} + (-1)^{j+1} \left(\frac{B_{n}(x)}{A_{n}(x) + pB_{n}(x)} \right)^{j} \right].$$

From (3.3) and (3.4) of Lemma 2, we obtain after straightforward computations

(4.5)
$$\frac{B_n(x)}{A_n(x) + pB_n(x)} = \frac{x[(1+p^2)x - 2p]}{[(n-p^2)x - (n-1)p](1-xp)}.$$

Combining (4.4) and (4.5), we eventually obtain

$$c_{j}(x) = \frac{\lambda}{2} \left[(n+2) \left(\frac{x}{1-xp} \right)^{j} - \left(\frac{\frac{x}{1-xp}}{n \left(\frac{x-p}{1-xp} \right) + p} \left(p - \left(\frac{x-p}{1-xp} \right) \right) \right)^{j} \right].$$

Let y = (x-p)/(1-xp), then |y| = 1 and c_j as a function of y is given by

$$c_{j}(y) = \frac{\lambda}{2} \left[(n+2) \left(\frac{y+p}{1-p^{2}} \right)^{j} - \left(\frac{\frac{y+p}{1-p^{2}}}{ny+p} (p-y) \right)^{j} \right]$$

$$= \frac{\lambda}{2} \left[\frac{(n+2)(y+p)^{j}}{(1-p^{2})^{j}} - \frac{(y+p)^{j}(p-y)^{j}}{(1-p^{2})^{j}(ny+p)^{j}} \right]$$

$$= \frac{\lambda(y+p)^{j}}{2(1-p^{2})^{j}(ny+p)^{j}} [(n+2)(ny+p)^{j} - (p-y)^{j}]$$

$$= \frac{\lambda(y+p)^{j}}{2(1-p^{2})^{j}(ny+p)^{j}} \sum_{k=0}^{j} {j \choose k} y^{j-k} p^{k} ((n+2)n^{j-k} + (-1)^{j-k+1}).$$

' () /

Since $|(y+p)/(ny+p)| \le (1+p)/(n+p)$ for |y| = 1, we obtain

$$|c_j(y)| \le \frac{\lambda(1+p)^j}{2(1-p^2)^j(n+p)^j} \sum_{k=0}^j \binom{j}{k} p^n ((n+2)n^{j-k} + (-1)^{j-k+1})$$

= $c_j(1)$.

Since y = 1 corresponds to x = 1, then for all j,

$$(4.6) |c_i(x)| \le c_i(1).$$

We now have

$$\sum_{j=1}^{\infty} j b_j(x) z^j = \sum_{j=1}^{\infty} c_j(x) z^j \sum_{j=0}^{\infty} b_j(x).$$

Comparing coefficients, we obtain for $j \geq 1$,

(4.7)
$$jb_j(x) = \sum_{k=0}^{j-1} b_k(x)c_{j-k}(x).$$

We first note that

$$b_0(x) = \left(\frac{A_n(x) + pB_n(x)}{(1 - xp)^{n+2}}\right)^{\lambda/2}$$
$$= \left[\frac{n!x^{n-2}}{(1 - px)^n} \left(n\left(\frac{x - p}{1 - px}\right) + p\right)\right]^{\lambda/2}$$

where we have used (3.3) and (3.4). Thus,

$$|b_0(x)| \le \left(\frac{n!(n+p)}{(1-p)^n}\right)^{\lambda/2} = b_0(1).$$

Suppose we have proven $|b_k(x)| \leq b_k(1)$ for (k = 0, ..., j - 1), then from (4.7) we have

$$|j|b_{j}(x)| \leq \sum_{k=0}^{j-1} |b_{k}(x)||c_{j-k}(x)|$$

$$\leq \sum_{k=0}^{j-1} b_{k}(1)c_{j-k}(1)$$

$$= jb_{j}(1).$$

This completes the proof of the lemma.

Theorem 8. If f is a member of the closed convex hull of $S^*(p)$, then for $\lambda \geq 1$ and $n = 1, 2, 3, \ldots$, and r < 1 - p,

$$\int_{-\pi}^{\pi} |f^{(n)}(p + re^{i\theta})|^{\lambda} \le \int_{-\pi}^{\pi} |F^{(n)}(p + re^{i\theta})|^{\lambda} d\theta$$

where $F(z) = -(z - p)(1 - pz)/p(1 - z)^2$ is a member of $S^*(p)$.

Proof. Since $\lambda \geq 1$, we need only prove the theorem for extreme points $F(z,x) = -(z-p)(1-pz)/p(1-xz)^2$ [2]. Using Lemma 2 and Lemma 5, we obtain

$$\int_{-\pi}^{\pi} |F^{(n)}(p+re^{i\theta},x)| d\theta = \frac{1}{p^{\lambda}} \int_{-\pi}^{\pi} \left| \left(\frac{A_n(x)+pB_n(x)+B_n(x)re^{i\theta}}{(1-xp-xre^{i\theta})^{n+2}} \right)^{\lambda/2} \right|^2 \\
= \frac{2\pi}{p^{\lambda}} \sum_{j=0}^{\infty} |b_j(x)|^2 r^{2j} \\
\leq \frac{2\pi}{p^{\lambda}} \sum_{j=0}^{\infty} b_j(1)^2 r^{2j} \\
= \frac{1}{p^{\lambda}} \int_{-\pi}^{\pi} \left| \left(\frac{A_n(1)+pB_n(1)+B_n(1)re^{i\theta}}{(1-p-re^{i\theta})^{n+2}} \right)^{\lambda/2} \right|^2 \\
= \int_{-\pi}^{\pi} |F^{(n)}(p+re^{i\theta},1)|^{\lambda} d\theta \\
= \int_{-\pi}^{\pi} |F^{(n)}(p+re^{i\theta})|^{\lambda} d\theta. \quad \square$$

Corollary 4. If f is a member of the closed convex hull of $S^*(p)$, then for $n = 0, 1, 2, \ldots$ and $0 \le r < 1 - p$,

$$|f^{(n)}(p+re^{i\theta})| \le \frac{n!(1-p)^2(n+p+r)}{p(1-p-r)^{n+2}}.$$

Equality is attained by $F(z) = -(z-p)(1-pz)/p(1-z)^2$ when $\theta = 0$.

Proof. Taking the λ -th root of both sides of the inequality in Theorem 6 or Theorem 8 and then letting λ tend to $+\infty$, we get

$$\max_{a} |f^{(n)}(p + re^{i\theta})| \le \max_{a} |F^{(n)}(p + re^{i\theta})|.$$

Using Lemma 2, we have

$$|F^{(n)}(p+re^{i\theta})| = \left| \frac{A_n(1) + pB_n(1) + B_n(1)re^{i\theta}}{-p(1-p-re^{i\theta})^{n+2}} \right|$$

$$= \left| \frac{n!(1-p^2)(n+p+re^{i\theta})}{-p(1-p-re^{i\theta})^{n+2}} \right|$$

$$\leq \frac{n!(1-p^2)(n+p+r)}{p(1-p-r)^{n+2}}. \quad \Box$$

Corollary 5. If f is a member of the closed convex hull of $S^*(p)$ and if $f(z) = \sum_{n=1}^{\infty} b_n (z-p)^n$ for |z-p| < 1-p, then for $n=1,2,\ldots$,

$$|b_n| \le \frac{n+p}{p(1-p)^n}.$$

Equality is attained for all n by $F(z) = -(z-p)(1-pz)/p(1-z)^2$.

REFERENCES

- 1. P.J. Eenigenburg and A.E. Livingston, *Meromorphic starlike functions*, Rocky Mountain J. Math. 11 (1981), 441–457.
- 2. D.J. Hallenbeck and T.H. MacGregor, Linear problems and convexity techniques in geometric function theory, Pittman Publishing, Inc., Marshfield, Mass., 1984.
- ${\bf 3.}$ J.A. Hummel, Multivalent starlike functions, J. Analyse Math. ${\bf 18}$ (1967), 133–160.
- 4. J.A. Hummel, Extremal properties of weakly starlike p-valent functions, Trans. Amer. Math. Soc. 130 (1968), 544–551.
- 5. R.J. Libera and A.E. Livingston, Weakly starlike meromorphic univalent functions, Trans. Amer. Math. Soc. 202 (1975), 181–191.
- 6. A.E. Livingston, Weakly starlike meromorphic univalent functions II, Proc. Amer. Math. Soc. 62 (1977), 47-53.
- 7. A.E. Livingston, A class of meromorphic starlike functions, Rocky Mountain J. Math. 13 (1983), 229-240.
 - 8. W. Rudin, Real and complex analysis, 2nd ed., McGraw Hill, New York, 1974.

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF DELAWARE, 501 EWING HALL, NEWARK, DELAWARE, 19716