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MULTIPLIERS OF SEQUENCE SPACES
GEORGE BRAUER

0. Introduction. Let A = (an) be a triangular nonnegative regular
summation matrix, that is, the elements a,; of A satisfy the conditions

(1) ank =0, k>n,
(2) ank > 0, k=0,1, ;n; n=0,1, )
(3) lim a,; =0, k=0,1,...,

n—o00

n—o0

(4) lim Zank =1,
k=0

of [4, p. 43]. We denote by m 4 the linear space of sequences s = {s,}
such that the A-transform

As = {As}, = { hi_oanksk}

is bounded. We assume also:

(5) each column of A has at least one nonzero element.

Under the semi-norms p,,, g:

pn=Isnl,  q¢=|As|]lcc =LUB,

)

n
E AnkSk

k=0
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818 G. BRAUER

ma becomes an F' — K space, that is, a locally convex sequence
space in which the coordinate functionals are continuous. Let (co)4
be the closed subspace of sequences t = {t,,} which are evaluated to
0 by A, that is, (co)a is the space of sequence ¢ = {t,} such that
limy, 00 D p—o @nktr = 0. Under the norm

Islla = GLB{q(s +1)[t € (co)a}

Z ank(sk + ti)

k=0

= GLBy¢ (c,),LUB,

ma/(co)a is a Banach space which we denote by m4. We shall not
distinguish between a sequence s in M4 and its coset in m 4; we shall
denote both by the symbol s. We will denote the norm of a sequence
in m4 by ||s||a or simply by ||s|| when the meaning is clear.

Evidently, ||s||4 > limsup|As|. We will show that equality holds.
There is an integer ng such that for each positive number ¢|(4s),| <
limsup |As| + ¢ when n > ng. Let the sequence ¢ be defined by the
equations

tn = $n, n < no,

t, =0, n > ng.

Since t is a null sequence, ¢ is in (cg)4. Hence t =0 and s —¢t = s in
ma. Also

Q(S - t) = LUBn>no Z ank(sk - tk)

k>ng
<limsup As +¢

(note that (A(s —t)), = 0 for n < ng). Since ¢ is arbitrary ||s||a <
limsup |As|. Thus
[|s||a = lim sup As.

This formula will be used in the sequel.

We study the space M (A) of multipliers of the space m 4 into itself,
that is, the space of sequences p = {u,} such that if s = {s,} is a
sequence in m4 then the sequence us is in m4; and, moreover, if s =0
in m4, then us = 0 in m 4, that is, whenever the matrix A evaluates
the sequence s to 0, then it evaluates the sequence ps to 0. We will
assume throughout that the matrix A satisfies conditions (1)—(5).
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The space M (A) is a commutative normed ring of operators on m 4
with the usual operator norm

||| = LUByjs 4 <1llps]| a-

Two operators p and ' are identified in M (A) if ||u — p'|| = 0, that is,
if the matrix A evaluates each sequence {(u, — pl,)sn} with s in m4
to 0.

It follows from the uniform limitedness theorem that if 4 is in M (A),
then ||u|| < oo.

It will be seen that if p is in M(A), then the sequence {u,} is
bounded. As a bounded continuous function on the discrete space N of
natural numbers the sequence {u,,} has a continuous extension to SN,
the Stone-Cech compactification of N. We will say a few words about
the Stone-Cech compactification. A completely regular space X can
be imbedded densely in a compact space X such that every bounded
continuous function on X has a continuous extension to BX; for a
description of the Stone-Cech compactification we refer the reader to
[3, pp. 82-93]. If p is a sequence in M (A), thus a bounded continuous
function on N, we denote by u? its continuous extension to BN if v
is a point in BN, the symbol pf will express the fact that the function
1P is evaluated at v. If E is a subset of N the symbol E? will denote
the intersection of the closure of the set F in SN with BN — N.

For many matrices we will find that the condition:
(%) if p is in M(A) and GLB|p,| > 0, then 1/p is in M(A)

holds. If (x) holds, then we can give some information regarding the
maximal ideal space A(A) of M(A). We recall that A(A) is defined to
be the space of continuous homomorphisms of M (A) into the complex
numbers. If A is such a homomorphism and p is in M(A), we let
fa(h) = h(p); A(A) is the space of these homomorphisms h with
the weakest topology which makes all functions fi, with g in M(A),
continuous. In other words, A(A), as a subset of the unit sphere of the
dual of M(A), is given the weak x topology. For more information on
maximal ideal spaces we refer the reader to [5, pp. 50-51]. If (*) holds,
then A(A) = BN — N with two points vq, v, of BN — N identified if
and only if pf = pf for all p in M(A) and with SN — N given the
weakest topology making all functions x? continuous.
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In case A is a normal matrix, that is, A is triangular with no
zero elements on the main diagonal, then A has a reciprocal A~!.
In this case the sequence p is in M(A) if and only if the matrix
T = AjiA=" = (t,) is regular on null sequences, that is, if T’ evaluates
each null sequence to zero, where fi denotes the diagonal matrix with
the sequence {u,} on its main diagonal. In order that the matrix
T = (tnx) be regular on null sequences it is necessary and sufficient

that

lim thr =0
n—oo

|IT|| = 1imsup2 [tni| < oc0.
k=0
In fact ||p|] = ||T||. The elements p in M(A) such that the matrix
T = AjaA1! is regular form an Abelian semigroup S. In [1] at
the suggestion of Professor George Piranian I studied S for various
Hausdorff matrices A; here we will rarely deal with S.

Section 1. In this section we obtain some conditions on sequences
win M(A) and draw conclusions about the maximal ideal space A(A).
We begin with some general remarks about A(A). If M(A) contains
idempotents other than the zero and the unit element, then M(A) is
not connected. More generally, suppose that condition (x) holds for
a matrix A; for two infinite subsets E7 and Es of N the sets Elﬁ and
Egﬂ are separated in A(A) if and only if GLB,eamr(a),v;,0 eBN,N|/,LfI —
po| > 0. If (x) holds for the matrix A and Ay, = o(1) for each
sequence 4 in M(A), then A(A) is connected; if u, converges for each
pu € M(A), then A(A) is a point.

Theorem 1.1. If p is in M(A), then the sequence {p,} is bounded
and ||p|] > lim sup gy, |.

Proof. We show first that if u is a multiplier on 7m 4, then the sequence
{pn} is bounded. For each m let §(™ denote the sequence with mth
entry 1, all others 0, that is,

6m) =1, 6m =, n # n.

The collection of sequences {6(™/||46(™)||x}, m = 0,1,... is a
bounded set in 4. If p is a multiplier on Mmy4, then the collection
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of sequences {1, (6(™),,/||A6(™ ||} is bounded in 7724, that is, there
is a number M, such that for all m

4(1n(67)a) /1| AS"™ oo < M

or
LUBm,n(|/‘n|anm/LUBjajm) <M.

Thus, if p is a multiplier on m 4, © is bounded. The same holds if y is
a multiplier on m 4.

To show that ||u|| > lim sup || it suffices to show that if A is a cluster
value of the sequence {un}, then X is an eigenvalue of the operator . If
A is a cluster value of {1,, }, then there exists a sequence of integers {n;}
increasing to infinity such that ju,; tends to A; moreover, by passing
to a subsequence if necessary we may take the numbers {n;} so that
2 [bn; — Al < o0o. Let y("i) denote the sequence A5 /||A5(")]|,

j=1,2,.... If the numbers n; are chosen so that, moreover,
(6) Zan,nr/HA‘s(nT)”oo <1/j
r<j

for n; < n < nj4q, then the series Z]oi1 y(™3) converges elementwise to
a sequence y in m — cg, that is, y is a bounded nonnull sequence. The
sequence z = ) °°, §(i) /]| A5(")||, is in ma — (co)a. On the other
hand, the sequence (u — A)z is in (cp) 4; it is equal to the zero element
in m4. This shows that A is an eigenvalue of the operator u regarded
as an operator on m 4. This completes the proof. ]

Suppose that the matrix A has a reciprocal A~!. If pisin S and O is a
cluster value of the sequence {u,, }, then the matrix AiA~! evaluates a
bounded divergent sequence, namely, the sequence Az for the sequence
z of the preceding paragraph. On the other hand, if the sequence {p,}
is bounded away from 0 and () holds, then 1/u is in M(A), that is,
[|IT71|| = ||Aii~*A~1|| < oo and the matrix T transforms no unbounded
sequence into a bounded sequence. A theorem of Darevsky [2] asserts
that if a regular summation matrix evaluates a divergent sequence, then
it evaluates an unbounded sequence. Hence, if (*) holds, y is in § and
[ is bounded away from zero, then the matrix 1" evaluates precisely
the convergent sequences.



822 G. BRAUER

Theorem 1.2. If the matriv A = (ank) has a reciprocal and
p € M(A), then

[lul| = lim sup [pn | + ann1|Apn-1]/@n-1,n-1-

In particular, if p € M(A), then

At = 0(ann/ans1,0).

Here Ap,, denotes the difference p, — ppy1-

Proof. If we denote the matrix A~! by (), then we have

Apn = l/an,na

QApnpn—-1 = _a'n,nfl/an,na'nfl,nfl-
We denote the matrix AjiA~! by T' = (t,x). We have

tn,nfl =0nn—1Mn—-1%n—1,n—1 + ApnnQnn—1
= an,nflAunfl/anfl,nfl

tn,n = HUn.

Since ||p|| = ||T|| > imsup |tn pn| + |tn,n—1| the result follows. O

Theorem 1.2 shows that in general not every bounded sequence is
in M(A). For example, for the Euler Knopp matrix E,, where « is a
number in (0,1), with elements [, given by the equations

%k_<z>aW1_aw*, n=0,1,...,k=0,1,...,n,

Theorem 1.2 shows that if p € M(E,) then Ay, = 0(1/n). Conse-
quently, if (%) holds for the Euler Knopp matrix E,, then A(E,) is
connected. More generally, if A is a Hausdorff matrix with elements
ank given by the equations

ok = (Z) /01 (1 — )" dx(w),
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where X is a nondecreasing function on [0, 1] such that x(0) = x(0+) =
0, X(1) = 1, then A satisfies our hypotheses; if, moreover, x(u) =
X(1) =1 on some interval 1 — § < u < 1 with § > 0, then we see that
Unn—1 > Néan_1,—1. In this case, by Theorem 1.2, Ay, = 0(1/n) for
all 41 in M(A); if (%) holds for A, then A(A) is connected.

If the matrix A evaluates only convergent sequences, then, as is easily
seen, M(A) is the set of bounded sequences and A(A) is the totally
disconnected space SN — N. This situation holds for some matrices A
which evaluate some (indeed very few) divergent sequences.

For a matrix A, c4 denotes the convergence field of A, that is, the
set of sequence s such that

n
lim E AnkSk
n—o0
k=0

exists.

Theorem 1.3. In order that M(A) consist of the set of bounded
sequences it is necessary and sufficient that

(a) every sequence s in my satisfy the condition
n
limsupz |anksk| < oo,

k=0
and

(b) every sequence t in ca satisfy the condition

n
lim Y " aplty — 7| =0
n—r 00
k=0

for some complex number 7.

Of course, 7 is the number to which the matrix A evaluates the
sequence t.

Proof. Let b, = angsk, n = 0,1,..., k = 0,1,..., where s is a
sequence in m4. The sequence

{ Z ank#ksk} = { Z bnkﬂk}
k=0 k=0
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is bounded for each bounded sequence {u,,} if and only if > ;_, [buk| is
bounded, that is, if and only if }}_, |anksk| is bounded. Now suppose
that ¢t = 0 in m 4. We have

n
nlgTolo ];) angprty =0

for all bounded sequences p if and only if condition (b) holds for 7 = 0.
But condition (b) holds if and only if it holds with 7 = 0. This
completes the proof. a

Theorem 1.4. Let E be an infinite subset of N. Then EP is
separated from (N — E)P in A(A) if and only if for every sequence
S ma,

(a) lim sup Zanksk < 00,
kEE

and for every sequence t in (cp)a

(b) nlgr;o Z anktr = 0.

If (%) holds and there exists a real sequence u € ma satisfying the
conditions

U, > 0 when n is in E,
, Uup < 0 when n s in N — E,
(@) .
lim sup Z AnkUl = 00,
keE

or a sequence v in (co)a such that

v, > 0 when n is in F,
vp < 0 when n ts in N — E,

lim sup Z AnkVr > 0,

(b')
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then EP is not separated from (N — E)? in A(A).

Proof. If every real sequence s in m 4 satisfies condition (a), then slg
is in m4 whenever s is in my4. (By 1g we understand the sequence
{pn} with p,, equal to 1 or 0 according to whether n is or is not in E.)
If every sequence ¢ in (c¢g) 4 satisfies condition (b), then t1g is in (co)a
whenever ¢ is in (cg) 4. Hence 1z € M(A) and E? is separated from
(N — E)8 in A(A).

To show that E” is not separated from (N — E)” we need only show
that GLB,, 1,caN—N,vi£0s W0, — pb,| = 0 for every real sequence y in
M(A). If there is a sequence u in M (A) such that (a’) holds, then for
every real sequence y = {u,} such that for some positive number §,
Wn > 0 when n isin E, u, < 0 when n is in N — E, we have

n
E Ank kUK

k=0

lim sup
n

> lim sup Z U ko fk Uk
keE

> § limsup Z AppUl, = O0;
keE

hence p ¢ M(A). If there exists a sequence v, in (¢g)a which is
nonnegative on F, negative on N — E, for which (b’) holds, then

n
E AnkMEVk

k=0

lim sup > 6 lim sup Z ApkVs > 0

kEE

by (b’). Thus v = 0 in my, but pv # 0. Hence u ¢ M(A). Since §
is an arbitrary positive number E” is not separated from (N — E)? in
A(A). o

Corollary. Suppose that (x) holds. If E is a subset of N such that

lim E Ank
n—oo

keE

exists and is different from 0 and 1, then EP is not separated from
(N — E)? in A(A).
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We will say that the summation matrix A includes the summation
matrix B if and only if every sequence evaluated by B is evaluated by
A to the same value.

Suppose that (%) holds for two matrices A and B satisfying our
hypotheses and that A includes B. It is not true, in general, that
the identity map of SN — N induces a continuous map of A(B) into
A(A); for a simple example we take A as the Cesaro matrix of order 1
with elements given by the equations

ank = 1/(n+1), k<n, ang, = 0, k> n.
The elements of a,,;, of A™! are given by the equations

Opnp =N +1, Opn-1 = —N,

ong =0, k#n, k#n—1
and the elements t,;, of the matrix AjiA~! are given by the equations
tok = (k+1)Apk/(n+1), 0<k<n-1,
tnn = Hn, tn,k: =0, k> n.

For B we take the Norlund matrix, with elements b, given by the

equations
bn,n = bn,n—l = 1/2, n > 1,

bpr =0, k#mn, k#n—1.

The elements (3, of the matrix B~! are given by the equation

/Bnk = 2(_1)n—k, k <n
ﬂn,kzov k>”,n21a

while the elements (s,) are the matrix S = BB ™! are given by the
equations

Sn,k = (_1)n_k_1Aljlnflv k<n
Sn,n = Un
Snk =0, k> n.

The matrix T is regular on null sequence if and only if the quantities
2 Zo(k + 1)[Apg]/(n 4+ 1) + || are bounded; this condition can
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be satisfied by many divergent sequences of zeros and ones. Thus
M(A) contains divergent sequences of zeros and ones and A(A) is
not connected. On the other hand, if the matrix S is regular on null
sequences, then Ay, = O(1/n), hence A(B) is connected (in fact A(B)
is a nontrivial continuum). Hence, the identity map of A(B) into A(A)
is not continuous. On the other hand, AB~! is a regular matrix, that
is, the matrix A includes the matrix B.

Conjecture. Suppose that (%) holds for two matrices A and B
satisfying our hypotheses, that A includes B, and that whenever A
evaluates a real sequence to its limit superior or to its limit inferior,
then B evaluates the sequence to the same number. Then the identity
map of BN — N into itself induces a continuous map of A(B) into
A(A).

For the conjecture to hold, two points v1,v5 of BN — N which are
identified in A(B) must be identified in A(A).

Theorem 1.5. Let {w,} be a sequence which increases to infinity.
If the matriz A has the property that all sequences s in m 4 satisfy the
condition

(7) $n = O(wp),
while all sequences t in (co)a satisfy the condition
(8) tn = o(wn),

then all sequences p such that p, — L = O(1/wy,) for some number L
are in M(A).

Proof. The constant sequence {L, L. ..} isin M(A). Let &, = L—puy;
we must show that e = {¢,,} is in M(A). If s € ma, then s, = O(w,)
and since g, = O(l/wy,), the sequence {e,s,} is bounded; hence
ZZ:O ank€r sk is bounded. Also if a sequence t is in (cg)a, then by
(8), tn, = o(wy) and hence {e,t,} is a null sequence and consequently
in (co)a. Consequently, A evaluates {e,t,} to 0. Consequently, € is in
M (A). This completes the proof. u]
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We note that if u,, is bounded away from 0 then 1/u,—1/L = 0(1/wy,)
and thus 1/u € M(A).

Theorem 1.6. Suppose that the matriz A has a reciprocal A~! =
(ank) with the property that o,y is nonnegative or nonpositive according
to whether n — k is even or odd. Then if p is a real sequence in M(A)
which is bounded away from 0 and such that for some number L, u,,

is alternately not less than L and not greater than L, then 1/u is in
M(A).

Proof. Let ¢ = {e,} denote the sequence {y, — L}. The numbers
€, alternate between being nonnegative and being nonpositive. The
elements of the matrix AéA~1 = S = (s,,;) have the property

n n
D anjejak| =Y anglejlanl.
j=k j=k

If w € M(A), then since the constant sequence {L,L,...} is in
M(A),e € M(A), that is, the matrix S is regular on the space of
null sequences. Hence

|3nk =

(9) lim s, = 0, k=0,1,....
(10) llel] = 11S]| = limsup Y _ |snx| < 0.
k=0

Since u, never vanishes, 1/u, exists for all n and it is equal to
1/(L + €,); we denote this quantity by d,. We denote the matrix

T-! = A(I]//,L)A_l = ASA~" by (7ax); we have, for k < n,

Tk = ) anjaji/(L + &)
j=k

= _Zanjajk(l/L —j/L(L+¢5))

n
=) aniejan/Lp;
i=k
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since Z;lzk anjor, = 0 for k < n. Let GLB|u,, | be denoted by n; n > 0.

For k<n

n

E :anjsjo‘jk
=k

< [snkl/|L[n.
By (9), lim,, o0 Tk = 0 for each k. Also

[Tk | < /ILIn

n n—1
D Ikl <D lsukl/ILin + /.

k=0 k=0
Thus ||T)| <|[S||/|LIn < o0 and 1/u € M(A). u]
Theorem 1.7. Suppose that there exist two infinite disjoint subsets

E; and E5 of N and two sequences {n;} and {k;} of integers increasing
to infinity such that nj < k; < njt1 and

max ank # 0, j=12,...
nj<n<nji1,k€E1N[k; kjq1]
11
(11) E Qnk — E ank| < €j E Ak,
ke E, kEE> kcEq
kj<k<kjii ki<k<kjii1 kj<k<kji1

and

(12) S > ank/ max >k <e)

ng<m<n
q=1 keE,UE; 1= e B UE,
ke<k<kgi1 kq<k<kgii

forn; <n <mji1, j=1,2,..., where {e;} and {€}} are positive null
sequences. Then if p € M(A)

lim inf max i — min iy >0
J—oo k€EqN[kjkjt1] k'€Egn[k;,kjt1]

o,f=12,  aFp.

Proof. Let A; denote the quantity max ), - BNk Gnk, Where the

ki)
Joj+1
maximum is over all n in [n;,n;41]. We note that all A; are nonzero.



830 G. BRAUER

We define the sequence s by the equations:

Skzl/A] if k € Eq,
Sk = —]./Aj if ke Ez,
sp =0 ifk ¢ FEyUE;.

We note that s € (c)a, i.e.,, s =0in my. For n; <n < mnjiq,

n
Z AnkMkSk| 2
k=0

> Ankpin/Aj

keE1N[k;,kji1]

Z Ak o [ A

k'€ ExNlkj,k; 1]

+0(1).

Ifnisin [n,n;41] and maximizes 3y c gk, k. 1] @nk OVer this interval,
then by (11)

n
E Ak ok Sk = min HE — max prr — o(1).
o keEiN[k; kjt1] k'€Ean[kj,kjt1]
If
lim inf ( max Wit — min ,uk) <0,
j—oo \Kk'€BEan[kj,kji1] k€EN[kj kji1]

then | ZZ:O ank kS| 1s greater than some positive constant 7, for some
value of n between n; and n;—; for arbitrarily large values of j; thus
||ws|| > n although s = 0. This contradicts the fact that p is in M(A).
A similar argument rules out

lim inf ( max Wi — min ,uk> <0.
k'€ EiN[k;,kj11] keEaN[kj,kjy1]

This completes the proof. a

Corollary. If there exist sequences of integers {n;}, {k;}, {k;} with
n; > k; >k; >nj_1,5=1,2,..., each sequence increasing to infinity,
and

max ang; # 0, max ap 70
n;<n<njil n;<n<njil 7
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E Qn.k; max  Gm,kq+ E Qn ks, max amp, = o(1)
e ng<m<ngii e n<m<mngi1 e
q<j—1 q<j-1
and
Ok, — an,k;| < €jlnk, n; <n<njii,

where {€;} is a decreasing null sequence, then lim;_, o pux; — Pk, = 0.
Hence the sets {k;}", {k;}(ﬁ) coincide in A(A).

Theorem 1.8. Suppose that E = {n;} is a sequence of natural
numbers increasing to infinity in such a way that

max  Gpn; 70,
nj<n<nji1

g an ., max G, = 0(1)
nj<m<n;ji1

n<j

for nj < n < nji1, and that every sequence s in ma satisfies the
condition

Sp, = O(l/ max a )

i n;<m<njir s

while every sequence t in (co)a satisfies the condition

t,. = o(l/ max a )
nj nj§m<nj+1 m,n;

Then EP is separated from (N — E)P in A(A). If EP # BN — N, then
A(A) is not connected. If (*) holds, then EP is open and closed in
A(A).

Proof. The first part follows from Theorem 1.3 since every sequence
s in m 4 satisfies

lim sup Z |anksk| < oo
kEE

while every sequence ¢ in (cp) 4 satisfies

lim ) " ank|te] = 0.

kEE
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The proof of Theorem 1.3 shows that 1z is in M (A). If E# # BN — N,
then A(A) is not connected. Our remarks at the beginning of this
section show that if () holds E? is open and closed in A(A).

_We apply Theorem 1.8 to show that A(N,p) is not connected, where
(IV,p) denotes the weighted means matrix generated by a sequence

{pn} of positive numbers. This matrix (N, p) has elements a,; given
by the equations

ank:pk/Pna kSn,
ang =0, k> n.

We assume that P, — oo and that lim, o, px/P, = 0; then the
elements of (I, p,,) satisfy conditions (1), (2), (3), (4) and (5). Also the
reciprocal (N, p,,) ! exists. By considering the matrix (V, p,, ) ™! we see
that each sequence s in my ;, ) satisfies the condition s, = O(P,/pn)
while each sequence ¢ in (CO)(ﬁ,pn) satisfies the condition ¢, = o( P, /pn)-
Since a set E = {n;} # N can be chosen so as to satisfy the conditions
stated in Theorem 1.8, we conclude that A(N,p,,) is not connected for

each weighted means matrix with p,, > 0 for all n and P,, — oo.

In the case p, = 1 for all n, the weighted means matrix reduces to
the Cesaro matrix of order 1, C(1). We have seen earlier that (*) holds
for M) and that A(C'™M) is not connected.

We apply Theorem 1.8 to certain Norlund matrices (N, p), where
{pn} is a sequence of nonnegative numbers, py # 0, p(z) = >_.—  Pn2".
The elements of the matrix (N, p) are given by the formulas

Ank :pnfk:/Pna k S n,
ank =0, k>n,

where P,, = ZZ:O pr- We will always assume that p, /P, tends to 0 as
n tends to infinity; the N6érlund matrix (N, p) then satisfies conditions

(1)-(5)-

The elements a,,;, of (IV,p)~! are given by the formulas

onk = Prgn_k, k <n,
apr =0, k>n,
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where p(2) = Y00 prz", q(z) = 1/p(z) = Yoy qnz™. The elements
tnx of (N,p)i(N,p)~! are given by the formulas

tnk = <an—juij—k>Pk/Pn, ifk<n,
i—k

tor =0, if K > n.

We first consider Norlund matrices where P,, — co. Every sequence
s in m 4 satisfies the condition

Sn = O(Z-qun—k>

k=0

If lim,, o0 gn—& = O for each k, then every sequence in (co)(,p) satisfies

the condition .
tp, = O<ZPk|qn—k|> .
k=0

These facts can be deduced by observing the matrix (N, p)~!. Hence,
in the case P, — 00, lim,, _voo ¢ = 0, K = 0,1,..., if there exists a
sequence of integers {n;} increasing to infinity in such a way that

Zpk\an—H = O(Pn]/pn])
k=0

then by Theorem 1.8, A(N, p,) is not connected.
In the case p, = ("™7"), r = 0,1,...; thus p(z) = (1 — 2)~™ and

we obtain the Cesiro matrix of order m. If m is an integer greater
than 1, then by calculating the matrix C,,iC,,! we can show that
Apn = O(1/n) for all x in M(C(™), and hence A(C™) is connected
ifm > 1. o

We consider Nérlund matrices (IV, p) in the case where P, is bounded;
without loss of generality we may take P, tending to 1. If p(z) has no
zeros in or on the boundary of the unit disc D, then, by a famous
theorem of Wiener, ¢(z) = 1/p(z) = Y., qn2" has the property that
>0 o lan| < oo; hence ||(N,p)™t|| < co. The matrix (N, P) evaluates
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no unbounded sequences; by Darevsky’s theorem this matrix evaluates
no divergent sequences. For this reason we restrict attention to zeros
of p(z) in D. We note also that if p(zy) = 0 for some point 2 # 0, then
the matrix (IV, p) evaluates the sequence {z; "} to 0.

Theorem 1.9. If the polynomial p(z) = Z;zopjzj has no zero
coefficients and all zeros of p(z) are distinct and on the boundary 0D of
the unit disc D and p is in M(N, p), then Ap, = o(1) and consequently
A(N,p) is a continuum. If the polynomial p(z) has no zero coefficients
all its v zeros are distinct and interior to D and p is in A(N,p), then
Ap, = O(a™), where « is the largest modulus of the zeros of p(z);
consequently in this case A(N,p) is a point.

Proof. Suppose first that p(z) has zeros z1,... , 2, With zi # zj for
i # j and |z;| = 1 for all j. For each j let the sequence sU) be defined
by the equations:
sP) =z n=01,...,j=12,...,r
Each sequence s) is in (co)(N,pn)- If u € M(N,p), then the numbers
n—m, m =0,1,... ,r must satisfy the equations

(13)  przjpin—r +  P1Zjln-1 +Poptn = 0(1),  j=1,2,...,m,

and since pg = —p12; —pgzjz- +--+pyz] for each j, the numbers p,,, must
satisfy the conditions

prz;(//ln - ;ufnfr) +pr71Z;71(///n - ;ufnfrfl)

(14) +p12j(ptn — pn-1) = o(1).

The absolute value of the determinant of the equations (14), with the
numbers ft,, — by, —p, considered as unknowns is C HISiSTYISJSr,i# |2; —
zj| for some positive constant C'. Hence Ay, = o(1) if all points z; are
on 0D; consequently, A(N,p) is a continuum which may be a point.

If the zeros of p(z), 21, 22, ... , 2, are interior to D and p € M(A), we
again obtain (13), and in this case it follows that

pTZ;d(/J'n - ,Ufn—r) + pr—lzj('ril) (/J'n - ,Ufn—r—l) +p1zj (/J‘n - ,Ufn—r—l)

= o(a™),
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j=1,2,...,r, where @ = max|z;|. The determinant of this system,
again with the numbers p, — pn—»n as unknowns, is equal to some
positive constant, since the numbers z; are distinct. It follows that in
this case Apy 1 = pin—1 — b, = 0o(a™), and hence {p,} must converge
if p is in M(A). This completes the proof. o

In the case pg = a,p1 = 1—a, p, =0forn > 2, p(z) = a+(1—a)z.
If0o < a<1,(1), (2, (3), (4) and (5) are satisfied. The function
p(z) has —a/(1 — ) as its only zero. If & > 1/2,p(z) has no zeros in
D, M(N,p) is I*°/cy and A(N,p) = BN — N. If a = 1/2 we found
that A(N,p) is a nontrivial continuum. If 0 < a < 1/2 it follows from
Theorem 1.9 that A(N,p,) is a point.

It is clear that (*) holds for all Norlund matrices of the form (NN, p)
withp(z) =a+(1—a)z, 0 <a <1

2. Nilpotents in M(A). Only if the hypotheses (a) and (b) in
Theorem 1.3 are fulfilled have we been able to show that M (A) is semi-
simple. In general, the ring M (A) contains nontrivial nilpotents. For
example, if y is a null sequence in M (N, p), where M (N, p) is a weighted
means matrix satisfying our assumptions, then p? = 0. Since for

matrices (IV, p) of the form that we have considered, M (N, p) contains
null sequences which are not equal to the zero element, M (N,p) is not
semi-simple; in particular, this holds for the Cesaro matrix of order 1.
Also for each Norlund matrix (N, p) with pg = a, p1 =1 —«, p, =0,
n > 2, where « is a constant in (0,1/2], M(N,p) contains elements

p # 0 such that u? = 0. Our general result is:

Theorem 2.1. If {w,} is a sequence of real numbers increasing
to infinity such that each sequence s in ma satisfies the conditions
sn, = O(wy) while each sequence t in (co)a satisfies the condition
tn, = o(wn) and there is a sequence u in m 4, u # 0 such that |u,| > nw,
when n is in a subset E of N such that

Zank > >\7

keE

where n and \ are positive constants, then M(A) contains elements p
such that u # 0, u? = 0.



836 G. BRAUER

Proof. Let the sequence u be defined by the equations
M = SEN Uy, /Wh, ne€kE,
tn =0 n¢E.
Then 4 is in M(A), and for each s in my4

n

2 2
E OnkfySk| < E Uk |13,5k]
k=0 keE

<M Z ank(l/wk)2wk
kecE

S M Z ank/wka

kEE

where M is a positive constant. The last sum tends to 0 because {1/wy,}
is a null sequence and the matrix A is regular. Hence u?s = 0 for all s
in ma, thus p? = 0. But ||uul|a > A, hence p # 0.

In the case of the Euler Knopp matrix F,, 0 < a < 1, we see, by
considering the elements of E_! that every sequence s in mp, must
satisfy the condition s, = O((2 — a)/a)™ while every sequence t in
(co) g, must satisfy the condition ¢, = o((2—a)/a)™. Also the sequence
{(e —2)/a}™ is transformed into the sequence (—1)" by E,; thus, the
sequence {(a — 2)/a}™ is a nonzero element of mg_. By Theorem 2.1,
M(E,) contains elements y # 0 such that u? = 0.

In the case of the Norlund matrix (N,p) with P, = 1 where the
polynomial p(z) has only simple zeros z; - - - z., all on 9D, we see that
the Taylor coeflicients of 1/p(z) are bounded and hence the elements of
(N,p)~! are bounded. We see that every sequence s in m(N,p) must
satisfy the condition s, = O(n) while every sequence t in (co)(n p) must
satisfy the condition ¢y = o(n). Also the sequence {nz, "}, where 2 is
a zero of p(z), is in m(y ) — (co)(w,p). It follows that M(N,p) contains
elements u such that 4 #0, u2=0. O

Conjecture. If M(A) is semi-simple and (%) holds for the matric
A, then A(A) is totally disconnected.
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