MULTIPLIERS OF SEQUENCE SPACES

GEORGE BRAUER

0. Introduction. Let $A = (a_{nk})$ be a triangular nonnegative regular summation matrix, that is, the elements a_{nk} of A satisfy the conditions

$$a_{nk} = 0, \qquad k > n,$$

(2)
$$a_{nk} \ge 0, \qquad k = 0, 1, \dots, n; \ n = 0, 1, \dots,$$

(3)
$$\lim_{n \to \infty} a_{nk} = 0, \qquad k = 0, 1, \dots,$$

$$\lim_{n \to \infty} \sum_{k=0}^{n} a_{nk} = 1,$$

of [4, p. 43]. We denote by \tilde{m}_A the linear space of sequences $s = \{s_n\}$ such that the A-transform

$$As = \{As\}_n = \left\{ \sum_{h=0}^n a_{nk} s_k \right\}$$

is bounded. We assume also:

(5)each column of A has at least one nonzero element.

Under the semi-norms p_n, q :

$$p_n = |s_n|, \qquad q = ||As||_{\infty} = \text{LUB}_n \left| \sum_{k=0}^n a_{nk} s_k \right|,$$

Received by the editors on August 8, 1989, and in revised form on October 1, 1991.
AMS MOS Classification. 40C05, 46A45.
This research was supported by a grant from NSFG 7686.

 \tilde{m}_A becomes an F-K space, that is, a locally convex sequence space in which the coordinate functionals are continuous. Let $(c_0)_A$ be the closed subspace of sequences $t=\{t_n\}$ which are evaluated to 0 by A, that is, $(c_0)_A$ is the space of sequence $t=\{t_n\}$ such that $\lim_{n\to\infty}\sum_{k=0}^n a_{nk}t_k=0$. Under the norm

$$||s||_A = \operatorname{GLB} \{q(s+t)|t \in (c_0)_A\}$$
$$= \operatorname{GLB}_{t \in (c_0)_A} \operatorname{LUB}_n \left| \sum_{k=0}^n a_{nk} (s_k + t_k) \right|$$

 $\tilde{m}_A/(c_0)_A$ is a Banach space which we denote by m_A . We shall not distinguish between a sequence s in \tilde{m}_A and its coset in m_A ; we shall denote both by the symbol s. We will denote the norm of a sequence in m_A by $||s||_A$ or simply by ||s|| when the meaning is clear.

Evidently, $||s||_A \ge \limsup |As|$. We will show that equality holds. There is an integer n_0 such that for each positive number $\varepsilon |(As)_n| < \limsup |As| + \varepsilon$ when $n > n_0$. Let the sequence t be defined by the equations

$$t_n = s_n, \qquad n \le n_0,$$

$$t_n = 0, \qquad n > n_0.$$

Since t is a null sequence, t is in $(c_0)_A$. Hence t=0 and s-t=s in m_A . Also

$$q(s-t) = \text{LUB}_{n>n_0} \left| \sum_{k>n_0} a_{nk} (s_k - t_k) \right|$$

$$\leq \limsup As + \varepsilon$$

(note that $(A(s-t))_n = 0$ for $n \le n_0$). Since ε is arbitrary $||s||_A \le \limsup |As|$. Thus

$$||s||_A = \limsup As.$$

This formula will be used in the sequel.

We study the space M(A) of multipliers of the space m_A into itself, that is, the space of sequences $\mu = \{\mu_n\}$ such that if $s = \{s_n\}$ is a sequence in m_A then the sequence μs is in m_A ; and, moreover, if s = 0 in m_A , then $\mu s = 0$ in m_A , that is, whenever the matrix A evaluates the sequence s to 0, then it evaluates the sequence s to 0. We will assume throughout that the matrix s satisfies conditions (1)–(5).

The space M(A) is a commutative normed ring of operators on m_A with the usual operator norm

$$||\mu|| = \text{LUB}_{||s||_A < 1} ||\mu s||_A.$$

Two operators μ and μ' are identified in M(A) if $||\mu - \mu'|| = 0$, that is, if the matrix A evaluates each sequence $\{(\mu_n - \mu'_n)s_n\}$ with s in m_A to 0.

It follows from the uniform limitedness theorem that if μ is in M(A), then $||\mu|| < \infty$.

It will be seen that if μ is in M(A), then the sequence $\{\mu_n\}$ is bounded. As a bounded continuous function on the discrete space N of natural numbers the sequence $\{\mu_n\}$ has a continuous extension to βN , the Stone-Čech compactification of N. We will say a few words about the Stone-Čech compactification. A completely regular space X can be imbedded densely in a compact space βX such that every bounded continuous function on X has a continuous extension to βX ; for a description of the Stone-Čech compactification we refer the reader to $[\mathbf{3}, \mathrm{pp. 82-93}]$. If μ is a sequence in M(A), thus a bounded continuous function on N, we denote by μ^{β} its continuous extension to βN ; if ν is a point in βN , the symbol μ^{β}_{ν} will express the fact that the function μ^{β} is evaluated at ν . If E is a subset of N the symbol E^{β} will denote the intersection of the closure of the set E in βN with $\beta N - N$.

For many matrices we will find that the condition:

(*) if
$$\mu$$
 is in $M(A)$ and $GLB|\mu_n| > 0$, then $1/\mu$ is in $M(A)$

holds. If (*) holds, then we can give some information regarding the maximal ideal space $\Delta(A)$ of M(A). We recall that $\Delta(A)$ is defined to be the space of continuous homomorphisms of M(A) into the complex numbers. If h is such a homomorphism and μ is in M(A), we let $\hat{\mu}(h) = h(\mu)$; $\Delta(A)$ is the space of these homomorphisms h with the weakest topology which makes all functions $\hat{\mu}$, with μ in M(A), continuous. In other words, $\Delta(A)$, as a subset of the unit sphere of the dual of M(A), is given the weak * topology. For more information on maximal ideal spaces we refer the reader to [5, pp. 50–51]. If (*) holds, then $\Delta(A) = \beta N - N$ with two points ν_1, ν_2 of $\beta N - N$ identified if and only if $\mu_{\nu_1}^{\beta} = \mu_{\nu_2}^{\beta}$ for all μ in M(A) and with $\beta N - N$ given the weakest topology making all functions μ^{β} continuous.

In case A is a normal matrix, that is, A is triangular with no zero elements on the main diagonal, then A has a reciprocal A^{-1} . In this case the sequence μ is in M(A) if and only if the matrix $T = A\tilde{\mu}A^{-1} = (t_{nk})$ is regular on null sequences, that is, if T evaluates each null sequence to zero, where $\tilde{\mu}$ denotes the diagonal matrix with the sequence $\{\mu_n\}$ on its main diagonal. In order that the matrix $T = (t_{nk})$ be regular on null sequences it is necessary and sufficient that

$$\lim_{n\to\infty}t_{n,k}=0$$

$$||T||=\limsup\sum_{k=0}^{\infty}|t_{nk}|<\infty.$$

In fact $||\mu|| = ||T||$. The elements μ in M(A) such that the matrix $T = A\tilde{\mu}A^{-1}$ is regular form an Abelian semigroup \mathcal{S} . In [1] at the suggestion of Professor George Piranian I studied \mathcal{S} for various Hausdorff matrices A; here we will rarely deal with \mathcal{S} .

Section 1. In this section we obtain some conditions on sequences μ in M(A) and draw conclusions about the maximal ideal space $\Delta(A)$. We begin with some general remarks about $\Delta(A)$. If M(A) contains idempotents other than the zero and the unit element, then M(A) is not connected. More generally, suppose that condition (*) holds for a matrix A; for two infinite subsets E_1 and E_2 of N the sets E_1^{β} and E_2^{β} are separated in $\Delta(A)$ if and only if $\mathrm{GLB}_{\mu \in M(A), \nu_1, \nu_2 \in \beta N - N} |\mu_{\nu_1}^{\beta} - \mu_{\nu_2}^{\beta}| > 0$. If (*) holds for the matrix A and $\Delta \mu_n = o(1)$ for each sequence μ in M(A), then $\Delta(A)$ is connected; if μ_n converges for each $\mu \in M(A)$, then $\Delta(A)$ is a point.

Theorem 1.1. If μ is in M(A), then the sequence $\{\mu_n\}$ is bounded and $||\mu|| \ge \limsup |\mu_n|$.

Proof. We show first that if μ is a multiplier on \tilde{m}_A , then the sequence $\{\mu_n\}$ is bounded. For each m let $\delta^{(m)}$ denote the sequence with mth entry 1, all others 0, that is,

$$\delta_m^{(m)} = 1, \qquad \delta_n^{(m)} = 0, \qquad n \neq n.$$

The collection of sequences $\{\delta^{(m)}/||A\delta^{(m)}||_{\infty}\}$, $m=0,1,\ldots$ is a bounded set in \tilde{m}_A . If μ is a multiplier on \tilde{m}_A , then the collection

of sequences $\{\mu_n(\delta^{(m)})_n/||A\delta^{(m)}||_{\infty}\}$ is bounded in \tilde{m}_A , that is, there is a number M, such that for all m

$$q(\mu_n(\delta^{(m)})_n)/||A\delta^{(m)}||_{\infty} \leq M$$

or

$$LUB_{m,n}(|\mu_n|a_{nm}/LUB_ja_{jm}) \leq M.$$

Thus, if μ is a multiplier on \tilde{m}_A , μ is bounded. The same holds if μ is a multiplier on m_A .

To show that $||\mu|| \geq \limsup |\mu_n|$ it suffices to show that if λ is a cluster value of the sequence $\{\mu_n\}$, then λ is an eigenvalue of the operator μ . If λ is a cluster value of $\{\mu_n\}$, then there exists a sequence of integers $\{n_j\}$ increasing to infinity such that μ_{n_j} tends to λ ; moreover, by passing to a subsequence if necessary we may take the numbers $\{n_j\}$ so that $\sum_j |\mu_{n_j} - \lambda| < \infty$. Let $y^{(n_j)}$ denote the sequence $A\delta^{(n_j)}/||A\delta^{(n_j)}||_{\infty}$, $j=1,2,\ldots$. If the numbers n_j are chosen so that, moreover,

(6)
$$\sum_{r < j} a_{n,n_r} / ||A\delta^{(n_r)}||_{\infty} < 1/j$$

for $n_j \leq n < n_{j+1}$, then the series $\sum_{j=1}^{\infty} y^{(n_j)}$ converges elementwise to a sequence y in $m-c_0$, that is, y is a bounded nonnull sequence. The sequence $z=\sum_{j=1}^{\infty} \delta^{(n_j)}/||A\delta^{(n_j)}||_{\infty}$ is in $m_A-(c_0)_A$. On the other hand, the sequence $(\mu-\lambda)z$ is in $(c_0)_A$; it is equal to the zero element in m_A . This shows that λ is an eigenvalue of the operator μ regarded as an operator on m_A . This completes the proof. \square

Suppose that the matrix A has a reciprocal A^{-1} . If μ is in \mathcal{S} and 0 is a cluster value of the sequence $\{\mu_n\}$, then the matrix $A\tilde{\mu}A^{-1}$ evaluates a bounded divergent sequence, namely, the sequence Az for the sequence z of the preceding paragraph. On the other hand, if the sequence $\{\mu_n\}$ is bounded away from 0 and (*) holds, then $1/\mu$ is in M(A), that is, $||T^{-1}|| = ||A\tilde{\mu}^{-1}A^{-1}|| < \infty$ and the matrix T transforms no unbounded sequence into a bounded sequence. A theorem of Darevsky [2] asserts that if a regular summation matrix evaluates a divergent sequence, then it evaluates an unbounded sequence. Hence, if (*) holds, μ is in \mathcal{S} and μ_n is bounded away from zero, then the matrix T evaluates precisely the convergent sequences.

Theorem 1.2. If the matrix $A = (a_{nk})$ has a reciprocal and $\mu \in M(A)$, then

$$||\mu|| \ge \limsup |\mu_n| + a_{n,n-1} |\Delta \mu_{n-1}| / a_{n-1,n-1}.$$

In particular, if $\mu \in M(A)$, then

$$\Delta \mu_n = 0(a_{n,n}/a_{n+1,n}).$$

Here $\Delta \mu_n$ denotes the difference $\mu_n - \mu_{n+1}$.

Proof. If we denote the matrix A^{-1} by (α_{nk}) , then we have

$$\alpha_{n,n} = 1/a_{n,n},$$

$$\alpha_{n,n-1} = -a_{n,n-1}/a_{n,n}a_{n-1,n-1}.$$

We denote the matrix $A\tilde{\mu}A^{-1}$ by $T=(t_{nk})$. We have

$$t_{n,n-1} = a_{n,n-1}\mu_{n-1}\alpha_{n-1,n-1} + a_{n,n}\mu_n\alpha_{n,n-1}$$
$$= a_{n,n-1}\Delta\mu_{n-1}/a_{n-1,n-1}$$
$$t_{n,n} = \mu_n.$$

Since $||\mu|| = ||T|| \ge \limsup |t_{n,n}| + |t_{n,n-1}|$ the result follows. \square

Theorem 1.2 shows that in general not every bounded sequence is in M(A). For example, for the Euler Knopp matrix E_{α} , where α is a number in (0,1), with elements l_{nk} given by the equations

$$l_{nk} = \binom{n}{k} \alpha^k (1 - \alpha)^{n-k}, \qquad n = 0, 1, \dots, k = 0, 1, \dots, n,$$

Theorem 1.2 shows that if $\mu \in M(E_{\alpha})$ then $\Delta \mu_n = 0(1/n)$. Consequently, if (*) holds for the Euler Knopp matrix E_{α} , then $\Delta(E_{\alpha})$ is connected. More generally, if A is a Hausdorff matrix with elements a_{nk} given by the equations

$$a_{nk} = \binom{n}{k} \int_0^1 u^k (1-u)^{n-k} d\chi(u),$$

where χ is a nondecreasing function on [0,1] such that $\chi(0) = \chi(0+) = 0$, $\chi(1) = 1$, then A satisfies our hypotheses; if, moreover, $\chi(u) = \chi(1) = 1$ on some interval $1 - \delta \leq u \leq 1$ with $\delta > 0$, then we see that $a_{n,n-1} \geq n\delta a_{n-1,n-1}$. In this case, by Theorem 1.2, $\Delta \mu_n = 0(1/n)$ for all μ in M(A); if (*) holds for A, then $\Delta(A)$ is connected.

If the matrix A evaluates only convergent sequences, then, as is easily seen, M(A) is the set of bounded sequences and $\Delta(A)$ is the totally disconnected space $\beta N - N$. This situation holds for some matrices A which evaluate some (indeed very few) divergent sequences.

For a matrix A, c_A denotes the convergence field of A, that is, the set of sequence s such that

$$\lim_{n \to \infty} \sum_{k=0}^{n} a_{nk} s_k$$

exists.

Theorem 1.3. In order that M(A) consist of the set of bounded sequences it is necessary and sufficient that

(a) every sequence s in m_A satisfy the condition

$$\lim \sup \sum_{k=0}^{n} |a_{nk} s_k| < \infty,$$

and

(b) every sequence t in c_A satisfy the condition

$$\lim_{n \to \infty} \sum_{k=0}^{n} a_{nk} |t_k - \tau| = 0$$

for some complex number τ .

Of course, τ is the number to which the matrix A evaluates the sequence t.

Proof. Let $b_{nk} = a_{nk}s_k$, n = 0, 1, ..., k = 0, 1, ..., where s is a sequence in m_A . The sequence

$$\left\{\sum_{k=0}^{n} a_{nk} \mu_k s_k\right\} = \left\{\sum_{k=0}^{n} b_{nk} \mu_k\right\}$$

is bounded for each bounded sequence $\{\mu_n\}$ if and only if $\sum_{k=0}^n |b_{nk}|$ is bounded, that is, if and only if $\sum_{k=0}^n |a_{nk}s_k|$ is bounded. Now suppose that t=0 in m_A . We have

$$\lim_{n \to \infty} \sum_{k=0}^{n} a_{nk} \mu_k t_k = 0$$

for all bounded sequences μ if and only if condition (b) holds for $\tau = 0$. But condition (b) holds if and only if it holds with $\tau = 0$. This completes the proof.

Theorem 1.4. Let E be an infinite subset of N. Then E^{β} is separated from $(N-E)^{\beta}$ in $\Delta(A)$ if and only if for every sequence s in m_A ,

(a)
$$\lim \sup \left| \sum_{k \in E} a_{nk} s_k \right| < \infty,$$

and for every sequence t in $(c_0)_A$

$$\lim_{n \to \infty} \sum_{k \in F} a_{nk} t_k = 0.$$

If (*) holds and there exists a real sequence $u \in m_A$ satisfying the conditions

$$\begin{array}{c} u_n \geq 0 \ \ when \ n \ is \ in \ E, \\ u_n < 0 \ \ when \ n \ is \ in \ N-E, \\ \lim\sup \sum_{k \in E} a_{nk} u_k = \infty, \end{array}$$

or a sequence v in $(c_0)_A$ such that

$$\begin{array}{c} v_n \geq 0 \ when \ n \ is \ in \ E, \\ v_n < 0 \ when \ n \ is \ in \ N-E, \\ \limsup_{n \rightarrow \infty} \sum_{k \in E} a_{nk} v_k > 0, \end{array}$$

then E^{β} is not separated from $(N-E)^{\beta}$ in $\Delta(A)$.

Proof. If every real sequence s in m_A satisfies condition (a), then $s1_E$ is in m_A whenever s is in m_A . (By 1_E we understand the sequence $\{\mu_n\}$ with μ_n equal to 1 or 0 according to whether n is or is not in E.) If every sequence t in $(c_0)_A$ satisfies condition (b), then $t1_E$ is in $(c_0)_A$ whenever t is in $(c_0)_A$. Hence $1_E \in M(A)$ and E^β is separated from $(N-E)^\beta$ in $\Delta(A)$.

To show that E^{β} is not separated from $(N-E)^{\beta}$ we need only show that $\mathrm{GLB}_{\nu_1,\nu_2\in\beta N-N, v_1\neq v_2}|\mu^{\beta}_{\nu_1}-\mu^{\beta}_{\nu_2}|=0$ for every real sequence μ in M(A). If there is a sequence u in M(A) such that (a') holds, then for every real sequence $\mu=\{\mu_n\}$ such that for some positive number δ , $\mu_n\geq\delta$ when n is in $E,\,\mu_n<0$ when n is in N-E, we have

$$\limsup_{n} \left| \sum_{k=0}^{n} a_{nk} \mu_{k} u_{k} \right| \ge \limsup_{k \in E} \sum_{k \in E} a_{nk} \mu_{k} u_{k}$$
$$\ge \delta \lim \sup_{k \in E} \sum_{k \in E} a_{nk} u_{k} = \infty;$$

hence $\mu \notin M(A)$. If there exists a sequence v, in $(c_0)_A$ which is nonnegative on E, negative on N - E, for which (b') holds, then

$$\lim\sup\left|\sum_{k=0}^n a_{nk}\mu_k v_k\right| \geq \delta \lim\sup\sum_{k\in E} a_{nk}v_k > 0$$

by (b'). Thus v = 0 in m_A , but $\mu v \neq 0$. Hence $\mu \notin M(A)$. Since δ is an arbitrary positive number E^{β} is not separated from $(N - E)^{\beta}$ in $\Delta(A)$. \square

Corollary. Suppose that (*) holds. If E is a subset of N such that

$$\lim_{n\to\infty}\sum_{k\in E}a_{nk}$$

exists and is different from 0 and 1, then E^{β} is not separated from $(N-E)^{\beta}$ in $\Delta(A)$.

We will say that the summation matrix A includes the summation matrix B if and only if every sequence evaluated by B is evaluated by A to the same value.

Suppose that (*) holds for two matrices A and B satisfying our hypotheses and that A includes B. It is not true, in general, that the identity map of $\beta N - N$ induces a continuous map of $\Delta(B)$ into $\Delta(A)$; for a simple example we take A as the Cesàro matrix of order 1 with elements given by the equations

$$a_{nk} = 1/(n+1), \qquad k \le n, \qquad a_{nk} = 0, \qquad k > n.$$

The elements of α_{nk} of A^{-1} are given by the equations

$$\alpha_{n,n} = n+1, \qquad \alpha_{n,n-1} = -n,$$

$$\alpha_{nk} = 0, \qquad k \neq n, \ k \neq n-1$$

and the elements t_{nk} of the matrix $A\tilde{\mu}A^{-1}$ are given by the equations

$$t_{n,k} = (k+1)\Delta\mu_k/(n+1),$$
 $0 \le k \le n-1,$
 $t_{nn} = \mu_n, \quad t_{n,k} = 0, \quad k > n.$

For B we take the Nörlund matrix, with elements b_{nk} given by the equations

$$b_{n,n} = b_{n,n-1} = 1/2, \qquad n \ge 1,$$

 $b_{n,k} = 0, \qquad k \ne n, \ k \ne n-1.$

The elements β_{nk} of the matrix B^{-1} are given by the equation

$$\beta_{nk} = 2(-1)^{n-k}, \quad k \le n$$

 $\beta_{n,k} = 0, \quad k > n, \ n \ge 1,$

while the elements (s_{nk}) are the matrix $S = B\tilde{\mu}B^{-1}$ are given by the equations

$$s_{n,k} = (-1)^{n-k-1} \Delta \mu_{n-1}, \qquad k < n$$

 $s_{n,n} = \mu_n$
 $s_{n,k} = 0, \qquad k > n.$

The matrix T is regular on null sequence if and only if the quantities $\sum_{k=0}^{n-1} (k+1) |\Delta \mu_k|/(n+1) + |\mu_n|$ are bounded; this condition can

be satisfied by many divergent sequences of zeros and ones. Thus M(A) contains divergent sequences of zeros and ones and $\Delta(A)$ is not connected. On the other hand, if the matrix S is regular on null sequences, then $\Delta \mu_n = O(1/n)$, hence $\Delta(B)$ is connected (in fact $\Delta(B)$ is a nontrivial continuum). Hence, the identity map of $\Delta(B)$ into $\Delta(A)$ is not continuous. On the other hand, AB^{-1} is a regular matrix, that is, the matrix A includes the matrix B.

Conjecture. Suppose that (*) holds for two matrices A and B satisfying our hypotheses, that A includes B, and that whenever A evaluates a real sequence to its limit superior or to its limit inferior, then B evaluates the sequence to the same number. Then the identity map of $\beta N - N$ into itself induces a continuous map of $\Delta(B)$ into $\Delta(A)$.

For the conjecture to hold, two points ν_1, ν_2 of $\beta N - N$ which are identified in $\Delta(B)$ must be identified in $\Delta(A)$.

Theorem 1.5. Let $\{\omega_n\}$ be a sequence which increases to infinity. If the matrix A has the property that all sequences s in m_A satisfy the condition

$$(7) s_n = O(\omega_n),$$

while all sequences t in $(c_0)_A$ satisfy the condition

$$(8) t_n = o(\omega_n),$$

then all sequences μ such that $\mu_n - L = O(1/\omega_n)$ for some number L are in M(A).

Proof. The constant sequence $\{L, L \dots\}$ is in M(A). Let $\varepsilon_n = L - \mu_n$; we must show that $\varepsilon = \{\varepsilon_n\}$ is in M(A). If $s \in m_A$, then $s_n = O(\omega_n)$ and since $\varepsilon_n = O(1/\omega_n)$, the sequence $\{\varepsilon_n s_n\}$ is bounded; hence $\sum_{k=0}^n a_{nk} \varepsilon_k s_k$ is bounded. Also if a sequence t is in $(c_0)_A$, then by (8), $t_n = o(\omega_n)$ and hence $\{\varepsilon_n t_n\}$ is a null sequence and consequently in $(c_0)_A$. Consequently, A evaluates $\{\varepsilon_n t_n\}$ to 0. Consequently, ε is in M(A). This completes the proof. \square

We note that if μ_n is bounded away from 0 then $1/\mu_n - 1/L = 0(1/\omega_n)$ and thus $1/\mu \in M(A)$.

Theorem 1.6. Suppose that the matrix A has a reciprocal $A^{-1} = (\alpha_{nk})$ with the property that α_{nk} is nonnegative or nonpositive according to whether n-k is even or odd. Then if μ is a real sequence in M(A) which is bounded away from 0 and such that for some number L, μ_n is alternately not less than L and not greater than L, then $1/\mu$ is in M(A).

Proof. Let $\varepsilon = \{\varepsilon_n\}$ denote the sequence $\{\mu_n - L\}$. The numbers ε_n alternate between being nonnegative and being nonpositive. The elements of the matrix $A\tilde{\varepsilon}A^{-1} = S = (s_{nk})$ have the property

$$|s_{nk}| = \left| \sum_{j=k}^{n} a_{nj} \varepsilon_j \alpha_{jk} \right| = \sum_{j=k}^{n} a_{nj} |\varepsilon_j| \alpha_{jk} |.$$

If $\mu \in M(A)$, then since the constant sequence $\{L, L, \ldots\}$ is in $M(A), \varepsilon \in M(A)$, that is, the matrix S is regular on the space of null sequences. Hence

(9)
$$\lim s_{nk} = 0, \qquad k = 0, 1, \dots$$

(10)
$$||\varepsilon|| = ||S|| = \limsup \sum_{k=0}^{n} |s_{nk}| < \infty.$$

Since μ_n never vanishes, $1/\mu_n$ exists for all n and it is equal to $1/(L + \varepsilon_n)$; we denote this quantity by δ_n . We denote the matrix $T^{-1} = A(1/\mu)A^{-1} = A\tilde{\delta}A^{-1}$ by (τ_{nk}) ; we have, for k < n,

$$\tau_{nk} = \sum_{j=k}^{n} a_{nj} \alpha_{jk} / (L + \varepsilon_j)$$

$$= \sum_{j=k}^{n} a_{nj} \alpha_{jk} (1/L - \varepsilon_j / L(L + \varepsilon_j))$$

$$= -\sum_{j=k}^{n} a_{nj} \varepsilon_j \alpha_{jk} / L\mu_j$$

since $\sum_{j=k}^n a_{nj} \alpha_{jk} = 0$ for k < n. Let $\mathrm{GLB}|\mu_n|$ be denoted by η ; $\eta > 0$. For k < n

$$|\tau_{nk}| \le \left| \sum_{j=k}^{n} a_{nj} \varepsilon_{j} \alpha_{jk} \right| / |L| \eta$$

$$\le |s_{nk}| / |L| \eta.$$

By (9), $\lim_{n\to\infty} \tau_{nk} = 0$ for each k. Also

$$\sum_{k=0}^{n} |\tau_{nk}| \le \sum_{k=0}^{n-1} |s_{nk}|/|L|\eta + 1/\eta.$$

Thus $||T|| \leq ||S||/|L|\eta < \infty \text{ and } 1/\mu \in M(A).$

Theorem 1.7. Suppose that there exist two infinite disjoint subsets E_1 and E_2 of N and two sequences $\{n_j\}$ and $\{k_j\}$ of integers increasing to infinity such that $n_j \leq k_j < n_{j+1}$ and

(11)
$$\max_{\substack{n_{j} \leq n < n_{j+1}, k \in E_{1} \cap [k_{j}, k_{j+1}] \\ k \in E_{1} \\ k_{j} \leq k < k_{j+1}}} a_{nk} - \sum_{\substack{k \in E_{2} \\ k_{j} \leq k < k_{j+1}}} a_{nk} \bigg| \leq \varepsilon_{j} \sum_{\substack{k \in E_{1} \\ k_{j} \leq k < k_{j+1}}} a_{nk},$$

and

$$(12) \qquad \sum_{q=1}^{j-1} \sum_{\substack{k \in E_1 \cup E_2 \\ k_q \le k < k_{q+1}}} a_{nk} \bigg/ \max_{\substack{n_q \le m < n_{q+1} \\ k_q \le k < k_{q+1}}} \sum_{\substack{k \in E_1 \cup E_2 \\ k_q \le k < k_{q+1}}} a_{nk} < \varepsilon_j'$$

for $n_j \leq n < n_{j+1}$, j = 1, 2, ..., where $\{\varepsilon_j\}$ and $\{\varepsilon'_j\}$ are positive null sequences. Then if $\mu \in M(A)$

$$\lim_{j \to \infty} \inf_{k \in E_{\alpha} \cap [k_{j}, k_{j+1}]} \max_{\mu_{k} - \min_{k' \in E_{\beta} \cap [k_{j}, k_{j+1}]} \mu_{k'} \ge 0$$

$$\alpha, \beta = 1, 2, \qquad \alpha \ne \beta.$$

Proof. Let A_j denote the quantity $\max \sum_{k \in E_j \cap [k_j, k_{j+1}]} a_{nk}$, where the maximum is over all n in $[n_j, n_{j+1}]$. We note that all A_j are nonzero.

We define the sequence s by the equations:

$$\begin{split} s_k &= 1/A_j & \text{if } k \in E_1, \\ s_k &= -1/A_j & \text{if } k \in E_2, \\ s_k &= 0 & \text{if } k \notin E_1 \cup E_2. \end{split}$$

We note that $s \in (c_0)_A$, i.e., s = 0 in m_A . For $n_j \leq n < n_{j+1}$,

$$\left| \sum_{k=0}^{n} a_{nk} \mu_{k} s_{k} \right| \geq \left| \sum_{k \in E_{1} \cap [k_{j}, k_{j+1}]} a_{nk} \mu_{k} / A_{j} \right| - \left| \sum_{k' \in E_{2} \cap [k_{j}, k_{j+1}]} a_{nk'} \mu_{k'} / A_{j} \right| + o(1).$$

If n is in $[n_j, n_{j+1}]$ and maximizes $\sum_{k \in E_2 \cap [k_j, k_{j+1}]} a_{nk}$ over this interval, then by (11)

$$\sum_{k=0}^{n} a_{nk} \mu_k s_k \ge \min_{k \in E_1 \cap [k_j, k_{j+1}]} \mu_k - \max_{k' \in E_2 \cap [k_j, k_{j+1}]} \mu_{k'} - o(1).$$

If

$$\liminf_{j\to\infty} \left(\max_{k'\in E_2\cap [k_j,k_{j+1}]} \mu_{k'} - \min_{k\in E_1\cap [k_j,k_{j+1}]} \mu_k \right) < 0,$$

then $|\sum_{k=0}^n a_{nk} \mu_k s_k|$ is greater than some positive constant η , for some value of n between n_j and $n_{j=1}$ for arbitrarily large values of j; thus $||\mu s|| \geq \eta$ although s=0. This contradicts the fact that μ is in M(A). A similar argument rules out

$$\liminf \left(\max_{k' \in E_1 \cap [k_i,k_{j+1}]} \mu_{k'} - \min_{k \in E_2 \cap [k_i,k_{j+1}]} \mu_k\right) < 0.$$

This completes the proof.

Corollary. If there exist sequences of integers $\{n_j\}$, $\{k_j\}$, $\{k_j'\}$ with $n_j > k_j' > k_j > n_{j-1}$, $j = 1, 2, \ldots$, each sequence increasing to infinity, and

$$\max_{n_j \le n < n_{j+1}} a_{n,k_j} \ne 0, \qquad \max_{n_j \le n < n_{j+1}} a_{n,k'_j} \ne 0$$

$$\sum_{q \le j-1} a_{n,k_q} / \max_{n_q \le m < n_{q+1}} a_m, k_q + \sum_{q \le j-1} a_{n,k_{q'}} / \max_{n \le m < n_{q+1}} a_{m,k_q} = o(1)$$

and

$$|a_{n,k_q} - a_{n,k_q'}| \le \varepsilon_j a_{n,k_q} \qquad n_j \le n < n_{j+1},$$

where $\{\varepsilon_j\}$ is a decreasing null sequence, then $\lim_{j\to\infty} \mu_{k_j} - \mu_{k'_j} = 0$. Hence the sets $\{k_j\}^{\beta}$, $\{k'_i\}^{(\beta)}$ coincide in $\Delta(A)$.

Theorem 1.8. Suppose that $E = \{n_j\}$ is a sequence of natural numbers increasing to infinity in such a way that

$$\max_{n_{j} \le n < n_{j+1}} a_{n,n_{j}} \ne 0,$$

$$\sum_{n < j} a_{n,n_{r}} / \max_{n_{j} \le m < n_{j+1}} a_{m,n_{r}} = o(1)$$

for $n_j \leq n < n_{j+1}$, and that every sequence s in m_A satisfies the condition

$$s_{n_j} = O\left(1 / \max_{n_j < m < n_{j+1}} a_{m,n_j}\right)$$

while every sequence t in $(c_0)_A$ satisfies the condition

$$t_{n_j} = o\left(1 / \max_{n_j < m < n_{j+1}} a_{m,n_j}\right).$$

Then E^{β} is separated from $(N-E)^{\beta}$ in $\Delta(A)$. If $E^{\beta} \neq \beta N - N$, then $\Delta(A)$ is not connected. If (*) holds, then E^{β} is open and closed in $\Delta(A)$.

Proof. The first part follows from Theorem 1.3 since every sequence s in m_A satisfies

$$\limsup \sum_{k \in E} |a_{nk} s_k| < \infty$$

while every sequence t in $(c_0)_A$ satisfies

$$\lim \sum_{k \in E} a_{nk} |t_k| = 0.$$

The proof of Theorem 1.3 shows that 1_E is in M(A). If $E^{\beta} \neq \beta N - N$, then $\Delta(A)$ is not connected. Our remarks at the beginning of this section show that if (*) holds E^{β} is open and closed in $\Delta(A)$.

We apply Theorem 1.8 to show that $\Delta(\overline{N}, p)$ is not connected, where (\overline{N}, p) denotes the weighted means matrix generated by a sequence $\{p_n\}$ of positive numbers. This matrix (\overline{N}, p) has elements a_{nk} given by the equations

$$a_{nk} = p_k/P_n, \qquad k \le n,$$

 $a_{nk} = 0, \qquad k > n.$

We assume that $P_n \to \infty$ and that $\lim_{n\to\infty} p_k/P_n = 0$; then the elements of (\overline{N}, p_n) satisfy conditions (1), (2), (3), (4) and (5). Also the reciprocal $(\overline{N}, p_n)^{-1}$ exists. By considering the matrix $(N, p_n)^{-1}$ we see that each sequence s in $m_{(\overline{N}, p_n)}$ satisfies the condition $s_n = O(P_n/p_n)$ while each sequence t in $(c_0)_{(\overline{N}, p_n)}$ satisfies the condition $t_n = o(P_n/p_n)$. Since a set $E = \{n_j\} \neq N$ can be chosen so as to satisfy the conditions stated in Theorem 1.8, we conclude that $\Delta(\overline{N}, p_n)$ is not connected for each weighted means matrix with $p_n > 0$ for all n and $P_n \to \infty$.

In the case $p_n = 1$ for all n, the weighted means matrix reduces to the Cesàro matrix of order 1, $C^{(1)}$. We have seen earlier that (*) holds for $C^{(1)}$ and that $\Delta(C^{(1)})$ is not connected.

We apply Theorem 1.8 to certain Nörlund matrices (N, p), where $\{p_n\}$ is a sequence of nonnegative numbers, $p_0 \neq 0$, $p(z) = \sum_{n=0}^{\infty} p_n z^n$. The elements of the matrix (N, p) are given by the formulas

$$a_{nk} = p_{n-k}/P_n, k \le n,$$

$$a_{nk} = 0, k > n,$$

where $P_n = \sum_{k=0}^n p_k$. We will always assume that p_n/P_n tends to 0 as n tends to infinity; the Nörlund matrix (N,p) then satisfies conditions (1)–(5).

The elements α_{nk} of $(N,p)^{-1}$ are given by the formulas

$$\alpha_{nk} = P_k q_{n-k}, \qquad k \le n,$$

$$\alpha_{nk} = 0, \qquad k > n,$$

where $p(z) = \sum_{n=0}^{\infty} p_k z^k$, $q(z) = 1/p(z) = \sum_{n=0}^{\infty} q_n z^n$. The elements t_{nk} of $(N, p)\tilde{\mu}(N, p)^{-1}$ are given by the formulas

$$t_{nk} = \left(\sum_{j=k}^{n} p_{n-j} \mu_j q_{j-k}\right) P_k / P_n, \quad \text{if } k \le n,$$

$$t_{nk} = 0, \quad \text{if } k > n.$$

We first consider Nörlund matrices where $P_n \to \infty$. Every sequence s in m_A satisfies the condition

$$s_n = O\left(\sum_{k=0}^n P_k |q_{n-k}|\right).$$

If $\lim_{n\to\infty} q_{n-k} = 0$ for each k, then every sequence in $(c_0)_{(N,p)}$ satisfies the condition

$$t_n = o\left(\sum_{k=0}^n P_k |q_{n-k}|\right).$$

These facts can be deduced by observing the matrix $(N, p)^{-1}$. Hence, in the case $P_n \to \infty$, $\lim_{n\to\infty} q_{n-k} = 0$, $k = 0, 1, \ldots$, if there exists a sequence of integers $\{n_i\}$ increasing to infinity in such a way that

$$\sum_{k=0}^{n_j} P_k |q_{n_j-k}| = O(P_{n_j}/p_{n_j})$$

then by Theorem 1.8, $\Delta(N, p_n)$ is not connected.

In the case $p_r = \binom{r+m-1}{r}$, $r = 0, 1, \ldots$; thus $p(z) = (1-z)^{-m}$ and we obtain the Cesäro matrix of order m. If m is an integer greater than 1, then by calculating the matrix $C_m \tilde{\mu} C_m^{-1}$ we can show that $\Delta \mu_n = O(1/n)$ for all μ in $M(C^{(m)})$, and hence $\Delta(C^{(m)})$ is connected if m > 1.

We consider Nörlund matrices (N,p) in the case where P_n is bounded; without loss of generality we may take P_n tending to 1. If p(z) has no zeros in or on the boundary of the unit disc D, then, by a famous theorem of Wiener, $q(z) = 1/p(z) = \sum_{n=0}^{\infty} q_n z^n$ has the property that $\sum_{n=0}^{\infty} |q_n| < \infty$; hence $||(N,p)^{-1}|| < \infty$. The matrix (N,P) evaluates

no unbounded sequences; by Darevsky's theorem this matrix evaluates no divergent sequences. For this reason we restrict attention to zeros of p(z) in \overline{D} . We note also that if $p(z_0) = 0$ for some point $z_0 \neq 0$, then the matrix (N, p) evaluates the sequence $\{z_0^{-n}\}$ to 0.

Theorem 1.9. If the polynomial $p(z) = \sum_{j=0}^{r} p_j z^j$ has no zero coefficients and all zeros of p(z) are distinct and on the boundary ∂D of the unit disc D and μ is in M(N,p), then $\Delta \mu_n = o(1)$ and consequently $\Delta(N,p)$ is a continuum. If the polynomial p(z) has no zero coefficients all its r zeros are distinct and interior to D and μ is in $\Delta(N,p)$, then $\Delta \mu_n = O(\alpha^n)$, where α is the largest modulus of the zeros of p(z); consequently in this case $\Delta(N,p)$ is a point.

Proof. Suppose first that p(z) has zeros z_1, \ldots, z_r with $z_i \neq z_j$ for $i \neq j$ and $|z_j| = 1$ for all j. For each j let the sequence $s^{(j)}$ be defined by the equations:

$$s_n^{(j)} = z_j^{-n}, \qquad n = 0, 1, \dots, j = 1, 2, \dots, r.$$

Each sequence $s^{(j)}$ is in $(c_0)_{(N,p_n)}$. If $\mu \in M(N,p)$, then the numbers μ_{n-m} , $m=0,1,\ldots,r$ must satisfy the equations

(13)
$$p_r z_j^r \mu_{n-r} + \cdots p_1 z_j \mu_{n-1} + p_0 \mu_n = o(1), \quad j = 1, 2, \dots, r,$$

and since $p_0 = -p_1 z_j - p_2 z_j^2 + \cdots + p_r z_j^r$ for each j, the numbers μ_m must satisfy the conditions

(14)
$$p_r z_j^r (\mu_n - \mu_{n-r}) + p_{r-1} z_j^{r-1} (\mu_n - \mu_{n-r-1}) + p_1 z_j (\mu_n - \mu_{n-1}) = o(1).$$

The absolute value of the determinant of the equations (14), with the numbers $\mu_n - \mu_{n-m}$ considered as unknowns is $C \prod_{1 \leq i \leq r, 1 \leq j \leq r, i \neq j} |z_i - z_j|$ for some positive constant C. Hence $\Delta \mu_n = o(1)$ if all points z_j are on ∂D ; consequently, $\Delta(N, p)$ is a continuum which may be a point.

If the zeros of $p(z), z_1, z_2, \ldots, z_r$ are interior to D and $\mu \in M(A)$, we again obtain (13), and in this case it follows that

$$p_r z_j^r (\mu_n - \mu_{n-r}) + p_{r-1} z_j^{(r-1)} (\mu_n - \mu_{n-r-1}) + p_1 z_j (\mu_n - \mu_{n-r-1})$$

= $o(\alpha^n)$,

 $j=1,2,\ldots,r$, where $\alpha=\max|z_i|$. The determinant of this system, again with the numbers $\mu_n-\mu_{n-m}$ as unknowns, is equal to some positive constant, since the numbers z_i are distinct. It follows that in this case $\Delta\mu_{n-1}=\mu_{n-1}-\mu_n=o(\alpha^n)$, and hence $\{\mu_n\}$ must converge if μ is in M(A). This completes the proof.

In the case $p_0 = \alpha$, $p_1 = 1 - \alpha$, $p_n = 0$ for $n \ge 2$, $p(z) = \alpha + (1 - \alpha)z$. If $0 < \alpha \le 1$, (1), (2), (3), (4) and (5) are satisfied. The function p(z) has $-\alpha/(1-\alpha)$ as its only zero. If $\alpha > 1/2$, p(z) has no zeros in \overline{D} , M(N,p) is l^{∞}/c_0 and $\Delta(N,p) = \beta N - N$. If $\alpha = 1/2$ we found that $\Delta(N,p)$ is a nontrivial continuum. If $0 < \alpha < 1/2$ it follows from Theorem 1.9 that $\Delta(N,p_n)$ is a point.

It is clear that (*) holds for all Nörlund matrices of the form (N, p) with $p(z) = \alpha + (1 - \alpha)z$, $0 < \alpha \le 1$.

2. Nilpotents in M(A). Only if the hypotheses (a) and (b) in Theorem 1.3 are fulfilled have we been able to show that M(A) is semi-simple. In general, the ring M(A) contains nontrivial nilpotents. For example, if μ is a null sequence in $M(\overline{N},p)$, where $M(\overline{N},p)$ is a weighted means matrix satisfying our assumptions, then $\mu^2=0$. Since for matrices (\overline{N},p) of the form that we have considered, $M(\overline{N},p)$ contains null sequences which are not equal to the zero element, $M(\overline{N},p)$ is not semi-simple; in particular, this holds for the Cesàro matrix of order 1. Also for each Nörlund matrix (N,p) with $p_0=\alpha, p_1=1-\alpha, p_n=0, n\geq 2$, where α is a constant in (0,1/2], M(N,p) contains elements $\mu\neq 0$ such that $\mu^2=0$. Our general result is:

Theorem 2.1. If $\{\omega_n\}$ is a sequence of real numbers increasing to infinity such that each sequence s in m_A satisfies the conditions $s_n = O(\omega_n)$ while each sequence t in $(c_0)_A$ satisfies the condition $t_n = o(\omega_n)$ and there is a sequence u in m_A , $u \neq 0$ such that $|u_n| \geq \eta \omega_n$ when n is in a subset E of N such that

$$\sum_{k \in E} a_{nk} \ge \lambda,$$

where η and λ are positive constants, then M(A) contains elements μ such that $\mu \neq 0$, $\mu^2 = 0$.

Proof. Let the sequence μ be defined by the equations

$$\mu_n = \operatorname{sgn} u_n/\omega_n, \qquad n \in E,$$

 $\mu_n = 0 \qquad \qquad n \notin E.$

Then μ is in M(A), and for each s in m_A

$$\left| \sum_{k=0}^{n} a_{nk} \mu_k^2 s_k \right| \le \sum_{k \in E} a_{nk} |\mu_k^2 s_k|$$

$$\le M \sum_{k \in E} a_{nk} (1/\omega_k)^2 \omega_k$$

$$\le M \sum_{k \in E} a_{nk} / \omega_k,$$

where M is a positive constant. The last sum tends to 0 because $\{1/\omega_n\}$ is a null sequence and the matrix A is regular. Hence $\mu^2 s = 0$ for all s in m_A , thus $\mu^2 = 0$. But $||\mu u||_A \ge \lambda \eta$, hence $\mu \ne 0$.

In the case of the Euler Knopp matrix E_{α} , $0 < \alpha < 1$, we see, by considering the elements of E_{α}^{-1} that every sequence s in $m_{E_{\alpha}}$ must satisfy the condition $s_n = O((2-\alpha)/\alpha)^n$ while every sequence t in $(c_0)_{E_{\alpha}}$ must satisfy the condition $t_n = o((2-\alpha)/\alpha)^n$. Also the sequence $\{(\alpha-2)/\alpha\}^n$ is transformed into the sequence $(-1)^n$ by E_{α} ; thus, the sequence $\{(\alpha-2)/\alpha\}^n$ is a nonzero element of $m_{E_{\alpha}}$. By Theorem 2.1, $M(E_{\alpha})$ contains elements $\mu \neq 0$ such that $\mu^2 = 0$.

In the case of the Nörlund matrix (N,p) with $P_n=1$ where the polynomial p(z) has only simple zeros $z_1 \cdots z_r$, all on ∂D , we see that the Taylor coefficients of 1/p(z) are bounded and hence the elements of $(N,p)^{-1}$ are bounded. We see that every sequence s in m(N,p) must satisfy the condition $s_n=O(n)$ while every sequence t in $(c_0)_{(N,p)}$ must satisfy the condition $t_N=o(n)$. Also the sequence $\{nz_0^{-n}\}$, where z_0 is a zero of p(z), is in $m_{(N,p)}-(c_0)_{(N,p)}$. It follows that M(N,p) contains elements μ such that $\mu \neq 0$, $\mu^2=0$.

Conjecture. If M(A) is semi-simple and (*) holds for the matrix A, then $\Delta(A)$ is totally disconnected.

Acknowledgment. I am indebted to Professor Jésus Gil de La Madrid and Professor Wilhelm Klingenberg for many helpful suggestions. I am indebted also to the referee for his suggestions concerning

the definition of the space m_A and a simplification of the proof of Theorem 1.1.

REFERENCES

- ${\bf 1.~G.~Brauer},~Some~summation~matrices~of~Hausdorff~type,~Math.~Z.~{\bf 67}~(1957),~397–403.$
- ${\bf 2.}$ V.M. Darevsky, On intrinsically perfect methods of summation, Bull. Acad. Sci. URSS Ser. Math. (Izvestia Akad Nauk SSSR) ${\bf 10}$ (1946), 97–104.
- ${\bf 3.}$ L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, New Jersey, 1960.
 - 4. G.H. Hardy, Divergent series, Oxford, New York, 1949.
- $\bf 5.~$ L.H. Loomis, An~introduction~to~abstract~harmonic~analysis, Van Nostrand, New York, 1953.

Department of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455