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ABSTRACT. An SIS epidemiological model with a general
population-size dependent disease incidence, reduced fertility
and vertical transmission is analyzed. Complete global stabil-
ity analyses and explicit threshold parameters are given. The
fractions in the disease states usually approach a disease-free
or endemic equilibrium while the population size grows to in-
finity, decays to zero or approaches a finite size. In one case
there is a center. The persistence of the disease and disease-
related deaths affects the behavior of the population size.

1. Introduction. Consider the spread of an infectious disease in a
host population with exponential births and deaths defined as follows.
Let N(t) be the total population size as a function of time ¢, b be the
natural birth rate constant, and d be the natural death rate constant.
Then, assuming that the natural births and the natural deaths are
proportional to the total population size, we have

(1.1) N'(t) = (b—d)N,  N(0) =N,

as the initial value problem. The net growth rate is therefore r = b—d so
that the population size N(t) grows exponentially if r > 0, is constant
if r = 0 and decays exponentially if » < 0.

Assume that the rate at which new individuals become infected (the
incidence rate) is proportional to number Y of infectives, times the
population-size dependent contact rate A(IV), times the probability of
contacting a susceptible individual, X/N, where X is the number of
susceptible individuals. Thus the incidence is A(IV)Y X/N. The contact
rate A(IN) is the daily average number of contacts of an infective which
are sufficient for transmission if the person contacted is susceptible
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so that A(IV)Y is the daily total number of adequate contacts of all
infectives. If A(IV) = BN, this is the classical mass action incidence
which is considered by many authors such as Anderson and May [1],
Mena-Lorca and Hethcote [13]. If A(N) = 3, this is the standard
incidence which is discussed by Busenberg and Van den Driessche [7],
Busenberg and Hadeler [6], Gao and Hethcote [10], Mena-Lorca and
Hethcote [13].

The above two choices for A(IV) are rather specific and are only two
extreme cases. When Anderson [2] fit A\(N) = BN to several commu-
nities and several childhood diseases, he found best fits for a between
0.03 and 0.07. Andreason [3] reported that A\(N) = BN'/? seems to
give the best fit to some data on rabbit myxomatosis. However, due
to the limitation of the availability of data and the constant size of
the communities that are measured, these estimates do not necessarily
reflect how the contact rate changes in communities with varying pop-
ulation size. Other choices for A(N) are A(N) = N/(K; + K2N) for
venereal diseases (which is an analogy to Holling’s type II functional
response [12]), and A(N) = N/(1+ K; + /1 + 2K,N) for short time
social complexes [11]. These two forms of A\(N) approximate the form
of the classical mass action incidence for small population size and the
standard incidence for large population size and interpolate in between.
Our goal is to consider the general form A(N) which can include all of
the choices above.

The population-size dependent contact function A(N) has become
more important recently, particularly in models for the spread of HIV
(the virus related to AIDS); see Castillo-Chavez et al., [8, 9], and
Thieme and Castillo-Chavez [17]. General population-size dependent
contact functions have also been considered by Brauer [4, 5]; Pugliese
[15, 16]; and Thieme [18, 19].

In this paper we consider the effects of a nonlinear contact rate in a
model where the infectious disease can affect the host population size.
The epidemic model itself is of SIS type which includes vital dynamics
influenced by the disease and vertical transmission. Age structure and
other delays are neglected, so that the model is a nonlinear system
of ordinary differential equations. Threshold conditions are obtained
which determine the global behavior of the model, that is, whether
the disease dies out or remains endemic and whether the population
size decays to zero, remains finite or grows exponentially. For certain
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parameter values, there is an endemic center so that the disease and
population are oscillatory.

2. The SIS model. The host population N(t) is divided into
susceptibles, X (t), and infectives, Y (¢), which change with time ¢. The
fertility of susceptibles is b, that of infectives is be, with ¢ € [0,1]
so ¢ is the fertility reduction factor due to infection. Assume that
the newborns of infectives are susceptibles with probability p in [0, 1]
and infectives with probability (1 — p) so that 1 — p is the probability
of vertical transmission from a mother to her newborn baby before,
during, or just after birth. The natural death rate constant is d, the
disease-related death rate constant is a and the recovery rate constant
is v. Here we follow Mena-Lorca and Hethcote’s [13] convention that
Roman letters are used for demographic parameters and Greek letters
are used for epidemiologic parameters.

The transfer diagram for the SIS model is

b(X+epY) be(l—p)Y
X A(N)Y X/N v %
ax (a+d)Y

The differential equations for this model are:

N
X'(t) = b(X + peY) — %XY _dX Y

Y'(t) = wXY +be(l-p)Y — (y+a+d)Y

N'(t) = (b— d)N — (a + b(1 — &)Y

(2.1)

where one of the equations is redundant since N = X+Y. For biological
significance, we assume that all of the parameters are nonnegative.
In view of several forms of A\(INV) given above, we make the following
assumptions:

i) A(N) is continuous for N > 0 and is continuously differentiable
for N > 0.



432 J. ZHOU

i) A(N)>0if N > 0.
iii) A(NV) is a nondecreasing function of N.

It is easy to check that the first quadrant in XY space is positively
invariant under the solution flow of (2.1) and unique solutions exist
for t > 0 so that this model is mathematically and epidemiologically
well-posed.

The net growth rate constant in a disease free population is 7 =
b — d. In the absence of disease, the population size N(t) declines
exponentially to zero if r < 0, remains constant if 7 = 0 and grows
exponentially if 7 > 0. If the disease is present, the population still
declines to zero if r < 0. For r > 0 the population can go to zero,
remain finite or grow exponentially and the disease can die out or persist
depending on the values of several threshold quantities.

It is convenient to reformulate the model (2.1) in terms of the fraction
I = Y/N which is infectious. The susceptible fraction S = X/N
satisfies S = 1 — I. The last two differential equations in (2.1) become

pay  T0=00) (@ £+ bl - (W) - )
' N'(t) = N(r — ayI)

where oy = o+ b(1 — €) corresponds to the deaths and reduced births
due to the disease. The relevant region is

(2.3) D={(,N)|0<I<1,N >0}

which is positively invariant. For any initial data in D, (2.2) has a
unique global solution in D.

Note that the combination of the horizontal and vertical contact rate
is A(N) + be(1 — p). In model (2.1) the transfer rate —(y + o +
d)Y corresponds to an exponentially distributed waiting time in the
infectious population Y with the mean waiting time in Y given by
1/(v + a + d). Thus the contact number defined by

A(N) + be(1 — p)

2.4 =
(2.4) oNn ot dty

is the average number of adequate contacts at population size N of
an infective during the average period in the infectious population
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Y. In model (2.2) the transfer rate —(y + a + b)I corresponds to
an exponentially distributed waiting time in the infectious fraction I
with the mean waiting time in I given by 1/(v + « +b). Note that the
mean waiting time in Y is generally not the same as the mean waiting
time in [ since the population size is changing. The modified contact
number defined by

A(N) + be(1 — p)
a+b+vy

(2.5) Oy =

is the average number of adequate contacts at population size IV of
an infective during the average period in the infectious fraction I.
These contact number definitions generalized those in Mena-Lorca and
Hethcote [13], Gao and Hethcote [10].

The growth threshold at population size N is defined by

r o |at+d+y—be(l—p)
(2.6) YN = o + ) .

This threshold reflects the relation between the natural net growth
rate r and the effects of the disease such as disease-related deaths and
horizontal and vertical transmission. The threshold iy governs the
actual growth of the host population. This threshold ¥ is not a direct
generalization of the net growth threshold ¢ used in [10, 13], but it is
closely related and serves the same purpose.

The limiting values of the threshold quantities 6y,0N,%¥n at both
small population size and large population size, i.e., 8y, 09, Y0, 0o, Too,
Yoo, are important in the analysis below. These values are connecting
to the limiting values A\(0) and A(o0).

In later sections we use the following result many times.
Lemma 2.1. Consider the solution u(t) of the initial value problem
(2.7) u'(t) = a(t)u — c(t)u?, u(0) = ug >0

where a(t), c(t) are continuous for t > 0.

(1) If there exists a constant § > 0 such that a(t) < —6 for large t,
and ¢(t) > 0 for large t, then lim; o, u(t) = 0.
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(il) If lim;,o0 a(t) = O and there exists a constant 6 > 0 such that
c(t) > 6 for large t, then lim;_, o u(t) = 0.

(ili) If limy oo a(t) > 0 and lim;_,o c(t) > 0, then

li oo @t
lim wu(t) = —t—voo A1) o )
t—00 limg—, o ()

Proof. Note that solutions of (2.7) remain positive.
(i) Since v'(t) < —du for large ¢, we must have lim; o u(t) = 0.
(ii) Let w = 1/u, then w'(t) = —a(t)w + ¢(t). For arbitrary v > 0,
choose tg > 0 such that ¢(t) > ¢ and |a(t)| < v for t > ty. Then
w' = —a(t)w + c(t) > —vw + 4.

Integrating this inequality from ¢y to ¢, we get

w(t) > w(tO)ey(to_t) + é(l — e”(to—t)) >

1— v(to—t)
’ (1 = erto=)

R

Let t; = (log2)/v + to. Then, for t > t;, we have e’(**~9) < 1/2 and

w(t) > for t > t;.

)
2v
Thus, u < 2v/6 for t > t;. Since § is fixed and v is arbitrary we obtain
that u(¢t) — 0 as t — oo.

(iii) The change of u = 1/w leads to the linear differential equation
w'(t) = —a(t)w + c(t) whose solution is

wo + fot c(v) exp(f, a(s) ds) dv‘
exp(fot a(s) ds)

(2.8) w(t) =

There is a t; > 0 such that a(t) > a(c0)/2 for t > t; and

exp(/ota(s)ds> Zexp(/otl a(s)ds+a(oo)t_2t1>.
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Since both the numerator and the denominator of (2.8) approach
infinity as ¢ approaches infinity, we apply L’Hopital’s rule to get

- hmt_)oo C(t)

li t) = .
JAim w(t) = o a(?)
This and v = 1/w gives the desired result. O

3. The asymptotic behavior when v + bep > 0. In this case
infectives contribute to susceptibles either by recovery or by births.
The endemic equilibrium values of I are given by

v+ bep
)\(N) — 1
where N is 0, Ny or co. The asymptotic behavior of S,I and N are
analyzed in this section for all possible parameter value regions defined
by r,a1,00,050,05,%p and ¥o,. For example, Theorems 3.4, 3.5 and
3.6 state that if 6, > 1, then the disease persists in proportion while
the population size approaches infinity, or declines to zero, or tends to
a finite size. The main results of this section are summarized in Table
1.

(3.1) Iy=1-

TABLE 1. Stability results with v 4+ bep > 0.

(S,I) — N — (X,Y) —
r<0 6p<1 (1,0) 0 (0,0)
00 >1 (1-15,1%) 0 (0,0)
r=0 Oyn,<1 (1,0) N=Np (No,0)
a1 =0
Ony >1 (1711*\,0,11*\,0) N=DNo (X0, Y0)
r=0 6p<1 (1,0) Ne (Xe,0)
a1 >0
00 >1 (1-13,15) 0 (0,0)
r>0 6o<1l o0x<l1 (1,0) 00 (00,0)
Ooo=1 (1,0) 0o (o0, Ye)
0o >1 (1,0) 00 (00, 00)
foo>1  thoo>1 (1-1I%,1%) o (Er 7w o)

¢0>1>¢00 (177'/0‘177'/0‘1) N(: (X67Y6)
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3.1. The case with nonpositive net growth rate constant (r =b—d <

0).

Theorem 3.1. Ifr =b—d <0, then X, Y,N — 0 ast — co. If
6o <1 or I(0) =0, then (S,I) — (1,0) and N(t) decays asymptotically
exponentially with rate constant r. If 6y > 1 and I1(0) > 0, then
(S,I) = (L—=1I3,I}) and N(t) decays asymptotically exponentially with
rate constant r — a1 1.

Proof. Since N' < rN, N(t) - 0 and (X,Y) — (0,0). For 6y < 1,
A(0) — (a1 + v + bep) < 0 so that (2.2) implies that

(3.2) I' < —(y+bep)I?

for large t so that I(t) — 0 as t — oco. If I(0) = 0, then I(¢) = 0 and
N(t) = N(0)e™ — 0 as t — oo.

For 6y > 1 and I(0) > 0, use Lemma 2.1 (ii) and (iii) to show that
I(t) - 0, t - o0, if g = 1 and I(t) — Ij, t — oo, if 6p > 1,
respectively. The asymptotic behavior of N(¢) in the cases above is
found by examining N'(t)/N(t) =r — ayI as t — oo. o

From Theorem 3.1, we see that, even in a decreasing population, the
disease can still persist proportionately which makes the population
decay more quickly to zero.

Theorem 3.2. Letr =b—d=0.
1. Ifor = a+b(1 —€) =0, then N(t) = N(0) = Ny and

(1,0) if Oxy <1 07 1(0) =0
(S, 1) — { (1—1Ix,,I%,) ifOn, > 1 and 1(0) > 0.

2. If ay > 0, then N(t) decreases to a finite number N(co) with
N(oo) =0 or N(oo) >0 and Oy () < 1. Also

(1,0) if 6o <1 or I(0) =0

S, I
(5, )%{1—15,15) if 0o > 1 and I(0) > 0.
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Furthermore, N(co) =0 if g > 1.

Proof. The proof of 1 is similar to the proof of Theorem 3.1. Consider
2 with oy > 0. Since N' = —a;IN < 0, lim;_,o N(t) = N(o0)
exists and is finite. Thus lim; ,o, I(t) = I(oc0) exists by Lemma 2.1
(lf GN(OO) > ].) and by (32) if 0N(oo) < 1. Now 0 = lim;_, N’(t) =
—01Y (00), 80 0 = Y (00) = I(00)N(00). Thus I(c0) and N(co) cannot
both be positive. If N(co) > 0, then I(o0) = 0, we must have Oy (o) < 1
since O () > 1 implies I(co) > 0 by Lemma 2.1. If N(co) = 0 and
6o < 1, then I(c0) = 0 by Lemma 2.1 (if 6y = 1) and by (3.2) (if 6y < 1).
On the other hand, if y > 1, then Oy (o) > 1 50 I(00) = Iz*v(oo) > 0 by
Lemma 2.1 and this implies N(co0) = 0. O

3.2. The cases with positive net growth rate constant (r =b—d > 0).
With positive net growth rate constant r, the disease free population
would grow exponentially. In this section we see how the persistence
of the disease can change or reverse this growth. The theorem below
states that if 8., < 1, then the disease always dies out proportionately.
But since the population size increases to infinity, the number Y of
infectives may still grow to infinity. The asymptotic behavior of Y (¢)
depends on the modified contact number oy defined by (2.4). Note
that oy > Ox for all N > 0 since b > d. Also, 6y is nondecreasing on
N, so 0y <1if 8, < 1. Thus, for any population size, Oy is always
below the threshold 1 if ., < 1 and the disease must be always dying
out (in proportion).

Theorem 3.3. If 6 < 1, then (S,I) — (1,0) and N(t) grows
exponentially with rate constant r = b — d. The number X(t) of
susceptibles always approaches oo, but the number Y (t) of infectives
approaches to 0, Y, or oo if 0o is less than, equal to or greater than
1, respectively.

Proof. Since A(N) is nondecreasing, 0., < 1 if and only if \(N) —
(ay +7 +bep) <0 for N > 0. Then (2.2) implies I' < — (v + bep)I? so
that I(t) — 0 as t — co. Hence N'(¢t)/N — r and N — oo if Ny > 0.

Since X = NS, X - coast = oo. If 0o < 1, then 7 =
A(00)+be(1—p)—(y+a+d) < 0. Thus (2.1) implies that Y’ (¢) < 7Y so
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Y(t) > 0ast— oco. If 0o =1, since A(N) is nondecreasing, we must
have Y'(¢) < 0 and Y(¢) is nonincreasing so that lim; ,o, Y (¢) = Y.
exists and is finite. If oo, > 1, then there exists a positive constant §
such that A(N)+be(1—p)—(y+a+d) > 6 for large t. Then Y'(t) > §Y
for large ¢ which implies Y (t) - co as ¢t - 0c0. O

For the rest of this section, we assume that A\(IV) is strictly increasing,
0 > 1, I(0) > 0, and N(0) > 0.

Theorem 3.4. If 0 > 1 and oo > 1, then (S,I) — (1 — I, I%),
N(t) increases to infinity and

bep + v
(X,Y) = <7AN700>

as t — oo.

Proof. We first show the existence of N(co) = lim;_, N(¢). For
r > ai, N'(t) > (r — a;)N > 0 so that the conclusion is clear. For
r < ap, the condition 9., > 1 implies that ¥y > 1 for all N. In this
case, by (2.2), we have I'(t) < 0 at I = r/ay, so either I > r/ay for all
t or I <r/ay for large t, and this implies further that either N'(¢) <0
or N'(t) > 0 for large ¢ (see (2.2)). Therefore, N(o0o) exists.

N(o0) cannot be finite. This is clear for r > a;. Suppose for r < oy
that N(oo) is finite, then I(c0) =0 if Oy (o) < 1 and if Oy (o) > 1

. v+ bep r
I -1 <l—-— < —,
N(eo) A(0) —a1 T oy

In both cases, we have (dN/N)/N — r —a;I(o0) > 0, a contradiction.
So N(c0) = o0 and I — I, by Lemma 2.1.

Since I%, > 0, Y(t) = N(t)I(t) — o0 as t — oo. Solving for X
in terms of Y (¢) and N(¢) from the first equation of (2.1) and using
L’Hopital’s rule gives

: bep +
lim X(t) = 4)\(1\[) O
t—o0 hmt—)oo =~
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We give a few remarks on Theorem 3.4. Since ¥y is a strictly
decreasing function of NV, 1 > 1 implies that ¥y > 1 for all N,
and this means that the population size always increases to infinity.
If Yoo > 1, then I < r/a;, and the population size increases
exponentially with the reduced rate constant r — o I%,. If ¥ = 1,
then although the population size still increases to infinity, it may not
increase in an exponential way. Thus, the disease has a strong effect
on the growth rate of the host population.

Theorem 3.5. If 0, > 1 and ¥y < 1, then the population dies out
and (S,I) — (1 — I, I}) as t — oo.

Proof. Now 1y < 1 implies that I' > 0if I = r/a; and N > 0. A
similar argument as in the proof of Theorem 3.4 shows the existence of
N(o0) = lim;_,o, N(t). Note that 1)y < 1 implies that 5 > 0 for all
N = 0 so that I(t) — Iy, by Lemma 2.1; note also that I, > /o
for N > 0. Suppose N(oco) > 0, then I ) > r/oq, and N'(t)/N has
limit r — 04111*\,(00) < 0 as t — oo, which is a contradiction. Hence,
lim;_, o, N(t) = 0, and the results follow. i

The theorem above says that if ¥)g < 1, then the population always
dies out and the disease persists in proportion but not in number. If
1o < 1, then I > r/a; so the population size decreases exponentially
with rate constant r — a1 I§. If ¢y = 1, then the population size also
declines to zero, but may not decline exponentially.

Theorem 3.6. If 0 > 1 and oo < 1 < ¥y, then N(t) — N} where
NZ > 0 satisfies

a+d+vy—0be(l-p)
1—r/ay

(3.3) ANS) =

and (S,I) = (1 —=r/a1,r/a1) ast — 0.

Proof. We need only to show that I — r/a; and N — N¥. Using
(2.2) and the given condition 1y > 1 > 1), one can easily check that
(2.2) has a unique positive equilibrium point (r/a;, N¥) in D. To show
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global asymptotic stability, construct the Lyapunov function

(3.4) V(I,N>—// %m/*wm

It is clear that V (I, N) is positive definite in D° (the interior of D)
with V' =0 if and only if N = N} and I =r/a; and V(I,N) — oo if
(I, N) approaches the boundary of D (i.e., I = 0,0or I — 1, or N — 0,
or N — 00). Also

awv
dat

(3.5)
(v +bep)(r 0411)
= m-na-n =

and dV/dt = 0ifand only if I = r/c;. On {D\{IN = 0}}n{I =r/a1},
the point (r/ay, NY) is the largest positive invariant set, and I' < 0 on

I=1 A Lyapunov theorem in [14, p. 226] implies that (r/ay, NJ)
must be globally asymptotically stable in D\{IN = 0}. O

4. The asymptotic behavior when v+ bep = 0. If v+ bep = 0,
then « must be 0 so that no one recovers and the SIS model reduces
to an ST model. Moreover, b or ¢ or p must be 0 so that either there
are no births (b = 0) or the infectives have no offspring (¢ = 0) or all
the newborns of infectives are infected (p = 0). Note from the transfer
diagram that v + bep = 0 implies that there is no feedback from the
infective class Y into the susceptible class X. In this case the system
(2.2) reduces to

I't)= (AM(N) —ay)I(1-1)
N'(t) = N(r — a;11).

(4.1)

This system is simpler than (2.2), but there are more possible cases
in the asymptotic behavior. Assume that A(IV) is strictly increasing.
Since 0y, on and ¥y simplify greatly when v + bep = 0, the results in
Table 2 are given in terms of values of A\(N), r and «; instead of using
On, on and Yy as in Table 1. One can easily check that 8y < 1 if and
only if A(N) < a;, oy < 1if and only if A(N) — a; +r < 0. Moreover,
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if 0o > 1, then 9o, > 1 if and only if r > ay, P9 < 1 and r # «; if and
only if r < a3 and A(0) > ay, Yo > 1 > ¥ if and only if A(0) < oy
and r < ay. For most functions A(IV) seen in the literature, A(0) =0
so that many of the cases in Table 2 do not occur. Note that I = 0,
I =1, N =0 are solutions for (4.1) and we need only to discuss (4.1)
in DY.

TABLE 2. Stability results with v 4+ bep = 0.

(S, I) — N — (X,Y) —

r<0  A0)<ay (1,0) 0 (0,0
A0)=a (1-Ie, 1) 0 (0,0)
A(0)> a1 (0,1) 0 (0,0)

r=0 A(No)>0 (0,1) N=No  (0,Np)

a1=0

r=0 A0)<on (1,0) N, (Xe,0)

a1 >0
A(0) = (1-Ie,l) 0 (0,0)
A(0) > o (0,1) 0 (0,0)

r>0  A(oo)<ar A(oo)<ari—r (1,0) 0o (00, 0)

A(oo)=ay—r (1,0) 00 (o0, Ye)
A(o0) >a1—r (1,0) (S) (00, 0)
Aoo) =01 (1-Ie, I.) oo (00, 0)
Aloo)>a1 A(oo0)>r>ay (0,1) 00 (0,00)
A(oo) =7 (0,1) (S) (X (00), 00)
a1 <A(o0)<r (0,1) 00 (o0, 00)
r=ai (0,1) N(o0) (0,Y(00))
A(0)> a1 > (0,1) 0 (0,0)
AO)=ar>r (1-I,I.) 0 (0,0)

A0)<ai>r periodic  periodic periodic

4.1. The special cases withr =b—d < 0. Forr=b—d <0, (4.1)
implies that X, Y, N — 0 as t — oo. If 6y > 1 so that A(0) > ag,
then I'(¢) > 0 and I(00) = lim; o I(¢) exists and is positive. From
I'(t) — 0 we get I(oo) = 1 and (S,I) — (0,1) and N(t) decays
exponentially with rate constant r — a;. If 6y < 1, then for large
t, I'(t) < 0in D°, (S,I) — (1,0) and N(t) decays asymptotically and
exponentially with rate constant r. If 6y = 1 so that A(0) = a3, and



442 J. ZHOU

I'(t) > 0 in DY, then I(0o) exists and (S, 1) — (1 —I(c0),I(c0)). Note
that for 6y = 1, the line of equilibria on {N = 0} N D are neutrally
stable for (4.1).

Consider the case r =b—d = 0. If oy = 0, then N(t) = N(0) = No;
if Ny > 0, then (S,I) — (0,1). If oy > 0, then N(o0) = lim; o, N ()
exists and is finite. Since N' = —a;Y — 0, Y(t) - 0 as ¢t — oco. If
6o > 1so that A(0) > «, then I'(¢) > 0, and I(c0) = lim;_, o, I(¢) exists
and is positive. From I'(t) — 0 we get I(c0) =1 and (S,I) — (0, 1);
furthermore, N'(00) = —a3N(o0) = 0 implies N(o0) = 0. If 6y =1
so that A\(0) = oy and I'(t) > 0 in D°, then I(co) exists and (S,I)
approaches (1 — I(00),I(00)). Since N'(00) = —a3N(o0)I(o0) = 0
and ayI(00) > 0, N(c0) = 0. If §p < 1 so that A(0) < a1, then
On(so) <1 (if On(ooy > 1, then N(o0) > 0 and I(t) > I(0) > 0 implies
N'(00) = —a; N(00)I(0) < 0 and N(oco) = —o0) and I(c0) = 0.

4.2. The cases withr =b—d > 0. If 0, <1, i.e., A(00) < vy, then
I'(t) < 0 in D° and I(c0) = lim;_, o I(t) exists. Supopse a;I(00) > 7,
then a3I(t) > r which implies from (4.1) that N(co) < co. Then
A(N(0)) — a1 < 0 so I(t) — 0 which contradicts a;I(c0) > r > 0.
Hence a1I(o0) < r and N(oo0) = o0. If 5 < 1, then I'(t) < 0 implies
I(c0) = 0 so the disease dies out proportionately. For 6., = 1, we know
that a;I(00) < 7. In all cases, if 65, < 1, the population still increases
exponentially but at a reduced rate if 8, = 1. How does 0., determine
Y (00)? When oo, < 1s0 I — 0 and N — oo, checking the equation
in Y'(¢t), one finds Y = 0. If 6o > 1, then Y — o0. If 0o, = 1, then
Y'(t) < 0 so that Y (t) — Ye.

Now consider the cases where 85, > 1 (i.e., A(00) > 7). If r > g,
then N'(t) > (r — aq)N so N(¢t) — oo. This implies from (4.1) that
I(t) - 1 as t = oo. Since X'(t) = (r — A(IN)I)X, the asymptotic
behavior of X depends on the sign of r — A(c0). If » = a3, then N(¢)
is nondecreasing so N (t) — N(oo) with A(IN(o0)) > a1, and I(t) — 1.
In the case where r < ay, if A(0) > oy, then I(t) is increasing and
I(00) exists. Suppose a;I(00) < 7, then ayI(¢) < r which implies from
(4.1) that N(oo) > 0. Then A(N(o0)) — a3 > 0 so I(t) — 1 which
contradicts r < aj. Thus a3I(c0) > r so N(oo) = 0. If A(0) > aq,
then I(co) =1 by (4.1). If X(0) = a1, then I(c0) € (r/a1,1) and N (%)
decreases exponentially to zero. If A(0) < «g, then (4.1) has a unique
positive equilibrium point (r/ai, N.) in D° with A(N.) = a;. Note
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that V(I, N) = C (given by (3.4)) is the integral for (4.1) since V' = 0.
Hence (r/ay, Ne) is a center for (4.1) and all solution paths starting in
DO are periodic.

The occurrence of a center with periodic solutions for these parameter
values is rather surprising since there is no feedback from the infective
class Y into the susceptible class X.

5. Discussion. The model considered here is an SIS model with
exponential births and deaths and with general total population size
dependent contact function A(IN). Special cases of A(N) have been
considered by Anderson and May [1] where A\(IV) is proportional to
N, and by Busenberg and Van den Driessche [7], and Busenberg and
Hadeler [6] where A(N) is a constant and is independent of total
population size. Thieme [18, 19] has obtained results similar to ours for
an SIRS model with a population size dependent contact rate, but his
results are primarily local results since his model is more complicated.

We have found threshold parameters 6, ¥, 00, Yoo and o, which
are determined simply by A(0),A\(co) and model parameters. These
threshold quantities completely determine the global asymptotic be-
havior of the epidemic and demographic dynamics. The quantity 6y
determines whether or not the disease persists proportionately in a de-
creasing population, and the quantity 6., determines whether or not
the disease persists proportionately in an increasing population.

When 6., > 1 so that the disease persists, this disease persistence
can affect the natural growth rate of the population and can even
reverse this growth. If ¢, > 1, then the population size still grows
exponentially, but at a slower rate. If 9 > 1 > 1, then the
population size approaches an equilibrium value instead of growing
exponentially. If ¢y < 1, then the population size declines exponentially
to zero. If ¥, = 1, then the population size still grows to infinity,
but may not grow in an exponential way. Also, if )9 = 1, then the
population size declines to zero which may not be in an exponential
way. Thus, the persistence of the disease can have a strong impact on
the behavior of the population size.

Some aspects of this model are very interesting. First, no matter
how complicated the contact process is, the contact function A(N)
for a small population size and large population size determine the
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endemic and demographic dynamics. Second, in decreasing population,
the infectious proportion may tend to a positive endemic equilibrium
I, while the total number of infectives is tending to zero. On the
other hand, in an increasing population, the fraction of the infectives
may tend to zero while the number of infectives is tending to a finite
value or infinity (see the case 6 < 1, 05 > 1). Third, in the case
where there is no recovery and no newborns are susceptibles, there is
an endemic center for some parameter values. This is the first time
known to us when a center has occurred in an epidemiological model.
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