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OSCILLATION AND ATTRACTIVITY IN
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PIECEWISE CONSTANT ARGUMENTS
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Dedicated to Paul Waltman on the occasion of his 60th birthday

ABSTRACT. Let [-] denote the greatest integer function.
Consider the equation with piecewise constant arguments

(*) N'(t) = rN(t) <12(a]-N([t — ki) + b]-NZ([t — kj]))>

=0

where 7 is a positive number and for j € {0,1,...,m}, k;
is a nonnegative integer and a; and b; are nonnegative real
numbers. We obtain necessary and sufficient conditions for
all positive solutions of (x) to oscillate about its positive
equilibrium, we provide sufficient conditions for the positive
equilibrium of (*) to be a global attractor of all positive
solutions, and we establish that every positive solution of (x)
is bounded from above and from below by positive constants.

1. Introduction and preliminaries. Let [-] denote the greatest
integer function and let R denote the set of real numbers. Throughout
this paper, unless otherwise specified, we will assume that r € (0, c0)
and for each j € {0,1,... ,m}, k; is a nonnegative integer and a; and
b; are nonnegative real numbers with a; +b; > 0. When k; = 0 for all
j, we also assume r # 1.

In this paper we establish necessary and sufficient conditions for
the oscillation of all positive solutions of the equation with piecewise
constant arguments

1) N()=rN@) (1 =3 (apN ([t Ky]) + b N ([t kjm)

=0

about its positive equilibrium. We also obtain sufficient conditions for
the positive equilibrium to be a global attractor of all positive solutions.
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Our motivation to study (1) came from recent studies on equations
with piecewise constant arguments. See, for example, [1, 2, 4, 5, 6].

Throughout this paper, k denotes the maximum of the delays
koskiy.oo k.

By a solution of Equation (1) we mean a continuous function N ()
which is defined on the set {—k,—k + 1,...,0} U (0,00) and which
satisfies the following two conditions:

(i) The derivative N'(t) exists at each t € [0, 00) with the possible
exception of the points ¢ € {0, 1, ...} where one sided derivatives exist
and are finite.

(ii) N(t) satisfies Equation (1) in each interval of the form [n,n+1)
where n =0,1,....

A solution N(t) of (1) is said to oscillate about a real number N*
if the function N(t) — N* has arbitrarily large zeros. Otherwise, the
solution is called nonoscillatory about N*.

Equation (1) has a unique positive equilibrium. If we denote this
equilibrium by N*, then

2) i (a;N* +b;(N*)?) = 1.

The following result which is due to Gyori and Ladas [4] is used in
the proof of Theorem 1.

Lemma 1. Consider the nonlinear differential equation with piece-
wise constant arguments

(3) z'(t) + ijfj(a:([t —k])=0, t>0

where for j =0,1,... ,m the following conditions hold:
(a) pj >0, k; is a nonnegative integer and E;-n:o(pj +kj) # 1
(b) f; € CIR,R], ufj(u) >0 for u#0 and lim,_o f;(u)/u=1;

(c) there exists a positive number § such that for all j =0,1,... ,m

either  fj(u) <u for 0 <u<$
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or fi(u)>u for —6 <u<0.
Then every solution of (3) oscillates about zero if and only if
A=1+) pir k=0
§=0

has no roots in (0,1).

2. Necessary and sufficient conditions for oscillation. The
main goal in this section is to provide necessary and sufficient conditions
for the oscillation of all positive solutions of Equation (1) about its
positive equilibrium N*.

To simplify the notation, we introduce the functions

(4) gj(u) = bju® + aju — (a;N* + bj(N*)?) for j=0,1,... ,m.

The following lemma gives a useful expression for the solutions of (1).

Lemma 2. Let Ny >0 and N_; € R for j =1,2,...,k. Then (1)
has a unique positive solution N (t) which is given by

N0 = Noewp (=730 (Ns - )

Jj=0

(5)
forn<t<n+1 andn=0,1,...
where the sequence {N,} satisfies the difference equation

(6) NnH:Nnexp(—ngj(Nnkj)), n=0,1,....
=0

Proof. Set N,, = N(n) forn = —k,—k+1,... . Thenfor ¢ € [n,n+1),
(1) becomes

N’(t) = ’I"N(t) (1 — Z(CLan_kj + ijz—kj)>

™) -
=—rN(t) > gj(Nn_g;)-

1:
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By integrating Equation (7) from n to ¢ we obtain (5). By taking limits
as t — n+1 on both sides of (5) and by invoking the continuity of N (t)
we obtain (6). The proof is complete. O

Let N(t) be a positive solution of Equation (1). Set
N(t) = N*e*®  fort >0.

Observe that N(t) oscillates about N* if and only if z(¢) oscillates
about zero. Also x(t) satisfies

m

) () = =Y gy (Ve
(9) a'(t) +ijfj(w([t— ki])) =0
where

- . __ gi(N"e")

(10) p; = rIN (QbJN + aj) and fJ(u) = 2bj(N*)2 n a]-N*'

We claim that each f; satisfies the hypotheses of Lemma 1. In fact,
if 0 < u then N*e* > N* and fj(u) > 0. Similarly, if v < 0 then
0 < N*e* < N* and f;(u) < 0. Therefore uf;(u) > 0 for u # 0. Also
f;(0) = 1. Hence the condition (b) of Lemma 1 is satisfied. By using
the Mean Value Theorem we will now show that f;(u) > u for u < 0.
Indeed, for u < 0, there exists ¢ € (u,0) such that

~ gj(N*e") — g;(N*€®)  2b;(N*e5)? + a;(N*ed)

i) = g et a2 (N rane )

Hence f;(u) > w. Since f;(0) = 0, the (c) of Lemma 1 is also satisfied.
Now the following result is obtained by applying Lemma 1 to (9).

Theorem 1. Every positive solution of Equation (1) oscillates about
the positive equilibrium N* if and only if the equation
m
A—1+47N*D (2b;N* +a;)A* =0

=0
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has no roots in (0,1).

Note that if m = 0, the condition ag > 0 is not needed. We claim
that fo as defined by (10) satisfies all the conditions of Lemma 1. In
fact, it follows from the definition of N* that py > 0. Therefore, when
m = 0, Theorem 1 is restated as follows.

Theorem 1. Assumer >0, b >0, a € R which is assumed positive
if b =0, and let k be a nonnegative integer. If k = 0 we also assume
that r # 1. Then every positive solution of

N'(t) =rN(t)(1 — aN([t — k]) — bN%([t — k])), t>0
oscillates about N* if and only if one of the following conditions holds:

* * kk .
rN (2bN +a)>m ifk>0

or

rN*(2bN* +a) > 1 if k=0.
If b = 0 then N* = 1/a; otherwise N* = (—a + va? + 4b)/2b.

The following two results are corollaries of Theorem 1.

Corollary 1. Assumer > 0, b > 0, a > 0, and let k and [ be two
positive integers. Let No > 0 and N_; >0 for j = 1,2,... ,max{k,{}
be given. Then the unique positive solution of

N'(t) =rN(t)(1 — aN([t — k]) = bN*([t = 1])),  t=>0
oscillates about N* = (—a + Va? + 4b)/2b if and only if
A—1+arN*A7F 4 20r(N*)2N"" =0

has no roots in (0,1).

Corollary 2. If r > 1 then every positive solution of (1) oscillates
about its positive equilibrium N*.
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Proof. In view of Theorem 1, it suffices to show that

P(A) =A—1+7N*D (2b;N* + a;)A~"
j=0

has no roots in (0,1). If A € (0,1) it follows from the facts that r > 1
and A7% > 1 and from (2) that

PA) > A—1+N*> (20;N* +a;) =A+ D b(N*)*>0. O

j=0 Jj=0

Remarks. Theorem 1’ was obtained by Vlahos in [6]. The result of
Theorem 1, under the assumption that b; = 0 for all j, was obtained
by Gopalsamy, Kulenovic and Ladas in [2].

3. Global attractivity and boundedness. In this section we
establish that all positive solutions of (1) are bounded from above and
from below by positive constants, and we obtain sufficient conditions for
all positive solutions of (1) to be attracted to the positive equilibrium
N*.

Theorem 2. (a) Every positive solution of (1) is bounded from above
and from below by positive constants.

(b) Assume
(11) N*eFTD N "(p; N*er BT 4 g) < 2.
j=0

Then the positive equilibrium N* of (1) is a global attractor of all
positive solutions.

Proof. Without loss of generality, we may assume N_; > 0 for
j=0,1,...,k. In view of the transformation

N(t) = N*e*®
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to prove (a), it suffices to show that the solution x(¢) of (8) which
corresponds to the initial conditions

N_.
xj:1n<NJ> for j=0,1,... ,k

is bounded, and to prove (b) it suffices to show that it satisfies

(12) lim z(¢) = 0.

t— o0

First, we define

(13) g(u) = Zgj(N*e") forueR
j=0
and
M=r(k+1).

We first show that (12) is satisfied if z(¢) is an eventually nonnegative
solution of (8). The proof when z(t) is eventually nonpositive is similar
and will be omitted.

Note that for each j = 0,1,...,k, N*e*(!=Fi) > N* eventually so
that eventually g;(N*e®(!=*iD) > 0. It follows from (8) that z'(t) < 0
for n <t < n+ 1 where n is sufficiently large, say n > ng. Then

lim z(t) =1 > 0.
t—o0
We claim that [ = 0. Otherwise [ > 0 and by computing the limit as
t — oo on both sides of Equation (8), we see that
. 12 _
Jim (t) = —rg(l) <O0.

Hence
2'(t)+rg(l) <0 forng<n<t<n+l.

By integrating both sides of the above inequality from n to t and then
by letting ¢ approach n + 1 we obtain

z(n+1)—z(n)+rg(l) <0 for n > ng
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which is clearly impossible for large values of n. Therefore, every
positive solution of (1) which is eventually in [N*,00) or eventually
in (0, N*] is attracted to N*, and, hence, it is bounded. To complete
the proof of (a) it remains to show that z(t) is bounded when z(t) is not
eventually nonnegative nor eventually nonpositive. In such a situation,
there exists a sequence of points {, } satisfying the following properties:

(a) limp_so0 &n = 005

(b) k<&, <&py1and z(§,) =0forn=1,2,...;

(¢) x(t) assumes both positive and negative values in each interval

(Ena §n+1)-
Let t, and s, be points in (&,,&,+1) such that for n =1,2,...,

z(t,) = maxz(t) and x(s,)= minz(¢) for t € (&n,&nt1)-
Then forn=1,2,...,
(14)

z(t,) > 0, D~ z(t,) > 0, z(sp) <0 and D7 z(s,) <0

where D~z denotes the left hand side derivative of x.

We now claim that, for each natural number n,

(15) z(T,)=0 for some T,, € [t, — k — 1,%,)
and
(16) z(S,) =0 for some S,, € [s,, — k — 1, 5,).

We prove (15). The proof of (16) is handled similarly. Assume, for the
sake of contradiction, that (15) does not hold. Since

b > [t — k] > [tn — k] >ty —k—1

and z(t) is positive in [t, —k — 1,t,) we see that g;(N*e*(tn=Fil)) > 0
for 5=0,1,... ,k. Hence
D a(ty) = -1y _ gj(N*e (kD) <0

i=0
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contradicting (14).

By integrating both sides of (8) from T}, to t, and by using that each
g;j is an increasing continuous function on [0,00) with the fact that
t, — T, <k+1, we find that forn =1,2,...,

t, ™
z(t,) = 71“/ Zgj(N*ew([tfij) dt
T,

n j=0

<> gi(0)(tn — Tn)
j=0

IN

> giO)(k+1) = M

and so
z(t) <M for t > &;.

We now use this upper bound to obtain a lower bound for z(t). By
integrating both sides of (8) from S,, to s, and by using the facts that
for each j = 0,1,... ,m, g; is an increasing function on [0, c0) and that
0<sp,—38, <K+1, we obtain

z(sp) = —r/ Zgj(N*ez([t_kf])) dt
s

n ]:0
>or [ 3 gty ae
Sn =0
= —rg(M)(sn — Sn) = —Mg(M).
We have established that —Mg(M) < z(t) < M for t > & + k + 1.
Therefore (a) is proved.

We complete the proof of the theorem by showing that (12) holds
when condition (11) is satisfied.

Observe that condition (11) is equivalent to g(M) < 1, so that
(17) —M<z(t)<M fort>&+k+1.

Repeating the above argument with the bounds given in (17) and the
fact that g satisfies g(u) > —g(—u) for u € R, we obtain

—Mg(M) < z(t) < Mg(M),  t>& +3(k+1).
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In fact, one can prove by induction that for n =0,1,...,
(18) L, <z(t) < U, fort>& 4+ 2n+1)(k+1)

where Uy = M and

(19) L,=-U, and Up41 = Mg(U,).

Moreover,

(20) L,<L,11 <0< U1 U, forn=0,1,....
Set

L=1lm L, and U = lim U,.

n—oo n—oo

In view of (19) we observe that U = —L and that U is a nonnegative
zero of the function

¢(z) = Mg(z) — .

Since ¢" is a continuous nonnegative function on R, ¢(0) =0, ¢(M) <
0 and 0 < U < M we conclude that L = U = 0. In view of (18), we
have that lim; ., 2(t) = 0. The proof is complete. O

Remark 1. If b; =0 for j = 0,1,... ,m, then (1) becomes
(21) Nl(t) :TN(t) (1—ZajN([t—kj])>, tZ 0
§=0

where each a; is assumed to be a nonnegative number. Condition (11)
reduces to

(22) er ) <9,

As it was shown in [2], (22) is a sufficient condition for all positive
solutions of (21) to be attracted to its positive equilibrium N* =
(>-7-ga;)~ ' Thus, we see that the term

m

Z bj (N*er(kJrl))Z

=0
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in (11) is due to the introduction of the quadratic term in Equation
(21).
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