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STRONGLY REGULAR FUSIONS OF TENSOR PRODUCTS
OF STRONGLY REGULAR GRAPHS

A.D. SANKEY

1. Introduction. A strongly regular graph (srg) is a regular graph,
neither complete nor null, with two distinct vertices ¢ and y having A
or u common neighbors according to whether z and y are adjacent or
not. (This and other definitions in this section will be repeated below.)
An srg is an association scheme with three relations. We write fy for
the identity relation, f; for adjacency, and fo for nonadjacency. By
the tensor product, or Kronecker product, of two srg’s with relations
fi and g;, respectively, we mean the association scheme whose relations
are f;®g;,0 <1, j <2. A fusion of the tensor product is a subscheme
in the sense of Bannai [1]. We say a fusion is strongly regular if it is a
rank 3 association scheme (hence its relations are those of an srg). A
general problem for coherent configurations (cc’s) is to decide under
what circumstances the tensor product has coherent fusions. This
work addresses that question for the specific case of srg’s, which are
equivalent to homogeneous rank 3 cc’s [4]. We give the parameters of all
pairs of strongly regular graphs whose tensor product admits primitive
strongly regular fusions, and list the resulting feasible srg parameters.
An imprimitive srg is a complete n-partite graph or its complement.
We include these as possible factors in the tensor products, but require
primitivity for successful fusions.

In Section 2 we give definitions and background material. Section 3
is a discussion of rank 3 srg’s, followed by an example. In Section 4
we outline the method of working with intersection matrices and their
eigenvalues. Section 5 is a summary of results, with remarks on some
of the interesting cases that arise.

2. Preliminaries.

Definition. A strongly regular graph is a regular graph, neither
complete nor null, with the property that the number of vertices
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adjacent to each of two vertices x and y depends only on whether
x and y are adjacent.

Definition. An srg I' is primitive if both I' and its complement T’
are connected.

An imprimitive srg is a complete n-partite graph or its complement.
Background material on srg’s can be found in the survey articles of
Hubaut [5] and of Brouwer and van Lint [2].

Associated with any srg I' is the triple of matrices Ay = I, Ay
the adjacency matrix of the graph, and A the adjacency matrix of
its complement I', where I is the identity matrix of appropriate size.
Henceforth, we identify the matrix A; with the relation f;. Let I'y and
I’y be two srg’s with associated triples {Ag, A1, A2} and {By, By, B2}
By the tensor product of I'y and I's we mean the association scheme
whose relations are the nine tensor products Csiy; = A; ® By,
0 <14, j <2 (We will sometimes abuse notation and refer to the
set of matrices as the tensor product.) A fusion of the tensor product
is formed by choosing a nonempty subset S of {1,2,...,8}. This de-
termines a partition of the indexing set into three subsets {0}, S, and
S ={1,2,...,8\S. Set Cs = Y, .5Cs and C5 =) 5C,. Bya
fusion of the tensor product we shall mean the set {I = Cy,Cs,Cg}.
Let I' be the graph whose adjacency matrix is C's. Then C5 is by def-
inition the adjacency matrix of the complement I', so we may assume
that |S| < 4. If T is strongly regular, this fusion is the triple associated
with I'; and we say the fusion is strongly regular.

Parameters. The parameters of an srg I' are (n, k, \, u) where n is
the number of vertices, k is the valency, and A (i) is the number of
common neighbors to two given adjacent (nonadjacent) vertices. The
parameters of ' are

(nyn—k—1,n—2k+pu—2,n—2k+\).

Since one of I' and T has valency no greater than (n — 1)/2, we may
assume I is that one, so that £ < (n—1)/2. In the case of equality the
parameters for I' and T are identical, so there is no ambiguity in the
choice of parameters for I'.
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Adjacency algebras. The linear span A := (Ag, A1, As) over C is
closed under ordinary matrix multiplication and entry-wise multiplica-
tion. In fact, A is a commutative, semi-simple associative subalgebra
of the n x n matrices M,,(C). We call A the adjacency algebra or Bose-
Mesner algebra associated with T' (see [3]). Multiplication in A is given
by the equations below.

A? = kI 4+ \A; + pA,
A1A2 == (k—)\— 1)A1 +(k—/,l,)A2
A3 =11+ (n— 2k +N)A; + (n — 2k + p — 2) As.

FEigenvalues. The adjacency matrix A; of I' has eigenvalues k, r, and
s with k > r > 0 > s [3]. These eigenvalues determine the parameters
k, A, and p of I, and the graph is primitive if and only if &, 7, and s are
distinct and nonzero. Since As = J — I — Ay, where J is the all ones
matrix, the eigenvalues of A are l=n—k—1,—(s+1),—(r + 1).

Type. We say an srg I' has type I if its parameters have the form
(4p+ 1,2p, 4 — 1, ), and type II otherwise. All srg’s with noninteger
eigenvalues have type I.

Lattice graphs. Given g — 2 orthogonal Latin squares of order n, the
square lattice graph Lgy(n) has the n? cells as vertices, with two adjacent
if and only if they are in the same row or column or contain the same
letter [5].

Partial geometries. A partial geometry pg(r,k,t) is a set of points
together with a set of lines such that every pair of points lies on at
most one line, every line contains k points (kK > 2), every point is on
r lines (r > 2), and given a line L and a point p not on L, there are
exactly ¢ lines through p which meet L (k > ¢ > 1). The point graph
of pg(r, k,t) has the points as vertices, with two adjacent if and only
if they lie on a common line. The point graph of a partial geometry
pg(r, k,t) is strongly regular with parameters

(k((r —D(k=1)+1)

t

,T(k—l),k—2+(r—l)(t—l),rt).
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We say an srg I' is geometrizable if it is the point graph of a partial
geometry.

3. Rank 3 SRG’s. Many of the known srg’s are so-called rank 3
graphs. Suppose G is a finite group acting transitively on a set 2. The
rank of the action is the number of orbitals, or the number of orbits
for the induced action on Q x Q. (Equivalently, the number of orbits
for the stabilizer of a point.) Form the orbital graph associated with a
nondiagonal orbital O by putting vertices z and y adjacent if and only
if (z,y) € O. If G acts rank 3 and has even order, then the orbitals are
symmetric and the orbital graphs are complementary srg’s [3].

Example. Let V34(2) be a vector space of dimension 2d over GF(2),
d > 2. Vaq(2) acts transitively (by translation) on the 22 vectors.
The orthogonal group GO®(2) acts on nonzero vectors just as it acts
on points of the projective geometry PGa4—1(2), fixing the origin. The
stabilizer in V34(2)-GO®(2) of the origin has orbits {0}, the set of points
on a quadric, and the set of points off the quadric. Thus, we have a
rank three action, and we get two complementary srg’s with the points
of V24(2) as vertices.

Let I'; and I's be two such graphs, for the actions on V3,(2) and
Vai(2), respectively. Let H = V54(2)-GO®(2) x V25(2) - GO¥(2). H acts
rank 9 on V5(444)(2), with orbital graphs given by the nondiagonal rela-
tions of the tensor product of I'y and I's. Set G =V3(q44)(2) - GO (2),
g,v = £1. We know G acts rank 3 on Vy(,44)(2). Since H < G,
the orbits under the action of G are unions of orbits for the action of
H. Thus, I'1 ® I'y has a fusion isomorphic with the orbital graph
of G. For example, when ¢ = v = +1, take S = {1,3,5,7} and
As =1®B1+A; ® I + A} ® By + Ay ® By is the adjacency ma-
trix of I'. (See (8)—(10) in the theorem of Section 5.)

4. Intersection matrices. We make use of the regular representa-
tion of A,

o:Aj = M; = (pfj)ogi,kgm 0<j<2

where pfj is defined by A;4; = Zi:o pfjAk. In this way we encode the
essential information about A in the set of 3 x 3 intersection matrices
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M;, 0 < j < 2. Observe that M; has the same eigenvalues as A;. The
intersection matrices commute pairwise because the adjacency matrices
do. Thus, we can simultaneously diagonalize M; and M,, which gives
us

M, ~ M, = diag (k,, s)

My ~ My =diag(l,-1—7r,—1—3s).

Given two srg’s I'y and T';, we want to decide which fusions of
their tensor product give rise to primitive srg’s. This amounts to
finding all fusions for which Cs has three distinct nonzero eigenvalues.
Hence, we work with tensor products of intersection matrices. Let
A= (Ay = I,A;,As) and B = (By = I, By, By) be the adjacency
algebras associated with I'; and I'; respectively. Let {M{ = I, M], M}}
and {Ny = I,Ni, N3} be the corresponding triples of diagonalized
intersection matrices. Form the tensor products

Dsiyj = M ® N}, 0<i,j<2.
The diagonal entries of D; are the values of the nine linear characters

of A® B on C;. The character table for A ® B is given below. The
values on I = Cy are left out.

C1 Ca C3 (4 Cs Ce Cr Cy
k2 l2 k1 kikz kila l1 l1ko 1l
ro —1—ry ki kirs —k1(1—|—7‘2) 15 lire —l1(1+1‘2)
sg —1—s82 ki1 kis2 7k1(1+82) I l182 7l1(1+52)
ko l2 r1 riks r1la —1—7r1 —ka(14m1) —la(1+71)

rg —l—7r2 71 rire 77‘1(14»7'2) —1-—r 77‘2(1+7‘1) (1+7’2)(1+7‘1)
sg —1l—82 r1 Triss 7T1(1+82) —1—-—r 782(1+T‘1) (1+82)(1+T‘1)
ko l2 s1  siks s1l2 —1—3s1 —k2(1+51) —lz(l-l—sl)

ry —1—re 81 8172 751(14»7’2) —1—3s1 77’2(14*51) (1+7‘2)(1+51)
sg —1—s82 81 8182 —31(1+82) —1—3s1 —82(1+81) (1+52)(1+51).

The problem reduces to finding all S C {1,...,8} for which
Ds = > ,c5Ds has three distinct nonzero entries. There are 119
cases to check, since |S| =2, 3 or 4. We treat one case in the example
below.



714 A.D. SANKEY

Example. Take S = {1,2,4,8}. Then the diagonal entries of Dg
are

a=ky+1lx+ kika +11l2
b=—-1-11 +re(ky — 1)
=—-1—-11 + sa(ky — 1)
= ko +ri(ks —l2)
e=ry+r2+2rrs
f=ri+s2+2rs;
g=ko+s1(ka —l2)
h=ry+s1+2rss
1 = 81+ S2 + 25189.

QL o

Assume there are exactly three distinct entries above. They are k = a,

r=e>0and s =b< 0. Ifh—-—i=0,then 57 = —1/2, so
I'y has type I parameters, which means that k; = [;. But then
b=-1-1; = h = —1/2 which is impossible since [/; is an integer.

Hence h # i. This fact, together with e — A # 0 imply ¢ > 0. Now,
frome— f=i¢—h,e—h=1— f, we have

81:—1—7“1

82:—1—7“2.

Clearly r = —1 — s. Suppose that k; # ;. Then since b # ¢, we must
have —b — 1 = ¢. But this implies k&1 = —l; — 1 < 0. Thus k; = [y,
and a similar argument shows ke = l3. Now r =d = ko, s = —l; — 1,
so —ko — 1 = —l; — 1, which implies ks = k1, ny = ny. We now have
G1 = Gy = Pi(t), G = P (2t(2t + 1)) where t = ky + k2.

In working with intersection matrices results are obtained on the level
of parameters. That is, for any two sets of feasible srg parameters, we
can find all fusions which yield primitive strongly regular parameters
with no knowledge of the existence of the srg’s in question. The set
{Dy, Ds, D5} corresponds to the fusion {Cy,Cs,Cg} of the tensor
product of two graphs when graphs with those parameters are known to
exist. Our results are stated in terms of parameters, although examples
of graphs with the parameters listed are generally known.

5. Summary of results. In the proposition and theorem below we
list all fusions which yield feasible primitive strongly regular param-
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eters. These statements are followed by a set of remarks addressing
existence in certain cases. The computations were done case by case,
as in the example above. The results were confirmed by computer for
n; < 100. Only basic number theory was required for the hand calcula-
tions. Many cases were trivially ruled out. For instance, the appearance
of a zero eigenvalue contradicts the assumption of primitivity.

Let G; denote the parameter set (n;, k;, A, p;) with eigenvalues 7y, s;
for i = 1,2. G denotes the parameter set (n,k, \, x) for the indicated
fusion of G; ® G2. The following three families of srg parameters occur
in the statements of results. (See [3, 5] for background.)

I P(t)= (4t + 1,2t,t — 1,t), t > 1. (The type I parameters.) For
existence, 4t + 1 must be a sum of two squares of integers. The Paley
graphs, with 4t + 1 = ¢ an odd prime power are of this type.

II. Pa(t) = ((2t + 1)%,2t%,¢(t — 1) + 1,t(t — 1)), t > 2. Srg’s
corresponding to partial geometries pg(t,2t + 1,¢ — 1) are of this type.
These are the dual parameters to orthogonal arrays OA(2t + 1,¢).

OI.  P.(t) = (42,42t — 1),¢(t — 1),¢(t — 1)), t > 1 and
P_(t) = (4, (t — 1)(2t + 1), (¢ + 1)(t — 2),t(t — 1)), t > 2. Rank 3
actions of Vaq(2) - 05,(2) on Voq(2), d > 2, afford P_(2¢71), e = —1,
and the complement of Py (2¢7°1), (e =1) d > 2.

Proposition. Let I'; be a strongly regular graph (i = 1,2) such that
ny = ny = n and 2k; < n. Then the tensor product has a unique
strongly regular fusion with S ={1,2,3,6}, and the associated graph T’
is isomorphic with the lattice graph La(n).

Proof. Tt is sufficient to quote the result that Ly(n), n > 4, is uniquely
determined by its parameters [6]. We give a direct proof with the
hope that it is more enlightening. S = {1,2,3,6} implies that I" has
adjacency matrix

Cs=IRB1+I®By+A1 1+ AR I.

If we take {z1,22,...,2,} as vertices of 'y and {y1,¥y2,...,yn} as
vertices of Iy, then {(x;,y;) | 1 < i,j < n} is the vertex set of T.
Now, for j # k, {y;,yx} is an edge in I'; or in its complement. So,
from I ® By + I ® By, we have (z;,y;) and (z;,yx) adjacent for all



716 A.D. SANKEY

i =1,...,n and for j # k. Thus, for each vertex z; of I';, we have a
copy of the complete graph on n vertices. Likewise, from A, ®I+ A>T
we have (z;,yx) and (z;,yx) adjacent for all £ and for all ¢ # j. Hence
Tis Ly(n). O

Theorem. Let G;, t = 1,2, be the parameter set of a strongly reqular
graph with 2k; < n;. Then the tensor product admits a strongly reqular
fusion with S # {1,2,3,6} if and only if one of the following holds:

(1) G1 =Gy =Ly(3) = (9,4,1,2) and G = (81,24,9,6).
(5 ={1,3,8},{1,5,6},{2,3,7},{2,4,6}).

(2) Gy =G2=(16,5,0,2) (parameters of the unique Clebsch graph)
and G = (256,45, 16,6). (S = {2,4,6}).

(3) G1 =Gy =P.(1) = (4,1,0,0) and G = P, (2) = (16,6,2,2).
S =1{1,2,3,7}).

)
(4) Gy =Gy =Py(1) and G = P_(2) = (16,5,0,2).
(S = {2,4,6),14,5,6},{4,5,7}).

5) G1 = G2 = Pl(t) and G = P2(2t). (S = {4, 8}, {5, 7})
(6) G1=G2=Pi(t) and G=P;(2t(2t11)). (S={1,2,4,8},{1,2,5,7}).

(7) G1=1(2t,1,0,0), G2 = (25,t—1,t—2,0), and G = Ly(2t), t > 2.
(S ={1,3,5,6}).

(8) Gz = P_(ti) and G = P+(2t1t2). (S = {2, 5, 6, 7})
(9) Gi=Pyi(t;), t» > 1 and G = Py (2t1ts). (S = {1,3,5,7}).
(10) Gl =P_ (tl), G2 = P+(t2) and G = P_ (2t1t2).

—

(S ={2,3,5,7}).
(11) Gy = Py(1), G2 = Py(t), t > 1 and G = P_(2t).
(S =1{2,4,7}).

(12) Gy = P_(t), Gy = Py(1) and G = P(2t,1) = complement of
PL(2t),t>2. (S=1{3,7,8}).

Remarks. (1) In case 1 we have A; = By, A> = Bsy. Let §; = {1, 3,8},
So =1{1,5,6}, S3 = {2,3,7}, and Sy = {2,4,6}. We write
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Cs, =104 +A,Q01+A4A;® A
Cs,=I®A1+A41 @A+ A1
Co,=I®As+ AL @I+ Ay ® A
Cs,=1®A2+41 0 A1 +A: 1.

Since L9(3) is isomorphic to its complement, the four fusions are
isomorphic. Note that I' is not L3(9), since a vertex x; of L3(9) is
joined to 24 distinct vertices which, together with z1, break into three
9-cliques meeting in {z1}. (See [5].) In particular, if 2 is adjacent
to x1, then there is exactly one 9-clique containing the edge {z1,z2}.
However, it is easy to see that G does not have this property. This case,
along with cases 5 and 6, are the only ones involving type I parameters.

(2) Refer to case 2. We claim that I' is not L3(16). The Clebsch
graph has even subsets of {1,2,3,4,5} as vertices, with two adjacent if
and only if their symmetric difference has cardinality 4. Vertices of I'
are thus ordered pairs of even cardinality subsets of {1,2,3,4,5}. Let
z = (9,9), y = (&,12). Let T be the set of 16 vertices adjacent to
both z and y. Suppose that I is L3(16). Then x and y are contained in
a unique clique of size 16. Let U C T be the subset of 14 points which
together with z and y form a clique. Now suppose z = (&,13) € U.
Then since z is not adjacent to (&,24) or (&,25) these two vertices
are not in U. Thus (2,14), (2,23) € U, but (&,14) # (2,23), a
contradiction. Therefore, (&,13) ¢ U. Next, suppose that (&,14) € U.
Then (2,23) ¢ U and (@,25) ¢ U, contradicting |U| = 14. Thus
(2,14) ¢ U, but now (@,15) # (2,24) contradicts the fact that both
must be in U. Therefore, z and y are contained in no 16-clique, so I'
is not L3(16).

(3) Cases 3,4,7,9 (with Gy = P4(1)), 10 (with G3 = P;(1)), and 11
are the only fusions involving imprimitive graphs.

(4) Refer to case 5. We have

Cragy = A1 ®@B1 + A2 ® By
Cisy = A1 ® Bo 4+ A ® By.

If G; = G4 is isomorphic to its complement, then the two fusions are
isomorphic. Here G is not necessarily geometrizable. For example, if
G; = P(6) = (25,12,5,6), then T; is the point graph of pg(3,5,2)
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but I is not the point graph of pg(12,25,11). That is, every point z;
of pg(12,25,11) is in 12 lines of size 25, and the 288 points on these
lines account for all of the adjacencies to x;. However, there are two
25-cliques in I', containing a given point x;, which meet in more than
one point.

(5) Refer to case 7. TI'y is t copies of the complete graph on two
vertices, also known as a ladder graph. I'y is two copies of the complete
graph on t vertices. The fusion is similar to that of the proposition,
with I ® By replaced by A; ® Bs. These two fusions are isomorphic.
Let o be the automorphism which interchanges (z1,y) and (z2,y) for
all vertices y in the second t-clique of I'; and for x; adjacent to x5 in
I'y. Then o interchanges I ® B and A; ® Bs.

(6) Parameters in 9 and 10 are primitive except when G; = P, (1).
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