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ALGEBRAIC DYNAMICS OF POLYNOMIAL MAPS
ON THE ALGEBRAIC CLOSURE
OF A FINITE FIELD, I

ANJULA BATRA AND PATRICK MORTON

ABSTRACT. We study the dynamics of a polynomial map
o(x) on the algebraic closure of the finite field Fg by defining
an induced map & on the irreducible polynomials over Fg:
6(f) = g if f(x) divides g(o(z)). We show in general that
6 has infinitely many fixed points. For the special maps
o(z) = 29 + ax, with a # 0 in Fy, we also compute the
degrees of the periodic points of o over F; and show that &
has an infinite number of periodic points which are not fixed
points.

1. Introduction. In this paper and its sequel we study the
dynamics of special polynomial maps on the algebraic closure f‘q of the
finite field F; having ¢ elements. We hope to show that interesting
phenomena arise when questions that are typical in the study of
classical “analytical” dynamical systems are studied in an algebraic
context. (Compare [11, 16, 14, 15] in the references at the end of
the paper. See also [9, 5] for a discussion of other connections between
dynamical systems and number theory.)

As our starting point we will take a polynomial o(z) defined over
the finite field F, and, inspired by Vivaldi [15], we make the following
definition.

Let G, be the directed graph whose vertices are all the monic
irreducible polynomials over F,, and where g — f is an edge in this
graph if and only if g(z) divides f(o(z)). Equivalently, g — f if a is a
root of g and o(a) has minimal polynomial f.

For a given g there is exactly one f for which ¢ — f (see Vivaldi
[15] and Section 3), so that o induces a well-defined mapping & on
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irreducible polynomials. Thus, f = &(g) if o maps roots of g to roots
of f, and f(z) divides f(o(z)) if and only if f is a fixed point of &.

Our first result concerning this graph and induced map is the follow-
ing (see Theorem 3.6).

Theorem A. For any nonconstant polynomial o(x) in Fy[z], the
induced map & has an infinite number of fized points. Equivalently, G,
has infinitely many cycles of length 1. In particular, G, has infinitely
many connected components.

Moreover, the map &, or equivalently, the graph G,, gives a conve-
nient vehicle for describing the dynamics of a polynomial map o on the
whole algebraic closure of F,.

In this paper and the sequel we will study the maps o(z) = 27 + ax
in detail, where a # 0 is an element of the finite field F,. (Many of
the methods will also apply to any additive polynomial over F, i.e.,
a polynomial of the form o(z) = Y, a;z?; see [10], where they are
referred to as “linearized” polynomials.)

For these maps we show that the induced map & also has infinitely
many periodic points which are not fixed points. This is one expression
of the fact that these maps have fundamentally different dynamics from
the Frobenius map ¢(z) = z?. In order to prove this, and to prepare
for the analysis in the sequel of the structure of G, we give a detailed
investigation of the degrees of the m-th order periodic points of o as
they depend on m. Among the results we prove are the following.

Let ®,,,,(x) be the polynomial defined by

(1) B0 (2) = [[(0%(2) — 2)™/?,

dlm

where p is the Mobius p-function (see [11, 16]). From [11] all the
periodic points of o of primitive period m (i.e., minimal period m) are
roots of ®,,, (). To describe how ®,,, () factors when o(z) = z7+ax,
we let P; be the set of primitive divisors of g —1: these are the positive
integers which divide ¢? — 1 but do not divide ¢* — 1 for 1 < k < d.
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Theorem B. Let o(z) = 9+ ax, where a € Fy, a # 0, If (m,q) =1
and d is the order of ¢ modulo m, then the degrees of the irreducible
factors of @, »(x) are all primitive divisors of n = q® — 1. Moreover,
the set of irreducible polynomials over F, whose degrees are in the
set Py coincides with the set of irreducible factors of ®,,,(x) and of
@, o (0(x)) for m in Py.

If the level of an irreducible polynomial f in G, is defined to be the
least nonnegative integer k for which 6%(f) lies in a cycle, then the
last assertion of this theorem implies that all polynomials with degree
prime to g lie either at level 0 or at level 1 in G, (see the diagrams in
Section 3).

Related to the last theorem is the following result (see Section 6).

Reciprocity theorem. For any integers m and n prime to q, and
any a # 0 in F g, the number of distinct roots of ®p, gataz(z) of degree
n equals the number of distinct roots of ®p, za—az(x) of degree m.

In the special case ¢ = 2 we also have the following curious result (see
Section 5).

Theorem C. If p is prime, then all the irreducible factors of
@, .21, (x) over Fy have degree p if and only if p is a Mersenne prime,
i.e., p=2'—1 for some prime l.

For the map o(z) = z? + = over F2, Theorems B and C and the
reciprocity theorem imply:

Theorem D. The induced map & of o(z) = 2% + = (over Fy) has
infinitely many odd periods which are relatively prime in pairs.

There is a similar (but weaker) result for arbitrary maps of the form
o(xz) = 2% + ax (see Theorem 6.5 and its corollaries).

The results of this paper concern the nature of the irreducible poly-
nomials in cycles in the graph G,. This is because an irreducible poly-
nomial f belongs to a cycle in G, if and only if f divides ®,, ,(z) for



456 A. BATRA AND P. MORTON

some m (see Section 3). In the sequel to this paper we will study the
dynamics of these maps further by investigating the detailed structure
of higher levels of the associated graphs G,. The Galois theory will play
an important role in showing that many of the connected components
of GG, are isomorphic to each other.

We note that the polynomials @, ,(z), where o(z) = z? + az,
are specializations of the corresponding polynomials ®, za474 () over
the rational function field F,(T) (see [11, Theorem 3]). The latter
polynomials are products of analogues of cyclotomic polynomials which
occur in connection with the Carlitz module (see [4] and [8]). Thus,
some of the results proved here are related to classfield theory over
F,(T') and could be proved by investigating the splitting of the prime
divisor T'— a of Fy(T') in the appropriate abelian extensions of F4(T').
In this paper we have chosen a more direct approach which avoids this
connection with classfield theory. On the other hand, we will use the
Carlitz module in a later paper to get more detailed information about
the lengths of the cycles in G,. The results proved in these papers form
part of the foundation for a study of the algebraic number theory of the
splitting fields over Q of the polynomials ®,, ,(z), with o(z) = 27+ az
and a in Q.

2. Background and the dynamics of the Frobenius map. We
start by recalling some elementary definitions from dynamical systems
(see [1, 6, 11]).

A periodic point of a polynomial map o over a field  is an element
a of the algebraic closure % of k for which ¢™(«) = « for some integer
m, where o™ is the m-th iterate of o:

We will say « has order m (or period m) if o™ (a) = «a and primitive
order m (or primitive period m) if o*(a) # a for k < m. Thus, the
periodic points of o of order m are all the roots of o™ (z) — 2z = 0. An
element « of & is pre-periodic if o*1™(a) = o*(a), for some k and m,
that is, if o*(«) is a periodic point. The forward orbit of any number
« is just the set of iterated images of o under o:

forward orbit of a = {a, o (), 0(a),... ,o"(a),... }.
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In particular, « is pre-periodic if and only if its forward orbit is finite. If
« is periodic of primitive order m, its forward orbit consists of exactly
m distinct elements, and each of the elements of this orbit are periodic
points having primitive order m (see [11, Lemma 1]).

Lemma 2.1. If o is a polynomial map defined over Fg, every
element of Fy is a pre-periodic point with respect to o.

Proof. Let o be an element of f‘q. Since ¢ maps the finite set F (o)
into itself, the forward orbit of « is obviously finite and « is pre-periodic.
O

Hence, to understand the dynamics of o on ﬁ‘q, we need only study
periodic and pre-periodic points.

In order to isolate the periodic points of primitive order m, we
introduce the polynomial ®, ,(z) defined by (1). In terms of @, ,(z)
we have the factorization

(2) o™ () ~z =[] 240 (2)

dlm

(see [11, 16]). In [11] it is shown that ®,, ,(z) is a polynomial
whenever o is, even when o™ (xz) — z has multiple roots. This is
important since there will often be multiple roots for the maps we
are considering. The polynomial ®,, ,(z) also has the property that
@, o (2)|®m - (0(x)), which implies that the map o is a permutation
on the roots of @, , ().

Equating degrees in (1) gives the formula

(3) deg @m0 (z) = > u(%) (deg o).

dlm

All the periodic points of ¢ of primitive order m must be roots
of ®,,,(x) by (1), though ®,,,(z) can also have roots which are
nonprimitive. By the results of [11] (see Theorem 1c) any such
nonprimitive roots must be multiple roots of ®,, ,(z) whenever m is
not divisible by the characteristic of the groundfield «.
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As an example, consider the map ¢(z) = z? over Fy. The iterates
of ¢ are ¢™(z) = 9", and so the periodic points of ¢ of order m are
just the elements of the field Fym. The elements of primitive period
m are the elements of Fym which are fixed by ¢™ but by no smaller
power of ¢, and so these are exactly the elements of degree m over F,.
Since ¢™(z) — x has distinct roots, it follows easily from (1) and (2)
that ®,, 4(z) is the product of all the irreducible polynomials over F,
of degree m. From (3) now follows the well-known fact that the number
N(m,F,) of irreducible polynomials of degree m over F, is given by

(4) N ®) = oS o

d|lm

(see [10]).

Note that every element of f‘q is a periodic point of ¢, and the
elements of the orbit containing « are just the conjugates of a over
f‘q. Thus, the dynamics of the map ¢ are particularly simple and
coincide with the Galois theory of ﬁq.

3. The graph G,. The second main tool we will use for studying
the dynamics of a map ¢ is a graph G, defined as follows. The vertices
of the directed graph G, defined over a field &, will be all the monic
irreducible polynomials over k. For two vertices f and ¢ in this graph,
we will have

g—f if and only if g(z) | flo(z)).

The reason for this definition is made clear in the following lemma,
which is valid over any field k.

Lemma 3.1. Let o(x) be a polynomial with coefficients in a field
k. If f(z) and g(x) are irreducible over k, then g(x) divides f(o(x))
if and only if o maps roots of g to roots of f. In particular, if g is a
vertex in G, then there is exactly one vertex f for which g — f.

Proof. Assume first that g(z) divides f(o(z)). From f(o(z)) =
g(x)h(z) it is clear that g(a) = 0 implies f(o(a)) = 0. Thus, o maps
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roots of g to roots of f. If, conversely, f(o(a)) = 0 for a root a of
g, then f(o(x)) is divisible by the minimal polynomial of «, which is
g(z), and o(a) is a root of f for every root a of g. This implies the last
assertion. Alternatively, if fi(z) and f2(z) are monic, irreducible and
distinct, then an appropriate linear combination of f; and f2 equals 1,
and substituting o(z) shows that (fi(c(z)), f2(c(z))) =1 also. O

The assertions of Lemma 3.1 show that ¢ induces a mapping & on
irreducible polynomials over k, where we write 6(g) = f if g — f.
We can use the graph G, to study the dynamics of o on the algebraic
closure . This is a slight extension of the idea considered by Vivaldi
in [15], where irreducible polynomials are used to study the dynamics
of polynomial maps.

Lemma 3.2 (see [15]). Let o(x) be a polynomial with coefficients in
a field k. If g — f in G, then deg f divides degg.

Proof. By the previous lemma, g — f means that o maps roots of g
to roots of f. Let a be a root of g. Then k(o(«)) is a subfield of k(«),
and the lemma follows from the tower law of field theory by virtue of

[k(a) : k] =degg and [k(o(a)): k] =degf. o

As an example, note that the graph G,« over F, is totally discon-
nected in the sense that the only vertex connected to a vertex f is f
itself. This follows from

flo(z)) = f(z?) = f(z)? (over Fy).
Thus, Gz« can be considered the “trivial graph” in this context.

The following diagrams show pieces of several of the connected
components of the graph G2, over Fa. In this graph the notation
(d1,da, ... ,d,) represents the polynomial

R R with dy > dy > -+ > d,,.

As we will show, G2, has an infinite number of connected compo-
nents, many of which are isomorphic to the connected component of
the polynomial z.
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In the following three lemmas we characterize the cycles in the graph
G,. All three lemmas are valid over an arbitrary field «.

Lemma 3.3. If f is a verter in G, which belongs to a cycle, then f
divides @, ,(x) for some m.

Proof. To prove the first statement, let o be a root of f(z). Since f
belongs to a cycle, there is some path in G, that begins and ends with
f. Let such a cycle, say

f=ag = =g=gn—= =,

have length n, so that g, = f. By definition, we have that gx(x) |
gk+1(o(z)) for any consecutive vertices g and gry1 in the cycle, so
that f(z) | gx(c*(z)) for all k. Hence, f(z) | f(¢"(z)), and Lemma 3.1
implies that o™ maps roots of f to roots of f. Thus, the orbit of o under
o™ is finite and o*"(«) is a periodic point of o™ for some k. But o*"(a)
is a root of the irreducible polynomial f(z), which must therefore be a
factor of 0™ (x) — = for some multiple m of n. Consequently, f divides
®,, - (x) for some m, by (2). o

To prove the converse of Lemma 3.3 we need the next lemma, which
depends on the fact that the orbit of a periodic point consists entirely
of periodic points with the same primitive period.

Lemma 3.4 (see [11, Lemma 9]). If f(z) | ®m,o(x), where f(x)
1s irreducible over k, then for any i > 1 there is a unique irreducible

factor h(z) of ®,, . (x) for which h(z) | f(c(z)).

Proof. Fix i > 1. If a is a root of f(x), then 0™ () is a root of
f(o%(z)), so the minimal polynomial h(z) of 0™ %(a) divides ®,, , ()
and f(o’(z)). Suppose there are two distinct irreducible factors hy(z)
and hs(z) of ®,, ,(x) which divide f(o*(z)). Let a; be a root of hj(z)
for j = 1,2. Then the numbers o'(a;), j = 1,2, are both roots of f(z),
so that o%(a;) and o%(ay) are conjugate over x. But then

o™ (o' (1)) =1 and o™ (0% () = o
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are conjugate over x, which is impossible since a; and as have distinct
minimal polynomials. u]

Lemma 3.5. If f is a primitive irreducible factor of ®,,,(x), then
f belongs to a cycle in G,. If A(f) is the length of the smallest
cycle containing f, then n = A(f) is the smallest integer n for which
f(z) | f(e™(z)), and X(f) divides m. Moreover, m|\(f)deg f (cf. [11,
Theorem 14b]).

Proof. Under the given assumptions the roots of f are periodic points
of o of primitive period m. Let h;(z) be the irreducible factor of
®,, - () guaranteed by Lemma 3.4. We then have

hi(o(z))|f(e™ () and  hipa(2)|f (0" (2)),

which implies that h;y1(z) is the unique irreducible factor of @, ()
dividing h;(o(z)). Thus h;+1 — h;. Now let n be any integer for which
f(z) | f(e™(x)). Then h,, = f, so that

f=hy— > hgp1—hg— - —>hi—f

is a cycle of length n containing f. Conversely, the proof of Lemma
3.3 shows that the existence of a cycle of length n containing f implies
f(z) | f(e™(x)). Noting that f(z) divides f(c™(z)), and that the
length of the smallest cycle containing f divides the length of any cycle
that contains f, gives the stated characterization of A(f) and shows
that A(f) divides m. The last assertion follows from the fact that
A(f)deg f is equal to the total number of roots of the polynomials in
a minimal cycle with f and that these roots fall into orbits of size m.
]

If we denote the map induced by o on the vertices of G, by &, then
a polynomial f in a cycle of length n is a periodic point of & of order
n. Lemmas 2.1 and 3.1 show further that every irreducible polynomial
over F, is connected to a polynomial in some cycle of G .

We now prove

Theorem 3.6. Let o(z) be any nonconstant polynomial over the
finite field Fy. Then the induced map & has infinitely many fized



464 A. BATRA AND P. MORTON

points. Equivalently, there are infinitely many irreducible polynomials

f(z) over Fy for which f(z) | f(o(x)).

Proof. Consider the polynomials
gr(@) =o(2) = ¢"(x) = o(z) —2¥, r>1,

where ¢(x) = x? is the Frobenius map. If a is a root of g,, then
o(a) = ¢"(a) implies that o(a) is a conjugate of a over Fg, so the
minimal polynomial f of a over F is a fixed point of ¢ (o takes a root
of f to a root of f). We have to show that the polynomials g, have an
infinite number of distinct irreducible factors over Fy.

First, suppose that o(z) is not a p-th power, where p is the char-
acteristic of Fg, so that ¢'(x) is not identically 0. Assume that there
are only a finite number of irreducible polynomials, say f;, 1 <i < k,
which divide any of the g,. Let e; be the multiplicity of f; in g,.
Then the multiplicity of f; in the derivative g/ is at least e; — 1. Since
g..(z) = o'(x) # 0, this gives that e; is bounded independent of r, for
each i. But this is clearly impossible, since deg g, — co as r — oo.

If o(z) is a p-th power, write o(z) = 7(z)?', where 7(z) is not a p-th
power. Then apply the above argument to 7 and the polynomials

h.(z) =7(x) — 24P for r sufficiently large,

to get infinitely many irreducible factors of h, as r — oo. Since
gr(x) = h,(z)?", the same holds for g,, completing the proof. o

Corollary. For any nonconstant polynomial o(x) in F4[z], the graph
G, has an infinite number of connected components, and infinitely
many cycles of length 1.

In the remainder of this paper we will show that the graph G, also
has an infinite number of cycles with length > 1, for a certain family of
polynomials (see (5)). We conjecture that this fact is also true of any
nonconstant polynomial which is not an iterate of the Frobenius map.

4. Periodic points as eigenvectors. For the remainder of this
paper, we restrict ourselves to a special class of polynomials, namely

(5) o(x) =27 + az, with a # 0 in Fy.
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Denote the order of a in the multiplicative group of F, by ord (a).

Lemma 4.1. Let o(x) be as in (5). If (m,q) = 1 and ord (a) divides
m, then o™ (x) — z is a g-th power. If (m,q) =1 and ord (a) does not
divide m, then o™ (z) — x has no multiple factors.

Proof. To prove the first assertion, we use the equation o = ¢ +a * 1,
where 1 denotes the identity map, and the fact that the maps in this
equation are linear:

By assumption, a™ = 1 so that all the terms in ¢™(z) — x are ¢-th
powers, implying that 0™ (z) — x is itself a ¢-th power.

If ord (a) does not divide m, then (6) shows that the polynomial
f(z) = o™(x) — x satisfies

fl@)=0"(z) —z =g(x)" + (™ — 1)z

for some polynomial g(z). Hence f'(z) = a™ —1 # 0 is relatively prime
to f(z), which implies that 0™ (z) — z has no multiple roots. O

The result of this lemma also holds, of course, for any additive map
o(z) = Zaiqu = Zaiqﬁi = f(¢),

with a = ag. (Also see [10], where “symbolic” polynomial f(¢) in ¢
are used to study additive maps over F.)
Since o is a linear map on Fy, so also is ¢™, for any m, and so

any element o in Fy for which ¢™(a) = « is an eigenvector of o™
corresponding to the eigenvalue 1. Thus we have

Lemma 4.2 (cf. [10, Theorem 3.50]). Let o(x) be as in (5). The
set of periodic points of o of order m is the eigenspace of o™ on f‘q
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corresponding to the eigenvector 1. Thus the set of periodic points of
order m is a vector space over Fg.

This lemma is also valid for any additive map o.

In order to exploit Lemma 4.2 we compute the characteristic polyno-
mial of o on a given finite subfield Fyn of f‘q. As before, let ¢(z) = x?
be the Frobenius map. On the field Fy», ¢ satisfies the minimal poly-
nomial ¢" — 1 = 0, since

(¢" ~1)(z) =2

and since any polynomial in ¢ of smaller degree than n could not have
q" distinct roots. Hence 2™ — 1 is also the characteristic polynomial
of ¢, and the eigenvalues of ¢ are the n-th roots of unity (,. Using
o =¢+axl, it follows that o has characteristic equation (z —a)™ — 1
and eigenvalues a + (,,. Therefore the iterate ¢™ of o has eigenvalues
(a + ¢,)™. This point implies the following lemma.

Lemma 4.3. Let E,, ,, be the space of periodic points of o (given by
(5)) of order m in Fyn, i.e., the 1-eigenspace of the map o™ on Fyn.
If (n,q) = 1, then 7, n = dimp, B, equals the number of n-th roots
of unity ¢, for which (a+ (,)™ = 1.

Proof. If (n,q) = 1, the minimal polynomial of ¢ on Fg» has distinct
roots so ¢,0 and o™ are diagonalizable linear maps on the field Fgn.
Hence the multiplicity of 1 as an eigenvalue of 6™ equals the dimension
of its 1-eigenspace. The lemma now follows from the above discussion.
mi

Notes. 1. A similar result holds for any additive map o = f(¢). In
this case 7p,,n, equals the number of n-th roots of unity (, for which

f(Gn)™ = 1.

2. It is a curious fact that the eigenvalues of the linear operator
o on Fg» are not usually contained in Fgr». The reason for this is
that a primitive n-th root of unity ¢, has degree d over F,, where d
is the order of ¢ modulo n (see [3, 7, 10]). If ¢, lies in Fyn, then
d divides n, so ¢" = 1 (mod n). The last congruence is generally
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false, for example, whenever (n,¢(n)) =1 and ¢ # 1 (mod n). Thus,
we consider two fields in the proof of Theorem 4.4 below; the field
F,» containing the appropriate eigenvectors of o™, and the field F g
containing the eigenvalues of o.

In the next theorem we use Lemma 4.3 to locate a field which contains
all the periodic points of order m, when (m,q) = 1.

Theorem 4.4. Let o(x) be given by (5). Suppose (m,q) =1 and d
is the order of q modulo m. If n = q® — 1, then all the periodic points
of o of order m lie in Fyn, and

) m—1, iford(a)|m,
Tm7qd_1 = dlqu Em7qd_1 = .
m, otherwise.

Proof. Since the n-th roots of unity (, are exactly the nonzero
elements of the field F 4, it follows that the set {a + (n,(n # —a}
consists of all the nonzero elements of F 4, excluding a. Since m divides
n, and the multiplicative group F*, is cyclic, there are exactly m — 1
numbers (,, for which a4+, is an m-th root of unity, if a is an m-th root
of unity, and m numbers (, if a is not an m-th root of unity. Lemma 4.3
implies that o has either ¢™ ! or ¢™ distinct periodic points of order
m in Fgn, respectively. In the first case the polynomial 6™ (z) — z is
a ¢-th power and has at most ¢™ ! distinct roots by Lemma 4.1; in
the second case 0™ (z) — z has ¢™ distinct roots. The above argument
shows that all these periodic points are contained in F,» and proves
the theorem. O

Corollary 1. The degrees of the irreducible factors of @y, zatqa, for
(m,q) = 1, divide ¢ — 1, where d is the order of ¢ modulo m.

Corollary 2. Let o(x) be given by (5). If (m,q) = 1 and ord (a)
divides m, then o™ (z) — x = f(x)9, where f(z) has distinct roots.

Corollary 3. Ifa =1 and o(z) = 2 + z, then @, ,(x) is a g-th
power for every integer m for which (m,q) = 1. For such m, all the
roots of @, - (x) are periodic points of primitive period m.
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Proof. The first assertion follows from Lemma 4.1 and (1). The
second follows from this and Corollary 2, since any nonprimitive roots
of ®,, +(z) would have multiplicity higher than ¢ in 0™ (z) — . O

We show next how to compute the number of roots of ®,, ,(x) of a
given degree.

Theorem 4.5. Let o be as in (5), and let vy, ,, denote the number
of periodic points of o of primitive period m and exact degree n over

F,. Then
e T

d|lm e|n

where Ty, = dimp Ey, , s the dimension of the 1-eigenspace of o™
on Fyn (given by Lemma 4.3 for (n,q) = 1).

Proof. Since Ty, ,, is the dimension of the space of all periodic points
of order m contained in Fg», counting the elements of this space by
primitive order and degree gives

qu’n = Z Z Vd,e-

dlm e|n
Applying Mobius inversion twice to this formula gives first that
m
> Ve = Zu(g>q”’"
eln dlm
and then that
— n m Td,e
= () S )
eln dlm

which is the formula of the theorem.

5. Special results for o(z) = z%2+xz. Before continuing our study of
the factorization of ®,, ,(x) for ¢ as in (5), we prove several results for
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the map o(z) = z% + z over Fy. This map has some special properties
not shared by the maps in odd characteristic.

Theorem 5.1. If p=2' — 1 is a Mersenne prime, then ®, .2, ()
is the product of (2Pt — 1)/p irreducible factors of degree p.

Proof. We show that all the p-th order periodic points have degree p.
The dimension of the 1-eigenspace of o on Fap is just 28 — 2 =p — 1,
since for all eigenvalues (, # 1, 1 + ¢, has order p. This follows from

i ol
Q4P —(re)y?ro e 146 1+6

1+¢  1+4+¢  1+¢

and the fact that p is prime. Noting that ®,, ;2. (z) has exactly 2P~ —1
distinct roots (Corollary 3 to Theorem 4.4), and that the only p-th
order periodic point of degree 1 is 0, it follows from Theorem 4.5 that
Vpp = 2P~ _ 1, hence all the primitive p-th order periodic points of &
have degree p. ]

The following converse to this theorem also holds.

Theorem 5.2. If p is a prime for which ®, .2, ,(x) factors into
irreducibles of degree p, then p is a Mersenne prime.

Proof. If ®,, ;2. , () factors in the given way over Fy, then 7, , = p—1,
so that for every p-th root of unity ¢, # 1, 1 + ¢, has order p. If this
is the case, it is not hard to see that the set F' of p-th roots of unity,
together with 0, forms a field. For, if ¢, and (, are arbitrary p-th roots
of 1, we have

B , if ¢ = Gprs
Cp+ G = Gp(14+ () = G, otherwise.

Since the product of p-th roots of unity is obviously a p-th root of unity,
this proves the claim that F is a field. But the characteristic of F is 2
and F has p+ 1 elements, so we get that p+ 1 = 2" for some n, i.e., p
is a Mersenne prime. ]
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By way of illustrating the last two results, note that the third diagram
in Section 3 gives 7 of the 9 irreducible factors of ®7 ;2 ,(z).

This raises the following question: are any of the factors of ®,, ;2> ,(x)
fixed points of 67 If f is an irreducible factor of ®, 2, (x) which is
not a fixed point of &, then f must be in a cycle of length p (by Lemma
3.5). If none of the factors of ®, ,2,,(x) are fixed points, then the
number of factors, (2°~! — 1)/p must be divisible by p. We examine
this quotient, the so-called Fermat quotient, modp.

First, since p — 1 = 2! — 2 is divisible by [ (Fermat’s theorem), we
may write p — 1 = kl, k # 0. Then we find, since 2! =1 (mod p), that
or—1 _1 2kl 1

0 —— =31 = (@) '+ @)+ )=k (mod p).

This proves

Theorem 5.3. For a Mersenne prime p =2t — 1,

w1 _1 p-1
. =" (mod p).

Since (p — 1)/l is clearly not divisible by p, Theorem 5.3 shows that
the Fermat quotient is never divisible by p if p is a Mersenne prime. In
fact, there are only two known primes for which the Fermat quotient
(2p~1 — 1) /p is divisible by p, namely, p = 1093 and p = 3511. See [2]
for more on this question.

By Theorem 5.3 at least (p — 1)/ factors of @, ;2 ,(x) cannot lie in
cycles of length p, so we have the following consequence.

Theorem 5.4. If p=2' — 1 is a Mersenne prime, then Q) o244 (T)
has at least (p — 1)/l factors of degree p which are fized points of &.

6. The factorization of ®,,, for (m,q) = 1. In this section we
will show that for any o of the form o(z) = 2% + az, with a # 0 in
F,, the induced map & has infinitely many periodic points with period
greater than 1. To prepare for this we study the factorization of ®,, »
in some detail.
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For d > 1, let P; = {primitive divisors of ¢ — 1}, so that P; contains
exactly the positive integers which divide ¢* —1 but do not divide ¢* —1
for K < d. To prove the following result concerning the irreducible
factors of ®,, ,, we require a lemma.

Lemma 6.1. Let o(z) = 27 + ax, where a is a nonzero element of
F,. Let f be an imprimitive irreducible factor of ®m, »(z), for some
m with (m,q) = 1. Then there is a unique r < m with (r,q) = 1 for
which f divides ®, ,(x) and for this r we have m = l.c.m.[r,ord (a)].
The ezact power of f dividing ., ,(z) is f(z)97 .

Proof. Since f is imprimitive, f is certainly a primitive divisor of
®, ,(z) for some r | m. There cannot be an additional s < m with
(s,q) = 1 for which f | ®,,(x). If there were, then r < s, and f
would have to be a multiple factor of ®, ,(z), by [11, Theorem 1cJ;
this would imply, by the same result [11, Theorem 1d] that f could not
be a factor of ®,, ,(x). For the same reason f cannot be a multiple
factor of ®, ,(z) and must be a multiple factor of ®,, ,(z). It follows
from Corollary 2 to Theorem 4.4 and the equation

®) (1) & = By (D) (1) || Ban (@)
d|m,d#r,m

that the exact power of f dividing ®, »(z) must be the (¢—1)-st power.
Furthermore, Lemma 4.1 shows that ¢”(z) — 2 has multiple roots (and
is then a g-th power) if and only if ord (a) | m. Thus we get that m is
a multiple of A = l.c.m.[r,ord (a)]. Finally, (8), with A in place of m,
shows that f is a multiple factor of ®, ,(z), and the above argument
implies m = A. ]

Note. If ¢ = 2 there are no imprimitive factors of ®,, ,2,(x); see
Corollary 3 to Theorem 4.4.

Theorem 6.2. Let o(z) = z? + ax, where a € Fy, a # 0. If
(m,q) =1 and d is the order of ¢ modulo m, then the degrees of the
irreducible factors of ®,, ,(x) are all primitive divisors of n = ¢ — 1.
In other words, if m is in Py, then the degrees of the irreducible factors
of ®m,o(x) are also in Py. Moreover, the set of irreducible polynomials
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over F, whose degrees are in the set Py coincides with the set of
irreducible factors of @y, o(x) and of @y, (o(2)), for m in Py.

Remark. This says that all irreducibles over F, of degree §, where §
is in Py, belong to a cycle in the graph G, or are 1-step connected to
a polynomial in such a cycle.

Proof. By Theorem 4.4 the periodic points of o of order m lie in Fyn.
This shows that the degrees of the irreducible factors of @, ,(x) divide
n.

We start by proving the assertions of the theorem for d = 1. By
Theorem 4.4, the periodic points of o of order ¢—1 have degree dividing
q — 1, and the dimension of the space of periodic points of order ¢ — 1
equals ¢ — 2. On the other hand, the total number of elements of
degree dividing ¢ — 1 over F equals g7~ = g% ¢?~2. Thus, we need to
show that the other (¢ — 1)g? 2 elements of degree ¢ — 1 are roots of
polynomials at level 1 in Gy, i.e., are roots of

[[ @uo(o@) =0 o)) — o(x)
(9) d|g—1
=ol(z) — o(x).

However, o4(z) — o(z) = (¢ + a)i(z) — (¢ + a)(z) = 27" — 27 =
(:10‘16171 — )9, which has exactly the elements of the field F -1 as roots.
This proves all the assertions of the theorem for d = 1.

Now assume the assertion of the theorem is true for all integers less
than d, and let m be a primitive divisor of ¢ — 1. Then the degree
§ of an irreducible factor f of ®,, ,(z) must divide ¢ — 1. On the
other hand, suppose that § is a primitive divisor of ¢*¥ — 1 for k < d
so that k£ | d. Then f is a factor of ®, ,(x) or is 1-step connected to
such a factor, for an integer r in Py, by the induction assumption. In
the latter case, if f is not a factor of ®, , () but is 1-step connected
to such a factor, then its roots must be pre-periodic, contradicting the
fact that the roots of f are periodic points of o. Hence f is a factor
of ®, ,(x) for r in P,. This implies, since P;, and Py are disjoint, that
f is a nonprimitive factor of ®,, ,(z). From Lemma 6.1, we conclude
that m = l.c.m.[r, ord (a)]. However, ord (a) divides ¢ — 1, so the order
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of ¢ mod m (namely, d) is the same as the order of ¢ mod r (namely,
k), contradicting the fact that k¥ < d. Hence, the degree of f lies in P,.

It remains to prove the last sentence of the theorem for the integer
d. In analogy to (9), we have

[ @nolo@)=0""" o) - o)
m|qd¢—1

(10)

= (z) — o(z)
a_

= (27" - x)%.

This shows that all the irreducible polynomials whose degrees lie in Py
divide some ®,, ,(o(z)). Our induction assumption now implies that
m must also lie in Py. To complete the proof of the theorem, we just
note that any irreducible factor g of ®,, ,(o(z)) which does not divide
®,, - (x) is 1-step connected to an irreducible factor f of @, ,(x). If
deg f lies in P, then deg g, as a multiple of deg f, and as a divisor of
g% — 1 (by (10)), also lies in Py. O

Example. We consider ¢ = 2, o(z) = z? + =, Ps = {9,21,63}.
We will use Theorem 4.5 to compute the degrees of the factors of
@y 1210, Po1g24y, and Pgs g2y, We first make a table of the values
of 7 = dimy Ey, ., for divisors m and n of 63, where E,, ,, as in
Section 4, denotes the vector space of periodic points of order m lying
in Fqn.

TABLE 1. Values of 7, p,

m/n|1l 3 7 9 21 63
1 0 000 O O
3 020 2 2 2
7 |0 0 6 0 6 6

02 0 2 2 8
21 |0 2 6 2 8 20
63 [0 2 6 8 20 62

The values in this table were computed by finding the order of (1+z)
modulo each of the irreducible factors f(z) of the polynomial ™ —1 and
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counting how many of these orders divide m. This can be computed
for all the factors at once by computing (1 +z)? —1 (mod z" — 1) for
divisors d of 63 and determining which of the factors of z™ — 1 divide
the residue. From this table and the formula of Theorem 4.5, we get

V99 = 0, Vg 21 = 0, and V9 63 = 252,

so that ®g ;2 splits into 4 factors of degree 63. In the same way,

20 o8
va1,0 =0, w9121 =189, w9163 =27 —2°,

V63,9 = 252, V63,21 = 220 - 28, V21,63 = 262 - 220 — 28 + 22.
Hence ®3; 424, factors as a product of 9 factors of degree 21 and
16640 factors of degree 63, while ®43 ;2. , factors into a product of 28

polynomials of degree 9, 49920 factors of degree 21, and (1/63)(2%2 —
220 — 28 + 22) factors of degree 63.

The following table gives the degrees of irreducible factors of ®,, ;2. (x)
over Fs, grouped by primitive divisors of 2¢ — 1, for 2 < d < 9.

d m degrees of irreducible

factors of ®,, ;2. ()

2 3 3
7

4 5 15
15 5,15
5 31 31
6 9 63
21 21,63
63 9,21,63
7 127 127
8 17 85,255
85 17,51,85,255
51 85,255
255 17,51,85,255
9 73 73,511

511 73,511
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The reader cannot have failed to notice the symmetry in this table
or in the above computation. In fact, the following reciprocity theorem
holds.

Theorem 6.3 (Reciprocity Theorem). For any integers m and
n prime to q, let Tpn(a) = dimy, Ey, ., (corresponding to the map
o(z) = 27+ az) and let vy, »(a) denote the number of distinct roots of
D, wataz () which have degree n over F,. Then we have

Tmn (@) = Tnm(—a) and vmn(a) = vpm(—a).

In other words, the number of distinct roots of ®m zataz(z) of degree
n equals the number of roots of @y, ga_az () of degree m.

Proof. By Lemma 4.3, 7, ,(a) equals the number of n-th roots of
unity ¢, for which

(11) Cnt+a=Cn

is an m-th root of unity. But this equation gives a one-to-one cor-
respondence between the (,’s for which (11) holds and the (,,’s for
which

Cm_a:Cn-

This proves that 7, ,,(a) = Tn,m(—a). Now vy, (@) = vy, 1 (—a) follows
easily from Theorem 4.5. o

Corollary. If g = 2" and a lies in Fy, then for any odd integers m
and n, the number of distinct roots of ®, yataz(x) of degree n over F,
equals the number of distinct roots of @y, yata.(z) of degree m over F,.

Using this corollary we can show that there are infinitely many
irreducible polynomials over F5 which lie in cycles of G, of length
> 1. For example, let p be a prime which is not a Mersenne prime.
Theorem 5.2 shows that ®,, ;2. (z) has an irreducible factor of degree
m # p, where m and p both lie in P, for some d # 1. By the above
corollary, ®,, ,2.,(x) has an irreducible factor f of degree p. If f were
a fixed point of &, then its roots would consist of complete orbits under
o(z) = x? + z, and its degree would have to be divisible by m, m
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being the size of the orbits. But m cannot divide p, unless m = 1;
however, 1 and p don’t lie in the same set Py. Thus, f lies in a cycle
of length A > 1, where X divides m (Lemma 3.5). This shows that the
induced mapping ¢ has infinitely many periodic points which are not
fixed points.

In order to generalize this argument we prove the following result
related to Theorem 5.2. Let p = char F,.

Lemma 6.4. If a # 0 lies in Fy and ! is an odd prime number
which does not divide q(q — 1), and which is not a prime of the form
(p™ —1)/(p — 1), then not all of the irreducible factors of ®; zataz(x)
can have degree [.

Proof. Suppose instead that all of the irreducible factors of ®; ;a4 44 (%)
do have degree [. Then all of these factors are primitive since the factors
of

1 yatar(r) = (297 +a—1)

have degrees dividing ¢ — 1 by Theorem 6.2. Furthermore, it is clear
that the only root of ®; ,(z) in Fy is the root 0, since the factor of
degree ¢ — 1 has no nonzero roots in F,. Note that deg ®; ,(z) = ¢ —q.
There are two cases to consider.

Case i). If a = 1, then ®;,(x) is a g-th power, by Corollary 3 to
Theorem 4.4. It follows that |E;;| = ¢'~!, whence the dimension of
E;; must be [ — 1. Thus, by Lemma 4.3, for every I-th root of unity
¢ # 1, (+1is also an [-th root of unity (this because 2 has order
dividing ¢ — 1 if ¢ is odd). It follows as in Theorem 5.2, that the set
of (p — 1)I-th roots of unity, together with 0, forms a field. Therefore,
(p—1)l+1=p", and hence l = (p" — 1)/(p — 1), which is excluded by
hypothesis.

Case ii). If a # 1, then ! does not divide the order of a, so Lemma
4.1 implies that ®; ,(z) has distinct roots. Hence these roots, together
with 0, form a vector space over Fg, implying that ¢ —g+1=q" for
some n > 1, clearly an impossible equation.

This proves the lemma. ]

Theorem 6.5. Let o(x) = x?+ax, where a # 0 is an element of F.
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If 1 is an odd prime which does not divide q(¢ — 1) (¢ odd) and which
is not a prime of the form (p™ —1)/(p — 1), then there is an irreducible
polynomial f of degree I which lies in a cycle in G, of length A\ > 1,
where A | q® — 1 and d is the order of ¢ modulo I. Thus, \ is a period
of 6.

Proof. By Lemma 6.4, ®; ;0 q.(z) has a factor of degree m # [,
where m lies in P;, and d > 1. The reciprocity theorem implies that
D, yat+qz () has a factor f of degree I. If f were a fixed point of &,
then its roots would fall into orbits of length m, impossible since m
does not divide [ (m # 1 since d > 1). Hence f lies in a cycle of length
A, where X\ | m and m | Al (Lemma 3.5). The last fact implies that
either A\=m or [ | m and A = m/I. O

Corollary 1. The induced map 6 of o(x) = 2%+ azx (a # 0 in Fy)
has infinitely many periodic points which are not fixed points.

Corollary 2. The induced map 6 of o(z) = z? + = (over Fa) has
infinitely many periods which are relatively prime to each other and to
2.

Proof. Take d; > 6 to be an infinite sequence of pairwise relatively
prime, odd composite integers, for ¢ > 1. By Bang’s theorem (see [12,
page 27]), the integers 2% — 1 each have a primitive prime divisor
l; (which cannot be a Mersenne prime by the assumption on d;).
The theorem implies that there is an irreducible polynomial f; of
degree I; which is a periodic point of & of order \;, where A; divides
24i — 1. Since the integers d; are pairwise relatively prime, and since
(24 — 1,24 — 1) = 1 if i # j, the same is true of the \;. o

Corollary 2 is probably true for the more general maps o(z) =
z? 4+ ax also, but the proof breaks down at the last step. In place
of (24 —1,2% —1) = 1, we have instead (¢% —1,¢% — 1) =¢— 1, and
it is possible, though not likely, for all but finitely many of the \; to
divide ¢ — 1. By the last assertion in the proof of Theorem 6.5, this
would imply that m; = \;l; for all large 4, since the equality m; = \;
would imply that ); is a primitive divisor of ¢% — 1 and therefore not
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a divisor of ¢ — 1.

7. Periodic points of primitive order p*m. Up to now we have
focused on the iterates of o of order m prime to p, the characteristic
of the ground field. We conclude this part by using Theorems 4.4
and 6.2 to prove several results about the factors of ®,,,x ,(z), where
(m,p) = 1. For the whole section we assume o has the form (5).

Theorem 7.1. If (m,p) = 1, the degrees of the irreducible factors
of ®ppr o (x) divide pk(qpkd — 1), where d is the order of ¢ modulo
m. All the primitive irreducible factors of ®,,,x ,(x) have degrees of
the form p*s, where § divides (qpkd -1).

Proof. We use the fact that ®,,,r ,(z) divides ®_ .« (x), by the
formula (see [11, Lemma 4])

k
(12) @, x(z) = H B, o ()

k
By Theorem 4.4, applied to the map o (x) = 29" + a?" z over quk,
»(x) over the field F

divide gP*% —1, where d is the order of g?" (mod m). The first assertion
of the theorem follows immediately.

the degrees of the irreducible factors of ®

m,oP

Now fix a £k > 0. By Theorem 6.2, all the irreducible polynomials
over quk: of degree m, where m is a primitive divisor of qpkd -1,

divide @ (x) or ®

of qpkd — 1. Hence the elements 8 whose degrees over quk are m are

! (Upk (z)), where n is also a primitive divisor

n,oP

either periodic points of period dividing np* or are pre-periodic points
of o.

It follows that if 3 is a primitive root of @, ,(z), its degree over
F, must be divisible by p®. Suppose instead that this degree equals §p*
for i < k and J prime to p. Then for some e, § is a primitive divisor
of g?'¢ — 1, and the comments above imply 3 is either a pre-periodic
point of ¢ or that 8 has period np’, where n divides ¢*' ¢ — 1. But
both situations are impossible since 3 has primitive period mp®. this
completes the proof. |



ALGEBRAIC DYNAMICS OF POLYNOMIAL MAPS 479

In the following result we exhibit roots of some of the primitive
irreducible factors of ®,,,r ,(2). The result depends on the fact that

oP" is a linear map over the field F .

Theorem 7.2. Let a # 0 be a primitive root of ®,, »(x) for the map
o(z) = 29 + ax, where (m,p) = 1, and let X\ have degree p* over F,.
Then Aa is a primitive root of ®,,,x ,(x) and deg (Aa) = p*dega.

Proof. We have 0™ (o) = a. Furthermore, o*" (Aa) = Ao®" (), so
that o™?" (M) = (opk)m(ka) = Ao™P" (o) = Aa. In the same way,
o"" (A\a) = Ao"?" () = Aa if and only if m divides rp¥, which holds if
and only if m divides r. Thus, A« is a primitive root of &« (x). We
need to show that Aa is a root of the factor ®,,,« ,(z) in (712).

To show this we compute the degree of Aa.. Suppose that deg (Aa) =
7. Then r is the least integer for which \a satisfies (Aa)! = Aa.
The last equation is equivalent to (A\)? ~! = (1/a)? ', which in turn
implies that both (A\)? ~! and (a)? ~! lie in F,, since o and \ have
relatively prime degrees over F,. Thus, by a standard argument,
X" = bA for some b in F,, which gives X" = b\ and therefore

PkT

A= X"" ="\ whence 5" = 1 and b = 1. Thus, AY = X and
a? = q, giving that r is divisible both by degca and degA. Hence,
r = deg (Aa) = deg (\)deg (a) = pFdeg ().

Thus, p* divides the degree of Acr, which implies by Theorem 7.1 that
Ao can’t be aroot of @i () for i < k and any r prime to p. It follows
from (12) and the argument in the first part of the proof that A« is a
primitive root of ®,,,x ,(z). O

Ezample. A root o of 3 +x + 1 = 0 over F3 is a periodic point of
o(x) = 2% + z with primitive period 3. If A is aroot of z2 +z +1=10
over Fo, then Ao is a root of the sextic 2 4+ 2* + 22 + z + 1. In fact,

®30(z) = (° + 2 +1)*

and

g, (z) = (23 + 2+ 1)%(2® + 2* + 2% + = + 1)* (2% + 2* + 1)4,
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so half of the primitive periodic points of period 6 arise from primitive
third order periodic points by the construction of Theorem 7.2. The
two irreducible sixth degree factors make up the cycle of length 2 in the
diagrams of Section 3, so the other primitive periodic points of period
6 are given by o(Aa) as A and «a vary.
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