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A QUASILINEAR TWO POINT
BOUNDARY VALUE PROBLEM

VICTOR L. SHAPIRO

1. Introduction. With Du = du/dz and Q = (0, 1) the open unit
interval, let

(1.1) Lu = —DI(ay + a2)Du]
In this representation of L, a1 (z) and az(z) will both satisfy (a —1) and

(a — 2) where with W1°(Q) the usual Sobolev space of functions with
bounded derivatives in 2, these two conditions are given as follows:

(a-1) a(z) is a real-valued function in C(Q) N C*(Q) N W (Q);

(a-2) Jeg >0 s.t. a(z) > e Vz e Q.

To L, we associate the quasilinear differential operator

Qu=-D {Z a;j(z)os; (u)Du} + a1 (u)by (z, u) [Du] T

(1.2)
+ o22(u)be(z, w)[Du] ™
where
(1.3) oij WP (Q) =R 1 2With oi; continuous in the strong
Wy -topology for 4,j = 1,2, and

(1.4) bj(z,s) € CIQAxR] forj=1,2.
Also,

[Du(z)]" = max[Du(z), 0], [Du(x)]” = max[—Du(z),0].
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1118 V.L. SHAPIRO

We set

(1.5) X\ = inf/Q(al +a)|Dul®>  we W),  lulle =1,

and observe from (a — 2), and the Poincare inequality that A; > 0.
Also, from [5, p. 198] and [9, p. 7] we see that

(1.6) 31 >0 inQ st ¢ € CHQ)NCHQ)NWH>®(Q),
and

L([Sl = )\1(]51 in Q with ||¢1||L2 =1 and ([51(0) = ¢1(1) =0.

A well-known result of Aguinaldo and Schmidt [2] in the case a;(z) =
1/2 for j = 1,2 and h € C(2) states that a necessary and sufficient
condition that the boundary value problem

(A-S) Lu = A\u—au” + h(z) u(0) =u(l) =0

has a solution in C?(2) where o > 0 is that [, h¢1 > 0. Castro [4]
generalized the sufficiency condition of this result by adding p(u) to the
right-hand side of the first equation in (A-S) where p is a real-valued
function in C°(R) with p(s) sublinear for s < 0 and = 0 for s = 0. We
intend to obtain similar results for our quasilinear operator @ given
in (1.2). Our method of proof is very different from the techniques
employed in [2] and [4] and depends upon some of the ideas used in
[10] and also [3]. (Part of Castro’s paper is discussed in the famous
nonlinear survey of Nirenberg [7, p. 283]).

In order to get our quasilinear results in line with those of [2] and
[4], we shall also assume the following.
(1.7)
(i) 3K and g >0 s.t. ¢o<0o1;(u)SK  YueW,?(Q) and j=1,2,
(i) o15(u) =1 for / up > 0,

Q
o1;(u) =1 for /QU¢1 <0 where ¢, is given in (1.6) and j=1,2;

(¢t3)  lim  oy(u)=1for j =1,2.

[lullp2—o0
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(1.8)
(1)) IK>0 st. 0< o9j(u) S K Yue Wy (Q) and j =1,2.
(it)  lim  o9j(u) =0 for j =1,2.
[Ju]] L2 —o00
(7) bi(z,s) meets (f —2) below for i =1,2.

1.9
(1.9) (¢d) AK>0 s.t. |bi(z,s)|SK  V(z,s)eQxR, i=1,2.

Our first theorem deals with the following boundary value problem:
(1.10) Qu =X \u—au” — fi(z,u) +h u(0) =u(l)=0
with fi(z, s) meeting (f — 1) — (f — 3) where
(£1) f(z,s) € C(Q x R).
=0 fors=20andz e
(£-2) flz,s)=
20 fors<0andzef.
(£-3) Ve >0, 3nk(z) € L*(Q) s.t.
|f(z,s)] < e|s| + hi(x) V(z,s) € Q2 xR.

Our theorem which generalizes [2] is the following

Theorem 1. Let Qu be given by (1.2) where a; and as meet
(a—1), (a—2), and (1.3)—(1.9) hold. Suppose also that fi(x,s) meets
(f = 1) — (f — 3), that 011 = 012, that h € C(Q) N L%*() and that
a > 0. Then a necessary and sufficient condition that there exists
u € CHQ)NC(Q)NW22(Q) which satisfies the boundary value problem
(1.10) is that

(1.11) /thﬁl > 0.

To be specific about the meaning of a solution in the concluding
statement in Theorem 1, given u,v € Wol’2 (), we set

(1.12) g(u, v) = Zolj(u)<ajDu,Dv>

+ 021 (w) (b1 (-, w) [Du] ¥, v) + 022 (w) (b2(, u)[Du] 7, v)
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where

(1.13) (u,v) = / uv
Q
and say u is a solution of the BVP (1.10) provided

Q(’LL,’U) = /\1<ua U) - a(uiv) o <f1(-,u),v> + <h,’U>
(1.14) ~
Yo e Wy?(Q).

Remark. It is clear from Lemma 3 below that if (1.14) holds for
u € C(QNWH2(Q) then u € CH(Q)NC?*(Q)NW22(Q) and furthermore
u satisfies BVP (1.10) in the classical sense, i.e., u(0) = u(1) = 0 and

-D [ Y- o1(w)ar; (@) Du(@) | + 21 (Wb (@, w) [Dul* (2)

+ o22(u)be(z, w)[Du] ™ (x)
= hu(z) — au™(x) — fi(z,u) + h(z) Ve

A similar situation also prevails for Theorem 2 and BVP (1.16).

Of course in Theorem 1, 011 (u) = o12(u) for all u € W12(Q), but this
will not be the case in Theorem 2. In the sequel, we will use Q(u,v) in

the manner in which it is presented in (1.12).

To see that the inequality in (1.11) is indeed a necessary condition,
suppose that u is a solution of the BVP (1.10) with the properties
delineated in Theorem 1. Take v = ¢; in (1.14). It then follows from
(1.1), (1.2) and (1.6) that

(1.15)  [o12(u) — 1A1a(1) + o021 (u)(by (z, u)[Du]t, ¢1)
+ ooz (u){bz(z,u)[Du] ", ¢1) + (fi(z,u), d1) + (au", ¢1)
= <h7¢1>

where @(1) = [,u¢1. A check of the conditions in the hypothesis of
Theorem 1 shows that each term on the left-hand side of the equal sign
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in (1.15) is nonnegative. Hence the integral on the right-hand side of
the equal sign in (1.15) is nonnegative and the inequality in (1.11) is
established.

We can prove a stronger result than the sufficiency condition given
in Theorem 1. In particular we replace BVP (1.10) by the following
(1.16)

Qu=Mu—ou” = fi(z,u)+ f2(z,u) + fs(z,u) +h  u(0) =u(l)=0
where fa(z,s) and f3(z, —s) meet (f — 1) — (f — 3).

The sufficiency condition in Theorem 1 is a corollary to the following
result which we shall establish and which also generalizes [4].

Theorem 2. Let Qu be given by (1.2) where ay and az meet (a — 1)
and (a — 2) and (1.3)—(1.9) hold. Suppose also that fi(z,s), f2(z,s)
and f3(z,—s) meet (f —1) — (f —3), that h € C(Q)NL*(Q), that o > 0
and that (1.11) holds. Then there exists u € C*(Q) N C%(Q) N W22(Q)
which satisfies the boundary value problem (1.16).

A candidate for aq(z) in (1.1) and (1.2) is
a1(0) = 2, ay(z) =2+ z%sin(1/z), 0<z <1

It is easy to see that a;(z) meets (a—1) and (a—2) but a;(x) ¢ C*(Q).

A candidate for oy (u) is
(1.17)  on(u) =1 —=(u, é1)" /21 + [[ul[2|[Dul[z2] &> 0.

It is clear that 011 meets (1.3) and (1.7).

There are many other possible candidates for a1 (z) and o1;. Likewise,
in a similar vein, it is easy to find many candidates for o9;(u) and
bi(z,s) i=1,2.

2. Fundamental lemmas. We take it as well known that associated
with L given by (1.1) where a; and as both meet (a — 1) and (a — 2)
are sequences {\,}>2, and {¢,}2°; such that

(2.1) 0< A <A <--- < A — 00
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(2.2) én(z) € CHQ)NCAHQ)NWH®(Q)  with ¢,,(0) = ¢n(1) =0
for all n;

(2.3) Lo (x) = Muon(2) Voe

and for all n;

(2.4) {¢n}52, is a complete orthonormal system for L*(Q).
Also, ¢, satisfies (1.6). We set

(2.5) i(n) = (v, ¢n) Yo € L*(Q),

(2.6) Sn:{UECI(Q):v:Z'yiqﬁi, ve€R,i=1,...,n},

and
n ifg(z) 2n
(2.7) [g]" (z) = {g(w) if [g(z)| = n
-—n ifg(z) £ —n

The first lemma we establish is

Lemma 1. Let n be a fized positive integer. Then under the
conditions in the hypothesis of Theorem 2, there exists u, € S, such
that

3

(2.8) g(un, v)= <)\1un—a[u;]”+26i (i)™ (¢, un)+h, v>+an(1)ﬁ(1)/n

i=1
for all v € S,, where S, is given by (2.6), ¥ by (2.5), Q by (1.12) and
d; is defined in (2.11) below.

Proof. To establish (2.8), we take v = (y1,... ,7,) € R™ and set

(2.9) W= ex
k=1
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and
(2.10)
F;(7) = Q(w, 8;05) — (w, (;8;65)/n
3
+ (—\w+ afw " — Zéi[fi]”(-,w) — h,0;8;5)

i=1

for j =1,...,n where

(211) (5127]. and (5]:]. j:2, , T,

¢Gi=1 and (;=0 ji=2,...,n
It is clear under the conditions in the hypotheses of Theorem 2 that
(2.12) F(y) =[Fi(7y),...,Fu(y)] : R® = R" is continuous.

Also, with
(2.13) W= Oxyrdr where b is given in (2.11),
k=1

we see from (2.10)—(2.13) that

(2.14) F(7) -7 = Qw, @) = i (w,®) + 71 /n

+(alw " = Y &L w) — hyD)

i=1
Now, using (2.3), (2.4) and (2.9), we see that

n

(2.15) (Lw,b) — Ay (w, ) = > (A — A1)k
k=2

Also, it follows from (2.7) that the absolute value of the fourth term
on the right-hand side of the equal sign in (2.14) is majorized by Ks|~|
where K is a positive constant. Furthermore, we see from (2.1) that

(2.16) >0 s.t. \g— A1 >\ for k2> 2.
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Hence, we conclude from (2.14) and (2.15) that

(2.17) F(7)-vZn>_ Mk +9i/n— Kaly| + cN)(w, @) — (Lw,0).

k=2
We claim
(2.18) Jim_[[Q(w. @) — (L, @)/ =

To establish (2.18), first observe from (a — 2) that
(2.19) 2e9(Dw, Dw) < (Lw, w) Z)\]'yj
Therefore, it follows from (1.12) and (1.8) (ii) that

(2.20) Q(w,®) — = D _lo1j(w) = 1){a; Dw, D) + o(|7*).

~

From (1.7) (iii) and (2.9) we see that [o1;(w) — 1] — 0 as |y| — oo.
Hence we conclude from (2.19) that each term in the summation of
(2.20) is also o(]y|?) as |y| — oo, and thus claim (2.18) is established.
But then it follows from (2.17)—(2.18) that there exists so > 0 such
that

F(y)-y>0 for |y] Z s.

We conclude from (2.12) (See [6, p. 219] or [8, p. 18]) that there
exists v# = (v¥,... ,7#) with [v#| < so such that Fj(y#) = 0 for
k=1,...,n. In particular —F;(y#) = 0. So taking u, = >_,_, ’y,ft(ﬁk,
we have from (2.10) that

(2:21) Q(un, 1) = (Matin—alun] +Za 7 un) by 61)Fibn (1) /m

This fact joined with Fj(y#) = 0 for k = 2,... ,n, when used with the
definition of .S, establishes (2.8). o
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The next lemma we establish is the following.

Lemma 2. Given v € Wy>(Q), set v, = S.p_, 9(k)¢r. Then
(2.22) lim ||Dv, — Dvl||rz = 0.
n—oo

Proof. To establish the lemma, for u, v € W, *(f) set
(2.23) L(u,v) = ((a1 + a2)Du, Dv).
Then it follows from (a — 2) that
(2.24) 2¢0||Dul|72 < L(u,u) where g9 > 0.
Hence, it follows from (2.23) and the Poincare inequality joined with
(2.24) that L(u,v) is a real-inner product on Wy?(Q). Also, it is

easy to see from (2.3) and (2.4) that {d)n/)\}/z};’le is a complete
orthonormal system for WO1 2(Q) with respect to this inner product.

Now L(v, ¢k/>\]1€/2) = (v, ¢k>)\,1€/2. Therefore v, = > o_, 0(k)¢p =
> oreq L(v, ¢k/)\11€/2)¢k)\;1/2 and we conclude from well-known Hilbert
space theory that

lim L(v—vy, v—v,)=0
n— oo

Setting u = v — v, in (2.24), we see from this last limit that (2.22)
holds. O

Next, we establish a regularity lemma motivated by the technique to
be found on [5, p. 202].

Lemma 3. Suppose the conditions in the hypothesis of Theorem 2
hold and suppose furthermore that

(2.25) ue CQ)NWy2(Q),

and
(2.26)

3
Qu,v) = <)\1uau+z5jfj(-,u)+h,v> Yue Wy3(RQ).

~

i=1
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Then u € C1(Q) N C%(Q) N W22(Q).

Proof. For the proof of this lemma, we take
(2.27) w € C*(Q) with w(0) = w'(0) = w(1) = w'(1) = 0.

Also, we take
(2.28)
Cij(z) = o15(u)aj(z) and Czj(z) = 02;(u)bj(z,u),  j=1,2

and observe from (a — 2) and (1.7) that
(2.29) Cij(z) 2l VzeQ j=1,2

Then it follows from (1.12), (2.26)—(2.28) and integration by parts twice
that

1 1 T
— / ’U,(Cu + C12)D2’UJ + / [/ u(t) (DCH + DClg) dt] D*w
0 0 0

_ / 1 { / ’ / t [Alu(s) — au(s) +§;15jfj<s,u> + h(s)

— Cy[Du]™ — 021[Du]+] dsdt}DQw

We conclude from (a — 1), (a — 2), (2.29) and [5, p. 10] first that
u € C'(Q) and next that

—C11(z)+Cr2(x)]| Du(z) +ky :/w{)\lu(t) —a(t)u” (t)+26j [ (t, u)+h(t)

0 =

—022 [Du]_ (t) —021 [Du]+ (t) } dt,

where k; is a constant. From this last equality we obtain that u €
C1(2) N C?(Q2) and finally from (2.29) that D?u € L?(Q). O

3. Proof of Theorem 2. To prove Theorem 2, we invoke Lemma
1 and obtain a sequence of functions {u, }22; such that

(3.1) u, €S, and wu, satisfies (2.8) forn=1,2,....
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We claim
(3.2) JK3 >0 such that ||u,||lwiz S K3 v n.

Suppose (3.2) is false. Then there exists a subsequence which for ease
of notation we take to be the full sequence such that

(3.3) nh_{réo [|wn|lwiz = co.

We first claim that (3.3) implies that

(3.4) Tim |l |2 = o0

Suppose this fact is false. Then (once again using the full sequence
for ease of notation) we would have that

(3.5) dK4 > 0 such that |ju,||zz < K4 Vn.

Now it follows from (1.12) and (3.1) that

Zalj (n)(a; Dy, Dup) =—021(un) (b1 (- un)[Du] ™, uy)

j=1

(3.6) — 022 (tn) (ba (-, un) [Dun] ™~ un) + [0 (1)1 /0

+<A1un—a[u;]n+25,-[fj]"(-,un)+h,un>.

But then it follows from (a —2) and (1.7) (i) that

2
(3.7) Zalj(un)<ajDun,Dun> > 2¢5||Dun| |32 Vn.
j=1

On the other hand, we have from (3.5) and the conditions in the
hypothesis of the theorem that the right-hand side of the inequality in
(3.6) is majorized by K5||Du,||r2 + K5 where K is a positive constant.
We conclude from (3.7) that || Du,||r2 < Kseq 2(14]||Dun|| 2)/2- This
along with (3.5) gives a contradiction to (3.3). Hence (3.4) is indeed
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true under assumption (3.3). Also, it follows from (3.3), (3.6), (3.7)
and Schwarz’s inequality that
(3.8)

[|Dun|lrz £ Kellunl| L2 Vn where Kg is a positive constant.

Next, we set

(3.9) Wi = un/|[un||r2

and observe from (3.8) that

(3.10)  ||Wynllwre £ Ky Vn where K7 is a positive constant.

Hence, it follows from Sobolev’s compact imbedding theorem [1, p. 144]
that

(i) IW € C(Q)NWHA(Q) s.t. lim Wy (x) = W (z)
(3.11) uniformly ¥z € ,
(i5) lim [ DW,v= / DWv Vv e L*(R)
Q

n—oo Q

where we have used the full sequence for ease of notation.

Using (3.1), we next take v = ¢; in (2.8) and obtain from (1.12) and
the fact that (LW,,, ¢1) = A (W,,, ¢1) that
(3.12)
2

> lo1j(un) = 11(a;DWy, 1) + 021 () (b1 (-, wn ) [DW]*, 1)

j=1

+ 022(un)<b2('7 un)[‘DWn]_a ¢1>

_ —a<[W;]”,¢1>+|un|L%< Zaj[fj1“(-,un>+h,¢1>+Wn(1>/n

j=1

Since o1;(u,) — 1 and o2;(u,) = 0 as n — oo for j = 1,2 by (3.4),
(1.7) and (1.8), we conclude from (3.10) that the left-hand side of (3.12)
tends to zero. Likewise it follows from (f — 3) that that second term
on the right-hand side of (3.12) tends to zero. We consequently obtain
from (3.12) coupled with (3.11) (i) that

a(W_, (}51> =0.
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But ¢1(z) > 0 for all « € €. Furthermore, & > 0. Hence
[W(z)]”¢1(xz) = 0 for all z € Q. We conclude [W]~(z) =0 for z € Q.
Therefore

(3.13) W(z) 20 VzeqQ.

Next, we replace ¢; by ¢, in the left-hand side of (3.12) and observe
that this expression is equal to

(3.14) [Q(un, ¢x) = (Lun, d1)]/l|unl| L2

~

But taking the limit of the left-hand side of (3.12) with ¢; replaced
by ¢r as n — oo and using (3.4), (3.10), (1.7) and (1.8), we see that
this limit is zero. Hence the limit of the expression in (3.14) is zero.

However (LW, ¢y) = )\kWn(k). We consequently conclude from (3.11)
(i) and (3.14) that

(3.15) Tim Q(un, d)/llunl12 = NIV (k)

Also, we observe from (3.11) and (3.13) that

(3.16) Tim (", 68)lunlls = (W, 65) = 0.

Consequently, we see from (3.1) that if we set v = ¢y, in (2.8), divide
both sides of (2.8) by ||un||r2 and pass to the limit as n — oo using
(3.15), (3.16) and (f — 3) that

AV (k) = A\ W (k)
But from (2.17), we have that A, > A; for k = 2. Therefore
(3.17) W(k) =0, k=2

From (3.9) and (3.11), we have that ||[W|| 2 = 1. We consequently
conclude from (3.13) and (3.17) that

(3.18) W(x) = ¢1(x) VoeQ.
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Now up,(x) = Y p_, n(k)dr(x). Therefore from (2.3), we have
(3.19) Lun = Aiin (k)
k=1

So from (2.6) we see that Lu,, € S,. Hence using (3.1) once again, we
take v = Lu, in (2.8) and obtain

2
(3.20) = 01j(un)(Da;Duy, Luy,) = A, — By,
j=1
where
(3.21) A, = the right-hand side of (2.8) with v = Lu,,
and
(3.22) By, = 021 () (b1 (+, un)[Dun] ™, Luy,)

+ oa2(up) (b2(, up ) [Dun] ™, Luy,)

Now it follows from (1.1) and (3.20) that

(3.23) (Ltn, Lun) = A, — By + Cy,
where
2
(3.24) C, = Z[alj(un) — 1)(Da;Duy, Luy,)
j=1

Also, we see from (1.1) and the fact that a; and ay meet (¢ — 1) and
(a — 2) that

(3.25) JKs >0 s.t. |D%uy,| £ Kg[|Luy| + |Du,|]  Vn.

Also, it follows from (2.24) and Poincare’s inequality that there exists
a constant K} such that |[Duy||r2 £ K§||Luy||z2 for all n. Hence, it
follows from (1.7), (3.4), (3.24) and (3.25) that

(3.26) ILm |Cr|/{Ltn, Luy) =0
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In a similar manner, it follows from (1.8) and (3.22) that
(3.27) Tim_[By|/(Lttn, Lun) = 0
On the other hand, we see from (3.21), (3.4) and (f — 3) that
(3.28) dKg > 0 s.t. |An| S Kollun||p2||Lun|| L2 Vn.
We conclude from (3.23) and (3.26)—(3.28) that

Ing >0 s.t. ||[LW,||p2 S 2Kg for n 2 ng.
This fact joined with (3.10) and (3.25) gives
(3.29) |D*Wh||2 £ Ks[2Ko + K7] for n 2 ng

Hence, it follows from (3.10), (3.11), (3.18), (3.29) and the Sobolev
compact imbedding theorem [1, p. 144] that

(3.30) lim DW,(z) = D¢1(x) uniformly for z € Q.

n—o0

Now from [9, p. 4] we have that
(3.31) D¢1(0) >0 and D¢y(1) <0.

Since ¢1(x) > 0 for all z € Q, we conclude from (3.11) (i), (3.18), (3.30)
and (3.31) that there exists ny > 0 such that

Wa(z) >0 VeeQ and n 2mn;.
But u,(z) = Wy (z)||un||r2. Therefore we have from this last fact that

(3.32) up(z) >0 VeeQ and n 2=mn.

We invoke (3.1) once again and take v = ¢ in (2.8). It follows from
(1.7) (i), (1.9) (i), (1.12) and (3.32) that

(333) Q(una ¢1) = <Luna ¢1> = Alﬁn(l) for n 2 n
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Likewise, it follows from (3.32) and (f — 2) that the right-hand side of
(2.8) with v = ¢; becomes

(3.34) A, = Mt (1) + @ (1) /n+ ([f3]" (-, un) + hy¢1) for n > ny

Since Q(un, 1) = An; we conclude from (3.33) and (3.34) that

(835)  n(l)/n=—([fo]"(run) + hyd1) fornZm

Now from (f — 2), we see that f3(z,s) = 0 for s =2 0. Consequently,
it follows from (1.11) and (3.35) that @, (1) < 0. Therefore W, (1) £ 0

for n 2 ny. But from (3.11) (i) and (3.18), we have that W, (1) — 1 as
n — oo. We consequently obtain that 1 < 0, a manifest contradiction.
Hence (3.3) is false, and (3.2) is indeed true.

Next, we claim
(3.36) KL >0 st. ||[D*up||p: S Ky Vn

To establish this fact, we recall from (3.19) that Lu, € S,. Also we
have from (1.1) that

(3.37) Lu, = —(ay 4 as)D*u,, — (Day + Day)Du,,.
We consequently obtain from (3.20)—(3.22) in conjunction with (3.2),

(a—1), (1.7) (i) and (3.37) that

2
(3.38) 3JKi9 >0 s.t. Zalj(un)<ajD2un, (a1 + as)D*u,,)
j=1
éKwHDzunHLz—f—Klo Vn.

But then it follows from (a —2) and (1.7) (i) applied to the inequality
in (3.38) that

4e||D?unl|z < Kol |[D*un||p2 + K10 Y1

where g9 > 0. We conclude from this last inequality that (3.36) does
indeed hold.
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It then follows from the Sobolev compact imbedding theorem [1,
p. 144] in conjunction with (3.2) and (3.36) that there exists u €
C'(Q) N W?22(Q) such that
(3.39)

lim |u,(z) — u(z)| + |Duy(x) — Du(x)] = 0 uniformly for z € Q,

n— oo
where we have used the full sequence for ease of notation.

Next, we observe from (1.4), (1.9) (ii), (3.39) and the Lebesgue
dominated convergence theorem that

n—0o0

lim/|bj(ac,un)—bj(m,u)|2|v|2:0 Vue I2(Q), j=1,2.
Q

Hence, it follows from (3.39) and (3.2) that

(3.40)
nlLIgoLbl(x,un)[Dun]+v:/le(m,u)[Du]'*'v Vv e L*(Q)

with a similar situation prevailing for be(x,u)[Du] ™.
From (3.39) we see that
lim w, =u strongly in WOI’Z(Q).

n— oo

Hence, it follows from (1.3) that o;(un) — oi(u), 4,5 = 1,2. We
conclude from (1.12), (3.39) and (3.40) that

(3.41) 1i_>m Q(un,v) = Q(u,v) Vv e Wy?(Q).

It is clear from (f — 3) and (3.39) that {[f;]"(z, u,)}52, is absolutely

equiintegrable for j = 1,2, 3. Hence, it follows from Egoroff’s theorem,
(f — 1), and (3.39) that

(3.42) lim ([£;]" (-, un),v) = (fi(u)v) Vv eC(Q)

n—roo
for j =1,2,3.

Next, we let v € (J,-; Sn. Then, it follows from (3.1) that (2.8)
holds for this v. We take the limit as n — 0o on both sides of (2.8) and
obtain from (3.39), (3.41) and (3.42) that

3 00
(343) Q(u,v) = (Mu—au” +» & fi(u) +hv)  Yoe | Sa
~ n=1

i=1
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Now, it follows from (2.4) and Lemma 2 that if v € W;*(2) there
exists a sequence {v,}2° ; with v, € S, such that

lim ||Un - U||W1,2 =0.
n—oo

It is then clear from (1.12) and this last fact that lim, . Q(u,v,) =
Q(u,v). It is clear that a similar situation prevails for the right-

hand side of (3.43). Hence we see that (3.43) is indeed true for
all v € Wy2(). But then it follows from Lemma 3 that u €
CHQ) N C*(Q) N WH2(Q). u]
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