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SCHRODINGER OPERATORS AND INDEX BOUNDS
FOR MINIMAL SUBMANIFOLDS

SHIU-YUEN CHENG AND JOHAN TYSK

1. Introduction. Let M™ be a complete m-dimensional manifold,
possibly with boundary, that is minimally immersed in a compact n-
manifold N™. In the present paper we study the operator A + g on
M where A is the Laplace-Beltrami operator and ¢ is a real-valued
function on M. We also consider the more general case of an operator
V24 @ on a Riemannian vector bundle over M. Here V? is the Bochner-
Laplacian of the vector bundle and @ is a symmetric endomorphism.
Our objective is to estimate the number of bound states, or nonpositive
eigenvalues, of such operators involving L™/2-norms of g and constants
depending only on m and the ambient manifold N. If OM # @, we
require that the eigenfunctions satisfy Dirichlet boundary conditions,
and if M is not compact, we define the number of bound states as the
limit of the number of bound states for the Dirichlet problems for an
increasing and exhausting sequence of compact domains in M.

Previously known estimates, see for instance [1] and [6] all depend
on the geometry of M, through bounds on, for example, injectivity
radius and Ricci curvature. In our setting, we have replaced this by a
dependence on the ambient manifold IV, which might be more natural
when one studies minimal submanifolds of a fixed ambient manifold.

An application of our estimates gives index bounds for minimal
submanifolds of dimension at least three, see Theorem 3. Recall
that the index of a minimal submanifold is the number of negative
eigenvalues of the second variation operator. Another application
provides upper bounds for the Betti numbers of minimal submanifolds,
see Theorem 4.

Finally, when the dimension of m is 2, we show, utilizing the Gauss
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map, that if M is a minimal surface in R™, then

index (M) < C(n)/M(fK),

where K is the Gaussian curvature of M. Using the Gauss-Gonnet
theorem, one then obtains, if M # &, that the index of M is bounded
by the negative of the Euler characteristic of M and the total curvature
of the boundary of the immersion of M, see Theorem 5 and Corollary
1. In Theorem 6, we obtain similar bounds for minimal surfaces in
S™. These results answer affirmatively a question posed in [5], and
extend to arbitrary codimension and to surfaces with boundary, the
index bounds for minimal surfaces in R? in [12], and for surfaces in R*
in [5].

Our methods borrow a lot from the arguments of P. Li and S.-T. Yau
in [8]. For the case of vector bundles over minimal submanifolds, we
need to derive modifications of some results in [6]. We would also like
to thank R. Schoen for helpful discussions.

2. An estimate on the number of bound states. Let M™,
m > 3, be a minimally immersed m-dimensional manifold in the
compact manifold N. Consider the operator

L=A+q

on M™, where A is the Laplace-Beltrami operator and q is a real-valued
function on M. We study the associated eigenvalue problem

Lf+Xf=0,
where, if M # &, we insist that

flomr = 0.

If M is compact, we define the number of bound states of L as the
number of nonpositive eigenvalues of L. For noncompact M, we define
the number of bound states as the limit of the number of bound states
for an increasing and exhausting sequence of compact domains in M.
This limit always exists (although it might be +00) since the number
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of bound states increase for an increasing sequence of domains and the
limit is easily seen to be independent of the sequence chosen.

Theorem 1. Let M™, m > 3, be a complete minimally immersed
submanifold in the compact manifold N. The number of bound states
B of the operator

A+g,

on M satisfies
5<ClmN) [ (maxq, )",

M
where C(m, N) is a constant depending only on m and N.

Remark 1. If ¢ is nonnegative and positive somewhere and OM = &,
then 8 > 1 for minimal submanifolds M without boundary and we

obtain L
(M) > ————.
vol(M) = C(m,N)
We can also conclude for the same reason that the estimate of Theorem
1 does not hold with the integrand (max(q,1))™/? replaced by ¢™/.

Proof. The first part of our proof is identical to the argument of P. Li
and S.-T. Yau for Theorem 2 in [8]. It is included here for the sake of
completeness only. Assume M is orientable, otherwise we pass to the
oriented double cover. Define

p(z) = max(q(z), 1),
and let H(z,y,t) be the kernel for the operator
1

1,0

p(z) 0Ot
on D. Here D = M if M is compact and otherwise D is a compact
domain in M. If 0D # &, we require H(x,y,t) to satisfy Dirichlet
boundary conditions. Let {u;}52, be the eigenvalues of 1/p(z)A on D,
again for the Dirichlet problem if 0D # @. Define

oo

h(t) = Z e 2mit,

=0



980 S-Y. CHENG AND J. TYSK

Then
= / H?(z,y,t)p(z)p(y) AV (y) dV (z),

where for this argument we adopt the convention that the integrations
are taken over D, unless otherwise specified. Differentiation with
respect to ¢ gives

& =2 [[ @ v @) G @) V) v (@)
~2 [ p(a /Hx%XAHuyJﬁW(MW)
_ 9 / Pz) / IV, H(z,y, )2 dV (y) dV (x).

Repeated applications of the Holder inequality yields

/ /H z,y,t)p(y) dV (y) dV (x)

< / p(m)( / H2mm=2) (54 ) dV(y)>(m_2) i)
) </H(x,y,t)p(7n+2)/4(y) dV(y)>4/(m+2)

= (/ P (m)(/ H2/ =2 (g, 1) dV(y)> e dV(x))W(mH)

(1)
. (/P(az)(/H(m,y,t)p(m+2)/4(y) dV(y)>2dV(x)>2/(m+2)‘

Now define

dv(x)

wa=/Hw%mM“W@mwm

and note that

<$Az - %)P(m,t) _o,

P(z,0) = p™m=2/4 ().

and
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We compute

& [ Paip@ avie) =2 [ PenS @ ipe avis)
— / P(a,) A, P, 1) dV (z)

_ —2/ IV, P(z, ) dV(z) <0,
and, hence,

/ P2(x, )p(x) dV (2) < / P2(x,0)p(z) dV ()
= /pm/Q(w) dV(z).

Inequality (1) can therefore be written

2) h(m+2)/m(t)< / () dV(g})) ~2/m

< [v( [ 122w dV(y)>(m_2)/m 4V (z).

The Nash embedding theorem guarantees the existence of an isomet-
ric embedding of the ambient space IV into some Euclidean space. We
can thus regard M and N as submanifolds of this Euclidean space.
According to the Sobolev inequality in [9], we have for compactly sup-
ported functions g on M, with Vg € L'(M),

</M |g|™/m 1 dv>m1/m < C(m) /M(|Vg| + g [H|) dV

where C'(m) is a constant depending only on m, and # is the mean
curvature vector of M as a submanifold of Euclidean space. Since M is
a minimal submanifold of N, H is less than or equal to the length, |A],
of the second fundamental form of N a submanifold of Euclidean space.
By replacing |A| by its maximum value on N (which is finite since N
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is compact), and replacing g by f2(m~1/m=2 and finally squaring the
inequality obtained, we arrive at

m—2/m
3) ( / |f2’”/’”‘2dV> <o [ (iPave [irPay

where ¢; is a constant depending only on m, whereas ¢z also depends
on maxy |A|. Applying (3), with f(y) = H(z,y,t), to inequality (2),
we obtain

i) ([ o) av) ) o
< [s)( [ o dv<y>)m_2/m av ()
< [ ( [ 19t 008 v ()

+co / H?(z,y,t) dV(y)> dv (z)

— ey o [ 9@ [ Heunave)ave
1

dh
< 39 + c2h(t),

where in the last inequality above we used the fact that p(y) > 1 for
all y € M. Hence, we have obtained the differential inequality

(/pm/Q(m) dV(m)) o < (=c1/2)(dh/dt) ¥ eh2/m.

hm+2/m

Setting ¢ = h~2/™ we can write this inequality as
4 Mmoo 4e
= m/2(0) AV <% 2
mcy </p (z) (m)) T dt + mcy v

4eat/(mey)

Multiplication by the integrating factor e yields

—2/m
((pe4czt/(mc1)) > i(/pm/Z(x) dV(x)) 6462t/(mcl).
mcy
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Integrating from O to ¢, using the fact that p(0) = 0 since h(t) — oo as
t — 04, we have

1 —2/m
deat/(mer) 5~ (pdeat/(mer) _ 1 / m/2 dv
peteat/n) > 2 ([re@aa)

or, in terms of h,

m/2
)

m/2
(]_ _€—4czt/(mcl))m/2 /p / (I) dV(I)

We note, as in [8], that the quadratic form corresponding to the
operator L = A + g on D satisfies

[V aV — [pp*adV fp¢2dV<f|V¢2dV ~ 1>'

[¢2dV [ ¢2dV \' [pg?dV

Now [|V¢|?dV/ [pp?dV is the quadratic form associated to the
operator 1/pA on D. Hence, the number of nonpositive eigenvalues
of L on D, which we denote 3p, is equal to the number of eigenvalues
of 1/pA on D that are less than or equal to one. We therefore have

h(t) <

Bp-e <3 — h()
=0

m/2
)

m/2
< (17674czt/(m61))m/2 /p / (I) dV(I)

m/2
)

m/2
< (1 — 674cz/t(mcl))m/2 /Mp (37) dV(m),

so that

_ c;n/2€2t 12
oo < iy (St [, @ V@)

which proves the theorem since the right-hand side of the inequality
above does not depend on the domain D.

3. Vector bundles over minimal submanifolds. A Riemann
vector bundle W — M is a smooth vector bundle with a metric and
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a connection V preserving that metric. The Bochner Laplacian V? is
defined by V2 = Tr(V* o V), where V* is the formal adjoint of V.
Suppose @ is a symmetric endormorphism of W and set L = V2 + Q.
Consider this operator on W — D, where D = M if M is compact
and otherwise D is a compact domain in M. If 0D # @&, we apply the
operator L only to sections of W that vanish on dD. Then L defines a
unique self-adjoint operator on L?(W — D).

We would like to estimate the number of nonpositive eigenvalues of
Lon W — M. In the case of M not compact, we define the number of
nonpositive eigenvalues, or bound states, as the limit of the number of
bound states for an increasing and exhausting sequence of compact
domains D in M, and if O0M # @ we impose Dirichlet boundary
conditions. As before, we assume that M™ is complete and minimally
immersed in a compact manifold N. In addition, we assume that @ is
bounded above in the sense that

(Q(E),E), < q(x)(E,E), z €M,

for all admissible sections E of W — M, where ¢ is some function on
M. Then we have the following estimate on the number of bound states
of L.

Theorem 2. Let 3 be the numbers of bound states of the operator
L =V?+Q, and let the manifolds M and N and the bundle W be as

above. Then

8 < C(m, N)(rank W) / (max(g, 1))™/2,

M

where q is defined above and C(m,N) is a constant depending only on
m and the manifold N .

As above, assume M is nonorientable; otherwise, pass to the oriented
double cover. To prove the theorem, we first need to introduce the
kernel of the operator

1 0

v2_ —,
P ot
on W — D, with D as above and p = max(q,1). As before, if 0D # &,
we impose Dirichlet boundary conditions. We denote this kernel by
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H(z,y,t), and the kernel for 1/pA—9/0t on D, we denote by H(z,y,t),
where A is the Laplace-Beltrami operator. Let |H| be the pointwise
norm of the endomorphism H. Then we have the following lemma.

Lemma 1. With |H| as above, we have in the sense of distributions,

0 _
9 1\ @ <o
<<9t p >| <0

Proof of Lemma 1. The proof of this lemma is almost identical to
that of Lemma 4.1 in [6], where the case p = 1 is considered, so we will
not include it here. ]

From this lemma, we obtain the following relationship between the
pointwise norms of the heat kernels H and H.

Lemma 2. Let H and H be as above. Then

[H(z,y,t)| < H(z,y,1),

for allt > 0.

Proof. In the case of p = 1, this result appears in [6]. Our proof is
completely analogous to that of H. Donnelly and P. Li, but we include
it here for the sake of completeness. We have

H (z,y,t)| — H(z,y,1)
_/0 (')s/ |H (z, 2, 8)|H(z,y,t — s)p(z) dV (z) ds

/ / <as |H(z, 2 S)> (2,9, t = s)p(2) dV (2) ds

+ / / |H(x,z,s)|—(H(z,y,t—s))p(z)dV(z)ds

/ / <as “3)> (2,5, — 5)p(2) dV () ds
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+ /0 /D H(z, 2, 8)|(— AL H (2, t — ) dV(2) ds

_/Ot/D (% —$A2>|F(x,z, ) H(z,y,t — 5)dV(2) ds
<0

since by the previous lemma,

<% - I%AO H(x, 2, )| < 0.

This completes the proof of the lemma since

|H(z,y,0)| = H(z,y,0). O

We now combine Lemmata 1 and 2 to prove Theorem 2. ]

Proof of Theorem 2. Since the quadratic form associated to V2 + Q
on W — D satisfies

/ (-V?E - Q(E),E)dV > / (-V?E —q-E,E)dV,

D D

for sections F of W — D, we see that the number of nonpositive
eigenvalues of V2 + Q on W — D is bounded by the number of
nonpositive eigenvalues of V2 + ¢q. This number in turn is bounded by
the number of nonpositive eigenvalues of V? + p, with p = max(q, 1).
As in the proof of Theorem 1, we note that the number of nonpositive
eigenvalues of V2 + p is equal to the number of eigenvalues of 1/pV?
that are less than or equal to one. Hence, applying Lemma 2,

Be~t < v H(t) = /D Tr H(z, o, t)p(z) dV (2)
< (rank W) - /D H(z, 2, 1)|p(z)| dV (z)

< (rank W) /D H(z,z,t)p(z) dV(z)
= (rank W) - Tr H(t).
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Noting that the function A in the proof of Theorem 1 satisfies

H(t) = h(%t)

we obtain from above, after multiplication by e?,

m/2 ¢
¢y, e

m/2
(1 _ 672czt/(mcl))m/2 /Dp (I) dV(I)

m/2 t
ey e

< (rank W) - /M p™2(2) dV ().

B < (rank W) -

Since the right-hand side is independent of D, we obtain, as in the
proof of Theorem 1, the desired result by minimizing the right-hand
side over t > 0. u]

4. Applications to the second variation operator. Let M™ be
as above, a complete m-dimensional manifold, possibly with boundary,
which is minimally immersed in a compact ambient manifold N™.
The normal bundle 7+(M) — M of M is naturally a Riemannian
vector bundle with metric and connection induced from the metric and
connection of N. Explicitly, this connection is given by

Ve.E=(VYE)!,

where e; is the tangent to M, E is a section of T+ (M), V¥ is the
connection of IV, and L denotes taking the normal component. Let
S M denote the space of symmetric linear transformations TM — TM.
The second fundamental form of M as a submanifold of N can be
regarded as an endomorphism

A € End (T+M,SM).
Set }
A= Ao A,
where the superscript ¢ denotes taking transpose. If R denotes the
curvature operator of NV, we can define a partial Ricci transformation
ricfor E € TH(M) by
m

ric (E) = Z(R(E,ei)ei)La

i=1
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where the sum is taken over an orthonormal basis {e;}7, of TM.

The second variation of the volume of M along the compactly sup-
ported section E of T+ M is given by

| re.m)

LE = V?F +ric (E) + AE.

where

The index of a compact domain D in M is defined to be the number
of negative eigenvalues for the Dirichlet problem on D for L. The
index of M is defined to be the limit of the indices of an increasing and
exhausting sequence of compact domains on M. The index therefore
measures how far M is from being stable, with index zero corresponding
to stability.

We can therefore apply the results of Section 3 with the endomor-
phism Q being Q = ric + A. One has <;1E,E) < |AP!|E|?, where
|A|? is the square of the length of the second fundamental form. Now
assume that the partial Ricci operator ric satisfies

ric (E, E), < ric(z)|E|?,

for all x € M and some function ric on M. From Theorem 2 we then
directly have the following:

Theorem 3. Let M™, m > 3, be a complete manifold, possibly
with boundary, which is minimally immersed in a compact manifold
N. Then the index of M satisfies

index (M) < C(m,N) - (n—m) /M(max(l, |AJ? + 1ic))™/2,

where C(m, N) is a constant depending only on m and the ambient
manifold N, and |A|* and ric are as defined above.

5. Estimates of Betti numbers. For the sake of brevity, we
consider only the case of M™, m > 3, with empty boundary, minimally
immersed in a compact manifold N. Assume that M is compact
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and orientable; otherwise, pass to the oriented double cover. Then
the singular cohomology group, H? (M), is isomorphic to the space of
harmonic p-forms on M. Recall that a p-form w is said to be harmonic
if
AHw = 0,

where Ap is the Hodge Laplacian on the bundle of smooth p-forms
on M. The pth Betti number 3,(M) is defined to be the dimension
of HP(M). We can therefore estimate [5,(M) by the number of
nonpositive eigenvalues of Agy. The Weitzenbock formula says that

Ay =—-V?+R,,

where V? is the Bochner Laplacian and R, is a bundle endomorphism
depending on the curvature tensor of M. Now, assume that,

|Ry|(z) < 7p(2),
for all x € M, and some function r, on M. Since the rank of the

bundle of p-forms on M is (Z), we obtain from Theorem 2, above, the

following result which directly corresponds to Theorem 6 of [6].

Theorem 4. Let M™, OM = &, m > 3 be a complete oriented
minimally immersed submanifold of a compact manifold N. Then

8,00 < Clon, ) (1) [ (wax(t, )2 av

where r;, is as defined above.

6. Index bounds for minimal surfaces in R" and S". We will
first consider the question of estimating the index for minimal surfaces
in R"™. Therefore let M? be a complete minimally immersed surface in
R", possibly with boundary. If M is orientable, the Gauss map

G:M_)GQJL,

is anti-holomorphic, where G5, is the Grassmannian of oriented two-
planes in R", see [2]. The pull-back metric under G satisfies

G* (dszgz,n) = (-K)ds3,,
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where K is the Gaussian curvature of M, see [3]. Note that this
pull-back metric might have isolated singular points. Let M. be the
manifold with boundary obtained from M by cutting out disks of radius
¢ around the singular points. An upper bound for the index of M.,
independent of £, would then provide us with an upper bound for the
index of M.

From Section 4 we know that the number of negative eigenvalues
of the second variation operator for M. — R™ is dominated by the
number of negative eigenvalues of

L=V?+|AP,
where we used the notation of that section. Since M is two-dimensional
and minimal |A|? = 2K. Let {e;}?_, be orthonormal tangent vectors of

M, and let E be a compactly supported section of the normal bundle
T+(M.). The quadratic form I associated to L is then given by

I(E,E) = /((VE VE) — (-2K)E, E)) dV

(2 VoB, Vo) - AE.E)-K) ) av

i=1

Mw

_ ( 2 BV e, >—2<E,E>>(_K)d7
:/ ((VE,VE) — 2(E,E))dV,

where V is the gradient on T (M;) induced by the metric (—K) ds};
on M., and dV is the corresponding volume form. The index of M,
can therefore be estimated by the number of negative eigenvalues of

V42,

on T+(M,), where Vz denotes the Bochner Laplacian corresponding to
V. Let H(z,y,t) denote the kernel of v d/0t on T+ (M,), satisfying
Dirichlet boundary conditions, and let H(z,y,t) denote the heat kernel
of M. with respect to the pull-back metric from G5, also satisfying
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Dirichlet boundary conditions. From the proof of Theorem 2, we obtain
P=1, o
TrH(t) < (n—2)Tr H(t), t>0.

Our previous bounds for traces of heat kernels used the assumption
that the dimension of M is at least three. For surfaces in R", we can
use the Gauss map to obtain bounds for Tr H(t). First we note that
since the Gauss map is holomorphic, G(M,) is a minimal surface in
G2,n. We then embed G, isometrically into Euclidean space and, as
above, use the Sobolev inequality in [9] to obtain an inequality of the
form

1/2
(5) ( | dV) <o [ (VoI+elar,

for f € Cj(M.), where ¢; and c; are constants depending only on n,
and V when acting on functions denotes the gradient with respect to
the metric G* (dszc;2 ). The calculations below are similar to those of

the first author and P. Li in [4]. We replace f in (5) by f? and adopt
the convention that the integrals are taken over M. unless otherwise
stated, and obtain

(6) </f4>1/2 <o [FP1ve [ <a [FiP+@rn [

Using interpolation, one estimates

17112 < (A1) 2 (1F1)M2,

(fr) < (fr)" ] n

which we substitute into (6)

2)3/2
(7) fff|f <c1/\Vf|2 c2+1/f2

We now would like to apply this inequality with f(y) = H(z,y,t/2).
With this choice of f,

(8) [in1=1

i.e.,



992 S-Y. CHENG AND J. TYSK

and
H(z,z,t) = /H2my,t/2 )dV (y /f )dV (y
Taking the derivative with respect to ¢,

%Hma:t /Ha:y,t/Q ——(,y,t/2)dV (y)

(9) ~ [ @t v,t/2)H,,1/2) V()
. / V,H(z,y,t/2) dV(y),

where A is the Laplace-Beltrami operator on (M, G*(dsg, )). Substi-
tuting our choice for f into (7), using (8) and (9), we obtain

(H a0, )72 < e 2L (0, 2,0) - (e2 + 1) H 2, 1)

Letting ¢(t) = H'/?(x,z,t), we can write this inequality as
, co+1
201 =¥ + 201
Multiplying by the integrating factor e(c2t1%/(2¢1) and integrating from
0 to t using the fact that ¢(0) = 0, since H(z,z,t) — oo as t — 0+,
we obtain

1
1) > 1 — e (ca+1)t/(2c1)
o) > - )
and, therefore,
1 2
Hiz,a,t) < —— 21 1)

(1 — e—(eatD)t/(2en))2"
Combining this bound with our trace estimate above, we find that
TrH(t) < (n—2)Tr H(t)

—(n-2) / H(z,o,t) dV (z)
(CQ + ].

S (n - 2) (1 e~ (c2+1 t/ 201) 2 d
(CQ + ].

= (n_ 2) (1 — e (02+1 t/ 261) 2 /

(CQ+1
< (n_2)(1—€ (c2+1)t/( 261) 2 M
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Since the index of M. is bounded by the number of eigenvalues of v
that are strictly less than two, we have

| R e e L
(lndeX(ME)) € = (1—@*(02+1)t/(261))2 M( K)d‘/’

or

_ (n—2)(ca + 1)e*
index (Ma) < (1 — e—(cz+1)t/(261))2 M(

After minimizing the right-hand side over ¢ > 0, we obtain

—K)dV.

index (M) < C(n)/M(fK) av,

where C'(n) is a constant depending on the n alone.

If M is nonorientable, we can estimate the index of M by the index of
its two-sheeted oriented cover. Note that the argument above applies
if the immersion of M has isolated branch points, by defining M. to
also omit the branch points. Since the bounds above are independent
of ¢, we have derive the following theorem.

Theorem 5. Let M? be a branched complete minimally immersed
surface in R™, possibly with OM # &. Then

index (M) < C’(n)/M(—K).

Remark 2. Hence, in particular, if [(—K) < 1/c¢(n), M is stable,
which is Theorem 1 in [11].

Corollary 1. LetT be a collection of C? curves in R™. Any branched
minimal immersion M? — R™ with OM? =T satisfies

index (M) < C(n) (/FK(S) dx — 27rx(M)>,

where K (s) is the curvature of T' and X(M) is the Euler characteristic
of M.
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Proof of the corollary. If M is orientable and the immersion of M is
branched, the generalized Gauss-Bonnet formula, see [10, pp. 345 and
413], reads

a b
/Kgds—QﬂZ(ma—1)—WZ(M,3—1)+/ KdV =2mx(M),
r a=1 B=1 M

where K, is the geodesic curvature of I', and (m, — 1) and (Mg — 1)
are the branch numbers of the branch points of the immersion of M in
M and OM , respectively. With K being the curvature I', we therefore
have the inequality

/M(—K) dv < /FK(S) ds — 27X (M).

The corollary now follows from Theorem 4 where, as before, if M is
nonorientable, we estimate the index of M by the index of its two-
sheeted oriented cover. o

Theorem 6. Let M? be a bounded immersed complete minimal
surface in S™, possibly with OM # &. Then

index (M) < C(n) (2 area (M) — /M K>,

where C(n) is a constant depending only on n. Also, if OM consists of
a collection of T of C? curves in S™,

index (M) < C(n) <2 area (M) — 21X (M) + /F K(s) ds>,

where K is the curvature of T'. In particular, if OM = @,

index (M) < C(n)(2 area (M) — 27x(M)).

Proof. From Section 4 it follows that the number of negative eigen-
values of the second variation operator of M as a minimal submanifold
of S™ is bounded by the number of negative eigenvalues of

L=V?+ AP +2,
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where we used the notation of Section 4. Since M is minimal in S™,
A2 = (1 - K),

so the operator L can be written
V2 42(2 - K).

Now, assume that M is orientable; otherwise pass to the oriented double
cover. Let
G:M— Gg’n+1,

be the Gauss map of M regarded as a surface in R"*!. Then G is
conformal with

G (dst,, ) = (2 K) sy,
and G(M) is minimal in Gg 41, see [7]. We therefore find that the
index of M is bounded by the numbers of negative eigenvalues of

V4o,

where V> denotes the Bochner Laplacian on T+ (M) induced by the
pull-back metric from G ,41. Note that in this case the pull-back
metric is nonsingular. Following the argument for Theorem 5 and
Corollary 1 and noting that

area (G(M)) = [

M(2—K) = 2area (M) —/MK,

we arrive at the statement of Theorem 6. 0

Remark 3. The theorems above have immediate counterparts for the
case of minimal surfaces in manifolds covered by R™ and S™.
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