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ON A CONJECTURE OF R.L. GRAHAM
FRED YUANYOU CHENG AND CARL POMERANCE

1. Introduction. Let a and b be two positive integers. We shall call
the ratio a/(a, b) the reduced ratio of a and b. In 1970, R.L. Graham [5]
conjectured that the mazimum of the reduced ratios of pairs of integers
in a finite set of positive integers is at least the cardinality of the set.

Let M(n) be the least common multiple of 1,2,... ,n. We shall call
S a standard set if either

S={1,2,...,n}, S={M(n)/1,M(n)/2,...,M(n)/n},

or

S =1{2,3,4,6}.

We say a finite set of positive integers is primitive if the greatest
common divisor of the members of the set is 1. It is easy to see that
if Graham’s conjecture is valid for any primitive set, then it is valid
in general. One may further conjecture (see [8]), that if the mazimum
of the reduced ratios of pairs of integers in a primitive set is at most
its cardinal number, then the set is standard. We call this the strong
Graham conjecture. It is clear that the strong Graham conjecture
implies Graham’s conjecture.

Graham'’s conjecture has gotten much attention since it was proposed
and there are many partial results. See [4] for a survey up to 1980.

Szegedy [7] and Zaharescu [9] independently proved Graham’s conjec-
ture for all sufficiently large cardinalities. In fact, Szegedy established
the strong Graham conjecture for such cardinalities. Both Szegedy’s
and Zaharescu’s proofs rely on ‘Hoheisel type’ results in prime number
theory. Namely, they use the theorem that there is some constant ¢ > 0,
such that the number of primes in the interval [z, z+2'~¢| is asymptot-
ically 17¢/logz as * — oo. This is a deep result in analytic number
theory, and it would be very difficult to use the Szegedy or Zaharescu
proofs to give an explicit bound for “sufficiently large.” To be sure,
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962 F.Y. CHENG AND C. POMERANCE

in [3] it is shown that Graham’s conjecture is true for all cardinalities
exceeding 107 provided the Riemann hypothesis is assumed.

In this paper, we give still another proof of Graham’s conjecture
(and the strong Graham conjecture) for sufficiently large cardinalities.
However, the deepest tool we use is the prime number theorem with
only a moderately weak error term; namely, we use that

(1) n(z) = li(w)—i—o( ? )

log”

for  — oo, where m(z) is the number of primes up to z and li(x) is
the logarithmic integral function f; dt/logt. In fact, using the explicit
prime number theorem in [6], we are able to prove the following result.

Theorem 1. For all integers n > 1059990 i S is a primitive set of

positive integers of cardinality n, and if the maximal reduced ratio of
pairs of numbers from S is at most n, then S is a standard set.

Our proof roughly follows the same lines as that of Szegedy [7].

After this paper was submitted for publication, we learned that
Balasubramanian and Soundararajan, using other tools, have been able
to prove the strong Graham conjecture for all n, see [1].

2. Preliminary considerations. In this section we recall some
results that are relevant to the problem. Throughout the paper we
shall let S = {ay, ... ,a,} denote a primitive set of positive integers of
cardinality n.

Lemma 1. If p is a prime and a and b are positive integers with
a=b#0modp and a < b, then b/(a,b) > p.

This simple result is a key starting point for thoughts on Graham’s
conjecture. For example, from this lemma one can prove, as did
Szemerédi, that Graham’s conjecture is true for sets of prime cardinality
(see [8]). The proof of Lemma 1 is immediate, since from the hypothesis
we have b/(a,b) = a/(a,b) mod p, so that b/(a,b) > p+a/(a,b) > p+1.
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Boyle [2] proved in 1978 that if there is a prime ¢ > (n—1)/2 dividing
some a;, then Graham’s conjecture holds for §. The following result
was proved by Szegedy in [7].

Lemma 2. If there is a prime g > n/2 dividing some a;, and if the
mazimal reduced ratio from S is at most n, then S is a standard set.

For completeness, we sketch a proof of Lemma 2. The result is trivial
if ¢ > n, so assume that ¢ < n. Without loss of generality, we may
assume that g divides each of ay,...,as and that g does not divide
Gs41,-.- ,0n, for some integer s with 1 < s < n — 1. Let B be the
least common multiple of a;/q,...,as/q and let A be the greatest
common divisor of asyy,...,a,. Our first observation is that B|A.
Indeed, this will follow if we show that for each i = 1,...,s and each
j=s+1,...,n, we have a;/q|a;. But

n> g ai/d ,
(ai,a;) " (ai/q,a5)

so that if a;/q does not divide a;, then n > 2¢, a contradiction.

Now let a; = min{as, ... ,as} and let a; = max{as41,...,a,}. Since
B/(a1/q),-...,B/(as/q) are distinct integers, we have B/(a;/q) > s.
Since as41/A,... ,a,/A are distinct integers, we have a;/A > n — s.
Thus

n>_% _ % _9 A B
(ai,a;) ai/g A B ai/q

s(n — S)E

The cases n < 4 may be handled by simple arguments, so assume
n > 5. Since A/B is an integer, we have either s = 1 or s = n — 1,
since if not, s(n — s) > 2(n —2) > n. We also have A = B, since
s(n—s)=n—1. If s =1, we have B = a1/q, so since § is a primitive
set, we must have B = A = 1 and a1 = ¢. If a;j = n — 1, then
{az,...,a,} ={1,... ,n— 1}, so that a;y = ¢ = n and § is a standard
set. Similarly, S is a standard set if a; = n. If a; > n, the lemma
also holds. This concludes the case s = 1. But if s = n — 1, we may
replace {ai,...,a,} with the set {C/ai,...,C/an}, where C is the
least common multiple of the set and so end up again in the case s = 1.
Thus § is standard, which concludes our sketch of the proof of the
lemma.
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From now on, we shall always assume that the primitive set S
satisfies the hypothesis of Theorem 1. That is, for each i, j, we have
a;/(a;,a;) < n.

3. Wanted pairs. From (1) it follows that if n is sufficiently large,
there is a prime P satisfying

(2) 2n—n/L < P <2n—n/(2L),

where L = log® n. For n at least 4 we have L > 4, so that P > Tn/4.

Let us call an ordered pair (a;,a;) of elements from S a wanted pair
if a; +a; = 0 mod P. Let N denote the number of members of S that
are not in any wanted pair. By Lemmas 1 and 2, the negatives of these
N members of S, together with S, form a set of n+ N distinct nonzero
residues mod P. Thus, n + N < P — 1. But the number of wanted
pairs is n — N, so there are at least 2n — P + 1 wanted pairs.

We shall now count these wanted pairs another way.

Definition. For each integer m, let F(m) denote the set of wanted
pairs (a;,a;) with a;/(a;,a;) = m. Further, let F(m) denote the
cardinality of F(m).

Thus the total number of wanted pairs is Y _~_, F(m).

Which numbers m have F(m) > 0?7 From our assumption that S
satisfies the hypothesis of the strong Graham conjecture, it follows that
if (a;,a;) € F(m), then

a; aj

(ai,a;) " (ai,a;)

:P,

since the sum is 0 mod P, P > 7n/4 and the larger summand is at
least one half of the sum. Thus these two reduced ratios are both in
the interval [P —n, n]. It follows that F/(m) = 0 unless P—n < m < n.
Thus, from the above observations, we have

(3) i F(m)>2n—P+1.

m=P—n
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The main idea of the proof is to show that the contribution to this sum
of the terms with F'(m) > 1 is small. Since the sum is at least the
number of positive terms, it follows from (3) that very few terms are 0,
in fact almost all terms are positive. We will show that so many terms
are positive that there is at least one prime value of m with F(m) > 0.
Then some q; is divisible by a prime, namely m, that exceeds n/2, so
that the theorem follows from Lemma 2.

Suppose
T(m) = {<b1,61>, ceey <bF(m)a CF(m)>}

It is easy to see that (b;,c;) € F(m) if and only if (¢;, b;) € F(P —m),
so that

(4) F(m) = F(P —m).
For 4,5 € {1,... ,F(m)}, let

bi C;
(biv CJ') ’

Then X;; < n and Y;; < n. Note that

(5) Xij =

Xinji - blbj m2

YijYji  cicg (P —m)*
Since the last fraction is in reduced form, it follows that X;; X;; = Z m?
for some positive integer Z. We claim that Z = 1. Indeed, since
F(m) > 0, we have m € [P — n,n], so that m > 3n/4. Thus, if Z > 2,

one of X;; or X;; will be at least V2m > n, a contradiction. Hence,
Z =1 as claimed and

(6) Xi; Xji = m?, Y;;Yji = (P —m)®.

Consider the map
¢ : F(m) — N2,

where ¢((b;, ¢;)) = (X14, Y1;). What we have proved implies that Im (¢)
is contained in

(7)
{{X,Y) e N?: X|m?, Y|(P-m)? max{X,Y,m?/X, (P-m)?/Y} < n}.
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We claim that ¢ is a one-to-one map. Indeed, (6), X1; = Xy
and Yy; = Yi; imply that X;; = m?/Xy; = m?/X;; = Xj1 and
Y = (P —m)?/Yy = (P —m)?/Y1; = Yj1. Also, (5), X1; = X1; and
Y1, = Y1, imply that (by,¢;) = (b1,¢;) and (b, c1) = (bj,c1). Thus,
(5), X;1 = X1 and Y;; =Yj; imply that b; = b; and ¢; = ¢;. We have
proved our claim.

Definition. For any positive integer m, let G(m) be the set of
positive divisors X of m? with X < n and m?/X < n. Let G(m)
be the cardinality of G(m).

Note that the cardinality of the set (7) is G(m)G(P — m). We thus
have proved the following result.

Lemma 3. For any integer m > 0, we have F(m) < G(m)G(P—m).
We now prove the following result.

Lemma 4. We have

Yo Fm)< Y G(m)

m:F(m)>0 m:F(m)>0

Proof. From Lemma 3 and Cauchy’s inequality we have

Z F(m) < Z G(m)G(P —m)

m:F(m)>0 m:F(m)>0
< ( >
m:F(m

By (4), F(m) > 0 if and only if F(P —m) > 0. Thus the sums in the
parentheses are equal and the lemma follows. u]

1/2
Gm)* Y G(Pm)2> .

)>0 m:F(m)>0

We now turn our attention to estimating G(m). It is clear from the
definition that G(m) < d(m?) for any positive integer m, where d is the
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divisor function. Let d3(m) denote the number of ordered triples a, b, ¢
of positive integers with abc = m. It is evident that d(m?) < d3(m) for
all positive integers m, since both functions are multiplicative and, for
any prime power p®, we have d(p??) = 2a + 1 < (“;2) = d3(p®). Thus,
we have

(8) G(m) < d3(m)

for every positive integer m. In fact, we can say a little more.

Lemma 5. For m € [P — n,n|, we have
G(m) < #{(t,k,1) € N®: tkl = m, (k,1) = 1,

k€ [v/n/t(l = 1/L),v/n/t]}.

Proof. Let m € [P —n,n]. For each X € G(m), let k,l be coprime
with
X m k

m_ m2/X 1
Thus k|m, l|m, so there is some integer ¢ with m = tkl. This mapping
from G(m) to ordered triples, t,k, 1, is one-to-one since X = mk/l =
tk2. Tt remains to show that

k,le [M(l - l/L)’ \/Tﬁ]

The upper bound for k,l is immediate since n > X = tk? and
n > m?/X = tI2. For the lower bound, note that m > n(1 — 1/L), so

that
m n 1 n 1
=gz a(-1) =50 1)

by the upper bound for [. We similarly have the same result for [. This
concludes the proof of the lemma. i

Remark. From (2) the triple (m, 1, 1) is always in the set described in
Lemma 5. Thus, if G(m) > 1, this set must contain at least one other
triple (t,k,1). Any triple (¢, k,[) in this set satisfies

min{k, 1} > (1 - %) max{k, [},
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so that if (¢, k,1) # (m, 1,1), then max{k,l} > L and min{k,[} > L—1.
Indeed, otherwise k and [ would be coprime integers in an interval of
length less than 1, an impossibility unless they are both 1.

4. The arithmetic function ds. In this section we are going
to prove several inequalities concerning the function dz defined in the
preceding section. Preliminary to that we shall first prove some simple
results about the divisor function d.

Lemma 6. For xz > 1, we have

1
E d(h) <z(logz+1) and E 510ga:+2)
h<z h<z

Proof. We have

OESHIEINFIED W

h<z h<z jlh i<z

J;(l—i—/ %) =z(logz + 1),
1

which proves the first assertion of the lemma. To see the second
assertion, we use the first assertion and partial summation, getting

0 R POLLES L

h<z h<z h<t

“logt+1
§log:v+1+/ %
1

<

dt
log z+2logz+1< (10gx+2)

This completes the proof of the lemma. ]

Lemma 7. For 1< z2/3 < y < x, we have

Z ds(h) < y(logz + 3)%.

z—y<h<z
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Proof. If h is factored into 3 positive integers, then the product
of the smaller two of these factors must be < h%/3. Thus ds(h) <
32 jih,j<nz/s d(j). Thus, from Lemma 6,

Yo od(<3 D> D> A <3 Y dE) Y, L

z—y<h<z z—y<h<z jlh,j<h2/3 j<ax2/3 z—y<h<z,jlh
=3 E d(y) E 1<3 E d(j < >
j<z2/3 (z—y)/i<k<z/j j<a?/3

A

3

§y(log 2?3 +2)2 + 3223 (log 22/3 +1)
2

< gy(logx +3)2 + y(2logz + 3).

The lemma easily follows. o

Lemma 8. For z > 1, we have

dy(h) _ 1 ds(h 1 <
’;E Y 6(logm+3) and }; h2 6—; 1og:v+6

Proof. First note that from Lemma 6, we have

sl = 0 S di) = i) %]

h<z h<z j\h j<lz
< xz z(logz + 2)%.
i<z

Thus, by partial summation, we have

) d3;(zh) _ % > ds(h) +/zt122d3(h) dt

h<z h<z 1 h<t

1 1
< §(logx+2)2+/ 2—(10gt+2) dt
1

(logz +2)3 < g(logm +3)3.
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This is the first assertion in the lemma. Using this result, we have

ds(h)? ds(h
I POk DI

h<z h<z abc=
_ Z d3(abc) S Z d3(a) dg(b) dg(C)
abc a b c
abe<z abe<z

d3a d3bd36
<6y Y yeuebod

C
a<zl/3 b<gl/2 c<z

1

< 6—2(10g 2% 4+ 3)3(log 2'/? + 3)3(log & + 3)°
1 1

= 6—5(10gw +9)%(logz + 6)*(log z + 3)* < 6—5(10ga: +6)°.

We now use partial summation with this last inequality to get

ds(h)? 1 ds(h)?
Z ;(12) :/zt_ZZ (h)dt

h>x c<h<t
1 [ (logt+6)°
D AT dt
1 9!
k=0
This completes the proof of the lemma. i

5. Conclusion of the proof of Theorem 1. In this section we
shall show that for all large n,

(9) Y (F(m) 1) < o

<3 logn’
m:F(m)>0

Note that from (1) and (2), the number of primes in [P — n,n| is at
least

(10) m(n) - W(” - %) ~ 3L17;L)gn
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for all large n. Recall that F'(m) > 0 implies that m € [P —n,n]. Thus,
from (3) and (9) we have that

Yoo1= Y Fm)- Y (F(m)-1)

m:F(m)>0 m n m:F(m)>0
n
n-P+1—- —.
> en + 3Llogn

But from (10), the number of composites in the interval [P — n,n] is
less than 2n — P +1 —n/(3Llogn), so that there must be some prime
value of m with F(m) > 0. It follows that some a; is divisible by a
prime exceeding n/2, namely m, and so Lemma 2 is applicable. Thus,
the strong Graham conjecture holds for those values of n for which (9)
and (10) both hold.

From Lemma 4, we have that

(11)
Y, Fm-1< Y (Gm)*-1)
m:F(m)>0 m:F(m)>0
< Y Gmr-n< Y Gme
me[P—n,n] me[P—n,n]
G(m)>1 G(m)>1
Let

G = {(t,k,1) € N*: tkl € [P — n,n],
Vnft(l—1/L) <1<k <\/nft,L —1<1}.

From Lemma 5 and the subsequent remark, if m € [P — n,n] and
G(m) > 1, then

Gmy<1+2 Y 1<3 Y 1L
(t,k,1)EG (t,k,1)EG
tkl=m tkl=m
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Thus, from (8),

Yo GmP< ) dy(m)G(m)

me[P—n,n] me[P—n,n]
G(m)>1 G(m)>1
<3 Y dgm) 1
me[P—n,n k,1)eEG
(12) égm)>1 ! <ttkl:>7i
<3 ) ds(tkl)
(t,k,1)eG
<3 ) ds(t)ds(k)ds(l).
(t,k,lyeg

We shall distinguish two cases: t < n/LS and ¢t > n/L°. In the first
case we have, using Lemmas 7 and 8,

Sp:=3 > ds(t)ds(k)ds(l)
(t,k,1)eg
t<n/LS®

HD SRCCI G SR AC)
t<n/L® VEA-D)<k</E

IA

3 Vn/t 9 2
(13) <3 Z dg(t)( 7 (log v/n/t +3) >
t<n/LS

3n 4 dg(t)

< opallogvn+3)t Y7 =
t<n/LS

< 473 (log Vi + 3)*(log(n/L°) + 3)°
_ " 4 _ 3
= 64L2(logn+6) (logn — 6log L + 3)°.

For our next estimation we shall need n > L?. For L = log®n, this
holds if n > 10'%!. We now assume that n is at least this large. Thus,



ON A CONJECTURE OF R.L. GRAHAM 973

by Lemma 7, we have

Sp:=3 > ds(t)ds(k)ds(l)

(t,k,1)EG
n/LS<t
<3 Z Z ds(k)ds (1) Z ds(t)
L<k<L3 k(1-1)<I<k EA-E)<t<H
n/(kl
<3 XY dbdm™ togn/ ) + 57
L<k<L? k(1-L)<i<k

< %(logn—log(L2 —L)+3)? Z Z M

By Cauchy’s inequality and Lemma 8§,

ds(k)ds(l
Z Z (121 (1)
L<k<L3 k(1-1)<i<k
—y y BWdkod)

j<L? jL<k<LS3 ]

dz(k)* ds(k — )2\ */?
= 2 k=)
J';Z <jL<Zk<L3 k jL<kZ<L3 (k_J) >
ds(k
<y oy AW

j<L?2k>jL—j

9
1 9!
- — (log(jL) + 6
<265(]ij Zz' Og] )+ )
j<L? i=
9

_1 Zﬁ log L° + 6)° Z —.
=0 ]<L2
For L > (log 101°1)8  we have

9
9!
> = (log L* + 6)* < 1.06(log L* + 6)°,
(2
=0
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so that from the above estimates we have
(14)

Sy < 3fn(logn —log(L* — L) +3)

5 — ;
6°(L —1) Pty
3.18n

_ 2 2 3 9 2
65L(L_l)(logn log(L* — L) + 3)*(log L> + 6)”(log L* + 1)

1mn
< F(logn —2log L + 3)*(log L + 2)*°.

We conclude from (11), (12), (13) and (14) that for n > 101 we
have

(15) Y (Fm)-1)< 81 +S,

m:F(m)>0

1
< % (6—4(logn + 6)*(logn — 6log L + 3)®

+ 17(logn — 2log L + 3)*(log L + 2)10).

The expression on the right of (15) is smaller than n/(3Llogn) if and
only if

1
(16) 6—4(logn+6)4(lognfﬁlogL+3)3
L
17(1 —2log L 2log L +2)10 « —— |
+ 17(logn ogL +3)*(log L +2) <310gn

With L = log® n, we have (16) for n > 10%°%°, Thus, we have (9) for
n > 106,000‘

We now turn to (10). From Theorem 3 in [6], we have (10) with
L =log®n and n > 10°%:990 This completes the proof of Theorem 1.
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