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A RESTRICTION-EXTENSION PROPERTY FOR
OPERATORS ON BANACH SPACES

VANIA MASCIONI

ABSTRACT. We study a natural property of operators be-
tween Banach spaces which is shared by the class of operators
factoring through a Hilbert space. This leads in particular
to an operator theoretic version of the Lindenstrauss-Tzafriri
characterization of Hilbertian spaces. Also, we point out
connections to a classical result of Johnson-Koénig-Maurey-
Retherford.

Lindenstrauss and Tzafriri [6] proved the celebrated characterization:
a Banach space is isomorphic to a Hilbert space if and only if there
exists a constant C > 0 such that, whenever E is a finite dimensional
subspace of X, we can find an operator R on X such that R|g = idg,
RX = E and ||R|| < C. It is clear that the operator R is a projection.
This reformulation of the Lindenstrauss-Tzafriri result suggests what
seems to be a natural operator theoretic analogon of a space in which
every subspace is complemented:

Definition. Let T': X — Y be an operator between Banach spaces
X and Y. T has property (Ho) if for every closed subspace Z C X
the restriction T'|z admits a bounded extension R : X — Y with range
RX CTZ.

With only minor changes, the Davis, Dean, Singer argument of
[1] applies to show that, given T" with (H,), the “extensions of the
restrictions” R corresponding to finite dimensional subspaces Z of X
can be chosen to be uniformly bounded. In terms of the next definition
this means that if T' has (Hw, ), then T has (H):

Definition. We say that T': X — Y has property (H) if there exists
a positive constant C' such that whenever E is a finite dimensional
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subspace of X, we can find an operator R : X — Y such that
R|g =T|g, RX =TF and ||R|| < C||T|.

Property (H) was first introduced by Figiel and Pelczyniski [2, Prob-
lem 1227], where the question is whether operators with (H) fac-
tor through a Hilbert space. In fact, property (H) can be regarded
as an attempt to extend the concept of the strongest possible uni-
form approximation property to the context of operators and, clearly,
if an operator T factors through a Hilbert space, then it has (Hy)
(and a fortiori (H))). Under an additional hypothesis, we will prove
the converse, which looks as a somewhat intriguing generalization of
the Lindenstrauss-Tzafriri result above (see Theorem 5). As a fur-
ther description of property (H), we will point out its connection to
an operator-theoretic version of a classical result of Johnson-Konig-
Maurey-Retherford [5, Theorem 3.11, 3.13]: an operator T : X — Y
has (H) if and only if, for every nuclear operator v : ¥ — X, the
eigenvalues of vT are absolutely summable (see Theorem 9).

In the sequel, we will concentrate on property (H): it turns out to
be self-dual (i.e., T has (H) if and only if T has (H): see Theorem
1) and is equivalent to the following property (H¢), which is defined in
terms of finite codimensional spaces (see Theorem 2):

Definition. 7 : X — Y, an operator between Banach spaces X
and Y, has property (H¢) if there exists a positive constant C such
that, whenever Xy is a finite codimensional subspace of X, we can find
an operator R : X — Y such that R|x, = T|x,, RX C TX, and
||| < C|T].

It is not clear whether (H) is equivalent to (H.,). Using ultraprod-
ucts, one can easily show that this is true in the case when the range
of T is reflexive.

Let us agree to say that an operator T has (H) (or (H¢)) with
constant C if C' satisfies the property in the definition. In the following,
we are going to adopt standard terminology and notation, such as in [7].
In particular, an operator 7' : X — Y is a continuous linear mapping,
T* is the corresponding adjoint operator. If E (respectively, F) is a
subspace of a Banach space X (respectively, of its dual X*), we have
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Et = {z* € X* : (z*,e) = 0, foralle € E} and 1F = {z € X :
(z,f) =0, for all f € F}. As concerns ultrafilters and ultrapowers of
Banach spaces and operators, we refer to [3, 4].

Theorem 1. An operator T : X — 'Y has (H) if and only if T* has
(H).

Proof. Step 1. We first prove the “only if” part in the special case
when X is finite dimensional. Suppose T has (H) with constant C'. Let
G C Y* be finite dimensional and define £ = T~ }(+G). Let S: X = Y
be such that S|g = T|g, SX = TE = +G, and ||S|| < C||T||. Define
R=T-9*":Y*— X*. If g € G and z € X we have (S*g,z) =
(9,8r) = 0 (since Sz € +G) and so S*g = 0, which means that
R|g = T*|g. Further, since E = T~}(1G) = L(T*G) = ker (T — 9),
we have

rank R = rank (T — §)* = dim [ker (T — S)]*
=dim [T7'(*@)]* = dim (F(T*G))* = dim T*G,
whence rank R = dimT*G (since R|¢ = T™|¢) and thus, RY™* = T*G.

Finally, ||R|| < (C + 1)||T*||. All this means that T* has (H) with
constant C' + 1.

Step 2. If dimX = oo, fix G C Y™, with G finite dimensional.
Let E C X be finite dimensional and such that E 2-norms T*G (i.e.,
the natural restriction mapping J : T*G — E* is invertible with
1774 < 2).

Look at (T'|g)* : Y* — E*. By Step 1, (T'|g)* has (H) with constant
C + 1 (we will assume that T has (H) with constant C'). So we can
find an operator S : Y* — (T'|g)*G such that S|¢ = (T|g)*|a, ||S]] <
(C+ DI(T|e)*|| < (C+1)||T||- Finally, note that (T|g)*G = JT*TG
is 2-isomorphic to T*G (J was chosen as a 2-isomorphism).

Define R = J~!S : Y* — T*G. We see that R|g = T*|g, and

[|R|]| < 2(C + 1)||T*||. This shows that T™ has (H) with constant
2(C +1).

Step 3. To prove the “if” part of the Theorem, note that if 7* has
(H), the above shows that T** has (H) and so (if Jx, respectively Jy,
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denotes the canonical embedding X — X**, respectively Y — Y™**)
T**Jx = JyT has (H). It is now immediate to see that JyT having
(H) implies that T has (H), too. O

Remark. Using the same ideas, an easier argument gives that 7' has
(Hw) if and only if T* does.

Corollary 2. IfT : X — Y is an operator and Q : Z — X is a
quotient mapping such that TQ has (H),then T has (H).

Proof. Since T'Q has (H), by Theorem 1 Q*T™* has (H). Q* being
an isomorphic embedding, it is clear that T has (H) and so, again by
Theorem 1, T has (H). o

Thanks to the Corollary, we may restrict our investigation of opera-
tors with property (H) to the injective ones. We will use this trick to
prove the following

Theorem 3. An operator T : X — Y has (H) if and only if it has
(H).

Proof. First we show that if T : X — Y has (H®),ifQ : X — X/kerT
is the natural quotient mapping and Ty : X/kerT — Y is such
that T = T,Q, then Ty has (H®). In fact, let W C X/kerT be
finite codimensional. Then, QW is finite codimensional in X. Let
S:X =Y be such that S|g-1y = T|g-1w, SX CT(Q™W) =T, W,
and ||S|| < C||T|| (T is assumed to have (H®) with constant C). Since
kerT C Q~'W, we have kerT C kerS and so S = SyQ for some
SO : X/kEI‘T — Y. Now SO‘W = T0|W, So(X/keI'T) =S5X C T()W,
and ||So|| < C||To]|, proving that Ty has (H€) with constant C.

By the above, if T has (H¢) with constant C, we may as well assume
that T is injective. Let E C X be finite dimensional. Let Yy be a
finite codimensional subspace of Y containing T'F and such that there
is a projection P from Y onto TE with ||P|| < 2. Since Xo = T'Y,
is finite codimensional in X (T is injective), there exists an operator
S : X — Y such that S|x, = T|x,, SXo = Yo, and ||S]| < C||T||. If
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we look at R = PS : X — TE, we see that T has (H) with constant
2C.

On the other hand, if T has (H) with constant C', T* has (H)
with constant 2(C + 1) by Theorem 1. Without loss of generality (by
Corollary 2), we may assume that T* is injective. Fix Xy C X finite
codimensional. Then, F = (T*) !(Xg") is finite dimensional in Y*.
Therefore we can find an operator R : Y* — X* such that R|p = T*|p,
RY* = T*F = X7, and ||R|| < 2(C +1)||T||. Define S =T — R*|x.
If zp € Xo and y* € Y™, we have (R*zg,y*) = (zo,Ry*) = 0 (since
Ry* € Xi), and so R*|x, = 0, which implies S|x, = T|x,. Clearly,
[IS]] < [2(C + 1) + 1]||T|| and, further,

(TXo)" = (T")"H(Xg) Cker (T* — R) C (§X)™.
This implies SX C +((TXp)1) = T X, concluding the proof. o

Before we formulate the generalization of the Lindenstrauss-Tzafriri
result, we need a definition:

Definition. An operator T : X — Y is said to be super strictly
singular (sss) if it doesn’t have the following property: there exist a
constant C' and a sequence of finite dimensional subspaces (E,) of X
such that limdim E,, = oo and ||(T|g,) || < C for all n.

(sss) operators have been introduced by Mitjagin and Pelczyniski [8].
If T is not (sss), we may roughly say that T “fixes” the E,’s uniformly
(this is just a short form to say that 7' is a uniformly invertible
isomorphism whenever restricted to each E,,). By Dvoretzky’s theorem,
we actually have that T is (sss) if and only if it doesn’t “fix” the I3’s
uniformly.

The reason for the (sss) terminology lies in the theory of the so-
called super-ideals of operators. Recall that T is strictly singular (ss)
if no restriction of T' to any infinite dimensional subspace of X is an
isomorphism. Following a standard procedure (see [3]), we say that T
is super-(ss) if every ultrapower of T is (ss).

Lemma 4. An operator T : X — Y 1is (sss) if and only if it is
super-(ss).
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Proof. If T' is not (sss), then there exist a constant C' and subspaces
E, of X as in the above definition. Let U be a free ultrafilter on N.
Then Z =[] E,/U is infinite dimensional and it trivially isometrically
embeds into the ultrapower [[ X/U of X. It is easy to check that
the ultrapower [[T/U : [ X/U — J]Y/U is an isomorphism when
restricted to Z and so it cannot be (ss). Consequently, T" is not super-
(ss).

Conversely, if T' is not super-(ss), by definition there exists an ultra-
filter U such that []T/U is not (ss), i.e., it satisfies ||(T|z)7!|| < C for
some infinite dimensional subspace Z of [] X/U and for some constant
C. If F is any finite dimensional subspace of Z, by a classical finite rep-
resentability theorem for ultrapowers (see [4]) we can find F’' C X with
dim F’ = dim F such that [|(T|F/)7"|] < C + 1. Since the dimension of
F is arbitrary, we see that T' cannot be (sss). o

The following theorem reduces to the Lindenstrauss-Tzafriri result if
we take the special case of T" being the identity on some Banach space.
Recall that, if S : W — Z is an operator, then ~2(S) is defined to be
the infimum of ||Sy|||S2|| over all factorizations S = S35 through a
Hilbert space. Fixing W and Z, 7» is a Banach norm on the space
of all operators W — Z which factor through a Hilbert space. It is
a standard fact that S factors through a Hilbert space if and only if
sup{y2(S|r) : F C W, F finite dimensional} is bounded above.

Theorem 5. If an operator T : X — Y has (H) and is not (sss),
then it factors through a Hilbert space.

Proof. To avoid confusion, note that we can assume that T is
injective, by Corollary 2. Since T is not (sss) there exist a constant C' >
1 and finite dimensional subspaces E,, of X such that lim dim F,, = co
and ||(T|g,) || < C for all n. We may assume that dim E,, = n and
(by Dvoretzky’s theorem) that d(Ey,I5) < C for all n; this means that,
for each n, we can find R : [§ — E,, an isomorphism such that ||R|| <1
and ||R7Y|| < C.

Fix n € N and an arbitrary n-dimensional subspace E of X. We may
assume that ENE, =TENTE, =3. Let T1 : E = 13,1,:15 - TE
be such that T|p = 15T, and ||T1]| = ||T3|| = 72 (T| ).
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Look at E & E,,. Define the subspace D = {e® RTe: e € E}. Since
T|geE, has (H) (say, with constant C”), there exists an operator

Tp:E®E, -TD={Te®TRTe:ec E}

such that T extends T'|p and ||Tp|| < C'||T||. Define the operators
a:FE — FE and 8 : E, — FE implicitly by

Tp(z®y) = (Tazx + THy) ® (T'RTiax + TRT1 Sy).
Since Tp extends T'|p, we have
Tp(e® RIve) =T(e® RTve) = (Tae+TBRT1e) D - =Ted---

for all e € E, where we put “...” instead of the component in TE,,,

which is not important for us. It follows that
Finally,

Y2(T|E) < y2(TeTia) + v2(TBRTY)
< % (Te) *(|Trel| + || To)
< (7)) *(|IR"HT|E,) *TRTie|| + C'||T])).

Now ||[R™Y(T|g,) 'TRT1al| < [|R7Y(T|E,) | Tpll < C*C'||IT],
and so we get

72(T|p) < (L+CHC'|T|72(Tp)"?

showing that sup{y2(T|g) : E C X, F finite dimensional} is finite, but
this means that 7" factors through a Hilbert space. O

Using Theorem 1 we immediately deduce

Corollary 6. IfT : X — Y has (H) and doesn’t factor through a
Hilbert space, then T, T*,T**,... are (sss) and TX is not closed in'Y.

Proof. Let T have (H). If any of the adjoints of T is not (sss),
the same adjoint has (H) by Theorem 1, and so it factors through a
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Hilbert space by Theorem 5. On the other hand, if TX is closed in Y,
T = ToQ where Q : X — X/kerT is the canonical quotient map and
Ty : X/kerT — 'Y is an isometric embedding. By Corollary 2, Ty has
(H) and so, by Lindenstrauss-Tzafriri’s result, X/ker T is isomorphic
to a Hilbert space. o

As pointed out above, it is open whether operators with (H) always
factor through a Hilbert space (this was the original question of Figiel
and Pelczyniski). Anyway, after this paper had been submitted for pub-
lication, Pelczyniski [10] showed me a very nice unpublished argument
of his to prove that an operator with (H) always is weakly compact.
This obviously makes the following corollary ridiculously obsolete. The
proof presented here, however, clearly is much simpler than Pelczynski’s
more powerful approach.

Corollary 7. (a) If T : X — Y has (H) and X is an L -space,
then T s weakly compact.

(b) If T: X - Y has (H) and Y is an L;-space, then T is weakly
compact. In particular, if Y =11 then T is compact.

Proof. (a) If T has (H) and is not (sss), then, by the above, T' “fixes”
the [3’s and, moreover, these [%’s are uniformly complemented in X.
Since this cannot happen when X is an £,-space, T must by (sss) and
so,in particular, T is strictly singular. By [9], T' is weakly compact.

(b)If T : X — Y has (H) and Y is an L;-space, then T™ has (H)
and part (a) applies. Hence, T is weakly compact. If Y = [y, then T is
actually compact because [; has the Schur property. ]

In the positive direction, the following is evident after Theorem 5:

Corollary 8. X — Y factors through a Hilbert space if and only if
T@idl2 XDl Y @l has (H)

We conclude with an application of this Corollary to the proof of
the following characterization of property (H), which generalizes [5,
Theorem 3.11, 3.13]:
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Theorem 9. An operator T : X — Y has (H) if and only if, for
every nuclear operator v : Y — X, the eigenvalues of vI' are absolutely
summable. Equivalently, if and only if there exists a constant ¢ such
that T satisfies

(1) > IN(T)] < elfolla
i=1
for allv:Y — X of finite rank (where || - ||n is the nuclear norm).

Proof. That condition (1) is equivalent to saying that, for every
nuclear operator v : Y — X, the eigenvalues of vT are absolutely
summable, can be seen as in [5, Theorem 3.11, 3.13].

Now let T satisfy (1). We proceed in the spirit of [5, Lemma 3.12]:
fix a finite dimensional subspace E of X, e > 0,and call Ty : E - TE
the restriction and astriction of 7. The operator norms

1S|]y = inf{||S|| : S € L(X,TE),S|g =S} on L(E,TE)

and
|R||a1 = |ligR|[» on L(TE, E)

(where i : E — X is the natural inclusion) are easily seen to be in
duality with respect to the trace functional (see [5, Lemma 3.13]). So
there exists R € L(TE, E), ||R||n1 = 1, such that ||Tp|[1 = tr (RTp).
Let R € L(Y,X) be a “Hahn-Banach extension” of R such that
IIR||rn < (1 +¢€)|[inR||n =1 +e&. Then,

oo

1To|ly = tr (RTp) < > |Xi(RTy)|

i=1
° ~
<> (RT))
i=1
< cl[R||r < e(1+e).
Since € was arbitrary, it is easy to see that the above inequality means

that there exists an extension T : X — TE of T|p with ||T|| < ¢, i.e.,
that T has property (H) with constant c.
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Conversely, let T have (H) (say, with constant C') and let v: Y — X
be nuclear. Let (A;(vT)) be the sequence of the eigenvalues of vT,
with repetitions according to multiplicities. To prove that (A\;(vT)) is
absolutely summable, it is enough to show that

z": A, (vT)| < CN(v)

i=1

for any finite subsequence (Ag,(vT))?,. Pick such a subsequence
and let xp,, ¢ = 1,...,n be corresponding (linearly independent)
eigenvectors. Let E = spanzy,] C X. Let Ty : E — TFE be the
restriction and astriction of T and, similarly, let vy : TE — E be the
restriction and astriction of v. Let Tg : X — TFE be an extension of
Ty with ||Tg|| < C (T has (H) with constant C). We then have

Z)‘ki (UT)‘ = |tr (voTp)| = |tr (vTE)| < CN(v)

i=1

(see [11, Lemma 0.4]) which is what we needed. o
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