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A QUASI INNER PRODUCT APPROACH
FOR CONSTRUCTING SOLUTION
REPRESENTATIONS OF CAUCHY PROBLEMS

L.R. BRAGG

ABSTRACT. Integral representations for a wide class of
Cauchy problems are developed by employing the method of
quasi inner products. This approach reduces the construction
of solutions to translations followed by integrations. Bounds
on solutions corresponding to polynomial data are obtained
and these permit proving series representation theorems in
terms of special polynomial and other sets. Among the
problems considered are ones associated with the Yukawa,
the Helmholtz, the EPD and the GASPT equations. Some
nonstandard and higher order equations are also considered.

1. Introduction. Function theoretic methods have played a
significant role in the development of solutions of partial differential
equations and in deducing their properties. These methods have a
long and rich history and ongoing refinements continue to lead to new
and important results for initial and boundary value problems. Major
innovators in this subject include E.T. Whittaker [23, 24], S. Bergman
[2] and I. Vekua [20]. The list of authors who have made contributions
in this area is indeed extensive and the reader is further referred to the
treatises of R.P. Gilbert [17] and K.W. Bauer and S. Ruscheweyh [1] for
a broad coverage of the subject and for their extensive bibliographies.

At the heart of most of these approaches for solving partial differential
equations is the Cauchy integral formula and various modifications of it.
In this paper we employ one such version which permits the construc-
tion of integral and series representations for a wide class of Cauchy
problems that involve, for example, the wave equation, the Laplace
equation, the Euler-Poisson-Darboux (EPD) equation, the equation of
generalized axially symmetric potential theory (GASPT), the Yukawa
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equation, and the Helmholtz equation. This version of the integral for-
mula is the quasi inner product (qip) which was introduced in [5]. It was
employed in [6] to construct solutions of a variety of Cauchy problems
by carrying out complex transformations on solutions of generalized
heat problems. In a number of the applications considered there, the
complex transformations reduced to real transformations and these, in
turn, defined transmutational type formulas which could be extended
to apply to abstract generalizations of the underlying pair of problems
(see [3, 8, 9, 13 and 14|, for example, for background material on
transmutations). In this paper we will be concerned with developing
a more systematic approach for obtaining real transformations for hy-
perbolic problems and their complex analogues for elliptic problems.
Further applications of gips may be found in the construction of as-
cent type formulas for the solutions of various “higher dimensional”
hyperbolic and elliptic problems [7].

Our approach for constructing real transformations of the type men-
tioned above is to first regard the solution of a Cauchy problem as the
result of a formal solution operator series acting on appropriate data
associated with the problem. The question then becomes the one of
assigning a precise meaning to this formalism. The approach taken in
[3] was to relate the given formal operator series acting on the data,
through appropriate integral transformations, to a simpler formal op-
erator series acting on the same data and for which a precise meaning
could be assigned. In that paper, the simpler formal operator series
were taken to be real translation operators or heat solution operators.
The transformations that related these pairs of formal operator series
then defined transmutations among the solutions of the various hyper-
geometric type Cauchy problems. Those transmutations took on the
form of Laplace transforms, inverse Laplace transforms and convolu-
tions. In this paper we take a different approach for interpreting the
original formal solution operator series by splitting it into two or more
component series by means of the quasi inner product. In most of the
cases considered, one or more of these component series will be taken
to define real or complex translation operators. Then the formal solu-
tion operator series can be replaced by a quasi inner product operator
which can be applied to the data to obtain a solution of the original
Cauchy problem. At the heart of this approach is an operational prop-
erty which permits moving factors and operators from one function to
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another. By using this approach, one can derive integral formulas for
solutions of problems involving the equations mentioned in the first
paragraph above as well as many more. Moreover, these formulas per-
mit establishing relatively simple bounds on solutions corresponding to
polynomial data, and these special solutions can be employed to estab-
lish series representation theorems for solutions of numerous Cauchy
problems.

In Section 2 we present the basic background on quasi inner products.
Included are the definition of the quasi inner product, its operational
properties, and examples of quasi inner products that occur frequently
in the applications. As will be seen later, these operational properties
permit considerable flexibility in assigning solutions to problems (de-
pending upon the analyticity properties of the underlying data). We
also use the quasi inner product to rewrite special types of series that
later appear frequently in the form of formal solution operator series
for Cauchy problems. One consequence of this will be a representa-
tion formula for the solution of an initial value problem for a second
order ordinary differential equation as a quasi inner product of solu-
tions of a pair of first order problems. Section 3 will be concerned
with a discussion of the two general types of Cauchy problems to be
considered, namely generalized wave problems and generalized EPD
problems. It will be seen that a common function can be constructed
and employed for solving both of these types of problems. A brief dis-
cussion of translation operators and heat solution operators will also be
included. The results of these two sections will be applied in Sections
4 to 6 to construct integral formulas for solutions for a representative
variety of special cases of these problems. In Sections 4 and 5 we treat,
respectively, the wave type and generalized EPD type problems, and
some classical solution formulas will be rederived in a new way. It will
be seen that appropriate factorizations of differential operators play a
key role in the solution construction process. Section 6 will specifi-
cally treat problems associated with the Yukawa and Helmholtz type
equations and solutions of these will be constructed corresponding to
polynomial data. As will be seen, the solution formulas of Sections 4
to 6 permit one to obtain simple and useful bounds on solutions for
polynomial data, and these will be employed in Section 7 to discuss
series representations of solutions for representative types of problems
considered, more specifically for those involving the Yukawa, Helmholtz
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and the EPD equations (see [10] for an alternative approach that makes
use of bounds on solutions expressed in terms of Jacobi polynomials).
Such series solutions play crucial roles in developing analytic function
theories for the underlying equations (see [11, 12, 16, 25 and 26]).
Finally, additional examples will be considered in Section 8 that illus-
trate a variety of aspects of the method of qips in the construction of
solutions of higher order problems.

2. Quasi inner products. Let fi(z1), f2(22) and fs5(z3) denote
three functions that are analytic in the z; in disks D; centered at the
origin. Further, suppose that

(oo}

fi(z) =D a2}

n=0

for z; € D;, j = 1,2,3. We define the quasi inner product fi(z1)o fa2(22)
of f1(z1) and fa2(z2) by the relation

(2.1)
2w 00
fi(z1) o fa(z2) = (2m) ! f1(21€%) fa(z2e7) df = Z ala? 22l
0 n=0

We note that this product can be trivial if f1(z1) # 0 and f2(z2) # 0.
For example, choose the function f;(z1) to be even in z; and choose
the function f(z2) to be odd in 2y (also, see [5]). The product
(2.1) is closely related to J. Hadamard’s convolution for discussing the
singularities of the function

0

1 2 _n
E a,a,z
n=0

in terms of the singularities of f;(z) and f2(z) (the “multiplication
of singularities” theorem) [27]. This can lead to some questions on
the domain of validity of the operation o and its properties when
discussing differential operators. However, in our applications of (2.1)
to differential equations, the underlying functions f;(z;) will be entire
in their arguments and the corresponding quasi inner products will be
nontrivial. In particular, we will use the quasi inner product to express
“entire” formal solution operators in terms of integrals that involve a
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product of exponential functions and operators acting on an underlying
data function.

In some applications, one or more of the underlying functions entering
the quasi inner product may depend upon two or more variables. For
such cases, we use underscores, as in [6], to indicate the variables being
singled out in the two functions to be used for forming the quasi inner
product. Thus, for example, we write

(2.2)

fi(21,23) © f2(22, 25, 24) = (27) ! f1(21€%, 23) fa(za, 2367 24) df.
0

From (2.1) we observe that if z; and Z; € D;, j = 1,2,3, and if
Z1%2 = Z1Z2, then
(2.3)
(a) fi(21) o fa(z2) = fa(22) o fi(21)
(b)  fi(21) o [f2(22) + fa(z2)] = f1(21) 0 fa(22) + f1(21) o f3(22)
(¢) fi(z1) o fa(z2) = f1(Z1) © f2(Z2)

provided that zo € D3 in formula (b). The elementary property (2.3c)
permits the moving of a factor from the argument of one of the functions
to the argument of the other when forming qips. If f1(z1) and f2(z2)
are entire in z; and z,, then we can write

(2.4)
2m
f1(A%2y) 0 f2(B?zy) = (2m) 1 | fu(A%w1e”) fo(BPwae ) db

0
2T

= (2m)7! f1(ABz 1) f,(ABzye=%) df
0

where A and B can denote scalar factors or commutative differential
operators. Of particular interest for later sections, we have the identity

2 ) i
(2.5) (2#)71/ eAme’ g Brrae™ g
0
27
= (27r)_1/ eABe VerTz g ABe Y arEs g
0

27
— (271,)71/ 62AB\/M(COSG) do
0
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when z; and z- are nonnegative.

For the purpose of developing solutions for various second order
Cauchy problems, we need to call upon quasi inner product represen-
tations for special functions defined by the series > 7o 2" /[(b)r(c)x]
where the symbol (b), is defined by (b)o = 1 and (b)r, = b(b+1)---(b+
kE—1)if £ > 1. Our primary aim is to express these functions as inte-
grals in which the free variables appear in exponential functions. These
formulas will prove to be useful in later sections on partial differential
equations when one or both of the free variables are replaced by appro-
priate operators. In the discussion to follow, we take b > 1 and ¢ > 1.
We consider other choices of b in Section 5.

Let -
z) =3 /()

Now gi(z) = €® and it is an elementary exercise, using the Laplace
transform, to show that g(z) = (b—1) fol o 2e*(1=9) do if b > 1. Next,
let Fy () = > pe2¥/[()k(c)k] with b > 1 and ¢ > 1 (this notation
is suggestive of hypergeometric functions and Fy .(z) = 1 F2(1;b, c; x)).
Then, using the integral for the function g,(z), we have

(2.6)

Fye(zy) = gb( ) ° gc(y)

-1)
2m i0 —1i6
// g { /0 et(l—o1)e” jy(l—o2)e d@}d(fldUz
-1)
2
// 01{2052{2_/ e2Vey(l—o1)(1—o2)(cos0) d9} doy dosy
0Jo ™ Jo

by (2.5). On the other hand, if b > 1 and ¢ = 1, this set of relations
must be replaced by

F(zy) = gv(z) © 91(y)

L[ i
27) =(b— 1)/ oy {%/0 z(=o)eey de} doy
1

2
:(b—l)/ ot~ 2{2 e2Vaey(l=o1) COSg)dG}dal.

3

0
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It is useful, for some purposes, to view the quasi inner product
formulas (2.6) and (2.7) as defining decompositions of the solutions of
initial value problems for higher order differential equations in terms of
solutions of a pair of lower order initial value problems. Conversely, the
composing of solutions of lower order problems to build up to solutions
of higher order problems has obvious connections with transmutations
and provides an alternative approach for developing solutions of higher
order problems. In order to present one such relation in the form of
a theorem of the type for transmutations as were stated in [3, 8 and
9], we first need to write out the initial value problems satisfied by the
functions g () and Fp .(z) (= Fp,.(x - 1)) above.

In the case of the function g,(z), it is relatively easy to show that it
satisfies the nonhomogeneous initial value problem

(28)  agh@)+(b—1-m)g(@)=b—1,  g(0)=1.

This follows by multiplying the series for g,(z) by x#°~1, differentiating
with respect to « and then rearranging terms appropriately. When
b =1, (2.9) reduces to the one for the exponential function. Using a
repetition of this approach, one can also show that the function Fj ()
is a solution of the nonhomogeneous initial value problem

(2.9)

22F"(z) + (b+c—1)zF' () + [(b—1)(c — 1) — 2] F(z)=(b — 1)(c — 1)

F(0) =1, F'(0) = 1/(be).

With these equations and initial conditions established, we have:

Theorem 2.1. Let u(z) and v(x) denote, respectively, solutions of
the initial value problems

zu'(z) + (b—1—xz)u(z) =b—1, u(0) =1

o' (z)+ (c— 1 —z)v(z) =c—1, v(0) = 1.

Then the solution of the initial value problem

(2.11)

22w (z) + (b+c—1D)zw' (z)+[(b — 1)(c — 1) — zJw(z)=(b — 1)(c — 1),
w(0) =1, w'(0) = 1/(bc)

is given by the formula

27
(2.12) w(z) = —/0 u(ze®)v(e ) db.

(2.10)
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One can establish a variety of theorems of this form for expressing
solutions of third and higher order problems in terms of lower order
ones.

3. Background on Cauchy problems. Let z = (z1,2,...,2,),
and let D = (D1, Ds, ... ,D,) in which D;¢(z) = 0¢(z)/0z;. Further,
let P(D) denote a partial differential operator in the D; with constant
coefficients. When n = 1, we take D; = D for simplicity. Usually we
will select P(D) to be a second order operator, and we generally restrict
n to the values 1 and 2. In this section, we wish to consider initial value
problems associated with classical partial differential equations having
the forms

(a) uu(z,t) = P(D)u(z,t)

BD 1) wlet) + et = PD)ulw ), a> 1.

We defer the case of (3.1b) with —1 < a < 1 to Section 5. For
problems associated with (3.1a), we take initial conditions to have
the form u(z,0) = 0, u(z,0) = ¢(z). A solution U(z,t) of (3.1a)
corresponding to the initial conditions U(z,0) = ¢(z), Ui(z,0) = 0
can then be obtained as U(z,t) = du(x,t)/0t. On the other hand,
we associate initial conditions of the form u(z,0) = ¢(x), us(z,0) =0
with the equation (3.1b). For the purpose of solving such initial value
problems, we will need to call upon evaluations of special operator series
acting on data functions. The ones to be employed in this paper are
given as follows:

(3.2)
oo Lk k

(a‘) Z k"] ¢($) :etDj¢(x) :¢(x17"' 7mk*17mk+taxk+17"' ,LL‘n)
k=0
>, t*D¥ >

b) > k!J (z) = e'Pig(x) = hy(x,t)
k=0

in which the function h;(x,t) denotes a solution of the initial value heat
problem

(3.3) hi(z,t) = D3h(z, 1), h(z,0) = ¢(z).

The formula (3.2a) defines a translation on the component variable

z; in the function @(z). If ¢ is real, we identify the operator e'Pi as
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a translator if ¢(z) has continuous first derivatives (i.e., the function
u(z,t) = e!Pp(z) = ¢(z +t) satisfies the problem u; = u, u(z,0) =
#(z) if ¢(xz) € C'). If t is complex, this data function is taken to be
analytic in the variables ;. In (3.2b), we identify the operator etDs”
as assigning to ¢(x) a solution to the problem (3.3). If ¢ is positive,
the function ¢(z) can be taken to be bounded and continuous while if
t is negative or complex, this function is taken to be entire of growth
(2,7) (see [19]). In the majority of constructions of solution functions,
we make use of translation operators in order to avoid unnecessary
analyticity requirements on ¢(z).

A. Wave problems. We now consider the equation (3.1a) with asso-
ciated initial conditions. Using power series methods, the solution of
this problem can formally be expressed in the form

t2k+1

NE

u(z,t) = mpk(D) - P()

() (i)

27 )
93/2(t6i9)6te_’9P(D)/4 . ¢(I) de
0
1

>
I
=

I
¢

—
w
=~

~—
ko

1\3’(*

™

/ 0_1/2K(:1:, t,o;¢)do

0

N | o+

where

1 [ 0, i
. K(x,t,0;0) = — eV oe ’ T .
3.5 ¢ 5 t(l1—o)e*” te P(D)/4 ¢ do
T Jo

The last member of (3.4) follows by using (2.7). Then, to obtain a
solution function, one needs to construct the function K(z,t,0;¢), and
this clearly depends upon the specific choice for the operator P(D) and
the analytic behavior of ¢(x). Particular examples of problems of type
(3.1a) are considered in Section 4.

B. FEuler-Poisson-Darboux type problems. Again, using series meth-
ods, we can show that the solution of (3.1b) with associated initial
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conditions can formally be expressed as

2 P*(D)
226 ((a+1)/ )kk'¢()

mt

p"qg

k

(3.6) N 0(((1+a/2 ) (tki:li?)>¢(w)

1 ) —i
_ g(a+1)/2(t610)€te 9P(D)/4¢($) do
0

[=}

8

|
M

2

B 1
S 5 1/ o 2K (2, t,0;¢) do
0

Note that the term in parentheses in the last member of this is the
same as the corresponding term in the last member of (3.4). Once this
term has been computed for specific choices of P(D) and ¢(z), one can
immediately write integral formulas for solutions for two different types
of problems. This shows that the calculations used in Section 4 can be
carried over to parts of Section 5.

4. Generalized “wave” type problems. We will now apply
the results of these last two sections to construct integral formulas for
solutions of (3.1a) with associated initial conditions corresponding to
different choices of n and the operator P(D). The more elementary
examples among these are primarily used to indicate how the solution
forms permit attaching simple bounds on some of the solutions. An-
alyticity requirements on the data function ¢(z) will be noted. The
integrals obtained for these solutions will be double integrals in which
one of the variables of integration represents an angular measure. While
these integrals take on a quite different form from the standard ones for
the classical wave problems, changes in the variables of integration will
lead to the more familiar results. The word “wave” in the title of this
section has been selected as a catch all term even though P(D) may be
the negative of an elliptic operator. The reason for this choice of words
is to avoid creating a new section with a change in the classification of
the underlying equation. In examples A—E below, we employ real and
complex translations to construct solution functions. In F, we rework
example C by employing a solution of a heat equation corresponding
to entire data.
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A.n =1, P(D) = D% With these selections, it follows from (3.5)
that

2m ) )
K(m,t,o;¢) — (271,)71/ etﬂeng/2ete_19\/ﬁD/2¢(x) do
0
27
(4‘1) — (27‘(‘)_1/ e(tcosG\/l—a)D(j)(l,) do
0

2m
=(2n)7! ¢(z+tcosbyv1 —o)db

0

where the last follows by (3.2a). Inserting this back into (3.4), we
obtain

1 2w
(4.2)  u(z,t) = 4i / o1/2 < é(z +tvV1 —ocosb) d9> do
0 0

7

provided that ¢(z) € C!. The reduction of this to the familiar
d’Alembert integral will be deferred to subsection B below.

Now suppose that we select ¢(x) = z", and let wy ,,(z,t) denote the
special solution u(z,t) corresponding to this ¢. It follows that

(4.3) |p(xz+tcosOv1 —o)| =|(z +tcosOvV1—o)"| < (|z] + [t])™
Thus, we find from (4.2) that ws ,, (z, t) satisfies the following inequality:
(4.4) |wan (2, )] < J¢[(|2] + [¢])".

These ws ., (z,t), n = 0,1,2,..., constitute one of the two classes of
wave polynomials [10].

B.n =2, P(D) = D} + D3. We first rewrite the operator P(D) in
the factored form (D; + iD3)(Dy — iD3). Upon introducing this into
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the inside integral in (3.5), we find that
(4.5)
K(z,t,0;¢)
2m ) )
_ (27r)_1 {et(l—a)gwete*w(Dl-',-iDz)(Dl—iDz)/4}¢(m17xz) do
0

27 . ) s )
_ (27r)’1/ {etme’e(quLzDg)/Zetme 9(D171D2)/2}¢(I1,m2)d0
0
2T
_ (27‘(’)_1/ {e(tcosGm)Dle—(tsinﬁm)Dg}gb(whx2) d6
0

2m
=(2n)7! ¢(z1 +tcosOvV1 — 0,29 —tsinfy/1 — o) db

0

provided that ¢(z1,z2) € C? in z; and z2. It is not hard to show that
the term —t¢sinf+/1 — o can be replaced in the last integral above by
tsinfy/1 — o. Inserting this last altered integral back into (3.4), we
finally obtain

t 1 27
4.6 V) = —— 1/2{ 0v'1 — y
(4.6) u(z,?) 471_/0 o /0 ¢(x1 +tcosfVl—o

x2 +tsinfv1 — o) dH} do.

To show that this reduces to the familiar Poisson integral represen-
tation, first introduce the change of variables o = 1 — 72. Then we

obtain

™

1 27
u(z,t) = 2i/0 (1—72)_1/2{/0 é(z1 —i—tTcose,xg—l—thinG)dH}dT.

With the further changes of variables £ = z;+trcosf, n = zo+trsind,
the region of integration reduces to that of the disk B(zi,zs;t), i.e.,
(z1 — €)% + (z2) — n)? < t2. The formula u(z,t) then becomes

1 o(&,m)
(47)  ulmt)= o /B o T e

With similar changes of variables, the function in (4.2) can be written
in this same form with ¢(&, n) replaced by ¢(§). A partial integration
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of the resulting integral with respect to n then leads to the familiar
d’Alembert formula.

The form of the solution function (4.6) permits us to establish the
following result for an abstract generalization of this problem:

Theorem 4.1. Let A; and Ay be generators of continuous groups
in a Banach space X with AjAs = AxAy, and let ¢ € D(A?) ND(A3).
Then a solution of the abstract wave problem vy, = (A2+A3)v, v(0) = 0,
v¢(0) = ¢ is given by the formula

t

o(t) = - 10—1/2{ /0 T G (tcosBVT =) (G, (tsin T D)

- 47 0
¢] da} do

in which the G 4,(t) denotes the group of operators generated by Aj,
j=12.

C.n =1, P(D) = —D?. For this Laplace type initial value problem,
the reader can verify that

2 . s
K(z,t,050) = (2m) L [ {7 e T D Ao (0) dp
0

2m
_ (271_)—1/ e(itsinG\/E)ng(m) do
0

2m
= (2n)7! é(x + itsinfv1 — o) do

0

provided that ¢(z) is analytic, say, in a disk in the complex plane that
contains z + it. The solution of this initial value problem is then given
by

(48)  u(m,t) = 4i/ola—1/2{/o2w b(z + it sin9y/T = o) de} do.

7

If ¢(x) = 2", then one can easily show from this that the solution
la n(z,t) corresponding to this condition satisfies the inequality

(4.9) Iz, (2, 8)] < Jt](2® + %)/,
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The I3 n(z,t) are one of the classes of Laplace polynomials.

D. n =2, P(D) = D} — D3. We leave it to the reader to show that
the solution of the corresponding ultrahyperbolic equation (3.1a) with
associated initial conditions is given by

1 1
u(z,t) = E/ o 1/2
0

(4.10) .
{ ¢(w1+t0059\/1—a,w2+itsin9\/1—od9}do
0

if € C' in z; and is analytic in x.

E.n =2, P(D) = —(D? + D2%). Again, we can deduce the solution
formula

(4.11)
l 1
u(x’t) = 4_‘/0' 0.*1/2

7

2
{ ¢(x1 + itcosbv1 — o,z +itsinfv1 — o) de}da
0
if ¢(z1,x2) is analytic in both variables.

F. Same choices as in C. Select the data function ¢(z) to be entire
in z of growth (p, 7) with p < 2. Using formula (3.2b) in (3.5), it then
follows that

2w . )
(4.12) K(z,t,0;¢) = (2r)! / et bz, te 1 /4) df
0

in which h(z,t) is the solution of the heat problem (3.3) corresponding
to the above choice for ¢(z). Thus, a solution alternative to the one
given in C above follows by introducing (4.12) back into the formula
(3.4). Obviously, the solution obtained in part C is better because of
the fewer analytic requirements on ¢(z).

5. Generalized EPD problems. We can carry out the construc-
tions of the solutions of (3.1b) corresponding to the choices of n and
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P(D) as in subsections A-F of the previous section by introducing the
function K (z,t, 0, ¢) for each of these examples into (3.6). This simply
means that we integrate this K(z,t, o, ¢) against a different power of &
and then multiply the resulting integral by a — 1. To avoid undue rep-
etitions, we shall simply note the bounds on the polynomial solutions
of the EPD versions of A and C of Section 4 and the modifications
for the example B. Note, of course, that the EPD version of C defines
the GASPT equation problem. The remainder of the section will be
concerned with constructing solutions, using qips, of an initial value
problem associated with (3.1b) when —1 < a < 1.

From (4.4) and (4.9) obtained above, it easily follows that the respec-
tive solutions e, (z,t) and b,(z,t) of the problems
(5.1)

uge(x,t) + %ut(a:,t) = 0D2u(z,t), u(z,0) = z™, ut(z,0) =0
satisfy the inequalities
(5-2) len(2, 8)] < (l2] + [¢)" if 6 =1
and

b (z,8)] < (2 + 2?2 if § = —1.

These are the Euler-Poisson-Darboux and Beltrami (or GASPT) poly-
nomials of [10].

The solution of (3.1b) corresponding to the choices in example B
above is given by the formula

-1 1
uay) = U2 [ g

2m
{ ¢(x1 +tcosbvV1 — o,x9 +tsinfyV1 — o) d0} do.
0

Employing the same change to rectangular coordinates as in example
B of section 4, it is not hard to show that

_(a-1) 5, 2 2
Sy MG Y

— (0 — @2)%)@=/26(&,m) d€ dn.

(5.3)



1288 L.R. BRAGG

We will now turn to the problem of constructing a solution to the
Cauchy problem associated with (3.1b) when —1 < a < 1 by means of
qips. To do this, it will be necessary to develop a formula alternative to
the one in (3.6), and this will require an integral formula for the function
gv(z) for 0 < b < 1 along with parametric differentiation. It is known
that if this problem has a solution, then one can obtain a solution to the
Cauchy problem associated with (3.1b) when —2k — 1 <a < —2k + 1,
k = 1,2,3,... by using Taylor’s series [4, 21 and 22]. The choices
a=-2k—-1,k=1,2,3,..., are referred to as exceptional or singular
values and problems associated with them will not be considered here
(see [4] and [15]). It is a well known fact that uniqueness fails if a < 0.

If 0 < b< 1, it follows from the definition of g,(z) in Section 2 that

1
(5.4) g(@) =1+ %gbﬂ(w) =1+ a:/ o 1er(1-9) 4o
0

where we have used the integral formula for g,;(z). Introducing this
into (2.6) and using (2.3b), we find that
(5.5)

1
Fyi(zy) = gp(z)oel =1oef + (&/ ot tez(l=o) do> oel
0

1 b ]. 2m i0 0 —1i6
=1+ a:/ o 1{2—/ efer(1-0)e” gye dO} do
0 ™ Jo
1 27 . .
=1+ wi [/ O'bl{i / e{w(l"H)‘}eweyewdﬁ} do] .
8}\ 0 27[' 0 A=0

Differentiation with respect to the parameter A and its evaluation at
A = 0 in the last member of this brings back the factor e’ required in
the third member of (5.8). With this, we can now follow the procedure
of Section 3 for treating EPD problems by using a formal operator
series. Since b = (a + 1)/2 and this falls between 0 and 1 when
—1 < a < 1, we can use the formalism of (5.5) to show that a solution
of the initial value problem associated with (3.1b) when —1 < a <1 is
given by the formula

(6.6)  wu(z,t) = é(x) —&—ti [/1 oYK" (2,t,0,\, ¢) do
* ) - 8A o Y ) ) \—0
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where

2m
(57) K* (w,t,o, )\’ ¢) — % / e[t(1—0)+)\]el9ete*zSP(D)/4¢(x) de.
0

Note that the right hand member of this formula for K* is in the form
of a quasi inner product and factor from the terms ¢(1 — o) + A and
tP(D)/4 can be moved from one exponential to the other in accordance
with (2.5). In applying these formulas, one starts out by assuming
that ¢(z) is analytic in order to carry out complex translations to
construct K*. However, the final formula for the solution u(z,t) need
not involve such complex translations and the conditions on ¢(x) in this
final solution can be weakened to, say, ¢(z) € C! for some appropriate
choice of [. This will be made clear in our two examples of applications
of (5.6)—(5.7) to hyperbolic equations.

A. n =2, P(D) = D2 For these choices and using (2.5), we have

1 27 i i
K*(z,t,0,);¢) = _/ eltA=o)+Ne te 9D2/4¢(37) do
2 0
27 i i0 /7
= i e[tmw@\(l*ff)_1/2]‘519/2et8_16 170D/2¢(x) do
2 0
2T
_ i e[t cos 0m+)\(1*”)71/26w/2]D¢(I) do
2 0
1 27 .
= ¢(w+tcosgm+)\e19(l—J)_1/2/2)d9.
T Jo
Hence,
oK™ 1

27
= — ¢ (z +tcosOvV1—0)e (1 —o)"1/2 dp.

A=0 47[' 0

oA

Upon inserting this into (5.6) and using the fact that u(z,t) must be
real when ¢(x) is real, we find that

(6.9) wu(z,t) = op(x) + % /01 ole /21— 5)"1/2

27
{/ cosf- ¢ (x +tcosfv1— o) dﬁ} do.
0
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Observe that the function ¢'(z + tcosf+/1 — o) in this involves only a
real argument. This means that (5.9) defines a solution of the problem
associated with (3.1b) for —1 < a < 1 provided that ¢(z) € C?.

Let us note that if ¢(x) = =™, then ¢'(z + tcosfyv1 —o0) = n(z +
tcosfy/1 — o)™ L. Hence the above solution u(z,t) corresponding to
the ¢(z), which we denote by e, ,(z,t), satisfies the inequality

t 1
‘en’a(m’t)‘ < |w‘n + y/ U(G—l)/Z(l _ 0_)—1/2
™ Jo

(5.10) {/Ozw(m L) de} do

n 1 n
= 2" + 5 B((a +1)/2,1/2)lt[(2] + [¢])
in which B((a + 1)/2,1/2) denotes a beta function.
B.n =2, P(D) = D?+ D2. Using the factorization (D; +iD3)(D; —

iD3) of the operator P(D) as earlier, we leave it to the reader to show
that

1 [P et -
K*(I)taga A; ¢) % e[tCOSG 170+>\e 9(170) 1/2/2}D1
0

e~ ltsin 9\/1—0——1')\5""(1—")71/2/21[)2¢($1, x2) db

1 2 .
o bz +tecosOVI — o + e (1 — o)~ 1/2 /2,

2m J,
zy —tsinfyV1 — o + i)\ew(l _ 0)71/2) do

and that
OK* 1 2
—_— = —(1-0)"12 {#1(z1 +tcosbvV1 — o,z
OX |,_o 4 0

—tsinfy1 — o) cosb
— ¢o(x1 +tcosOv1 —o,29 — tsinfy/1 — o) sin b} df.

Upon observing that we can replace sin 6 here by — sin § and replacing
this last parametric differentiation evaluation in (5.6), we can finally
obtain the solution

t 1
(5.11) u(z,t) =¢(I17$2)+4—/ ol V2 (1—0) 1 2¢(21, 20,1, 0) do
0

7
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with

27
Y(z1, 22, t,0) = {1(z1 +tcosbv1 — 0,25 + tsinfv1 — o) cos b

0

+ ¢2(x1 +tcosv1 — 0,29 + tsinfy/1 — o) sin 0} df.

An analysis of this shows that we must require that ¢(x1,z2) have
continuous second derivatives in both 2y and z2. A rectangular integral
version of the solution in (5.11) can be obtained by following the steps
for example B of the previous section.

6. Yukawa and Helmholtz type problems. Initial value
problems of the type (3.1a) for the standard Yukawa and Helmholtz
equations are given, respectively, by
(6.1)

(a) Yu(z,t)=—(D*—p?)Y(z,t), Y(2,0)=0, Y(z,0)=¢(z)

(b) Hy(z,t) = —(D*+ p®)H(z,t), H(z,0)=0, H(z,0)=(z)

in which p is a positive parameter. The construction of representations
for solutions of these, using standard transmutation techniques, leads to
a number of complicated technical questions relating to the convergence
of improper integrals. Further, the solutions of these corresponding to
polynomial data are not polynomials. Rather, they are sums of certain
types of Bessel functions. Obtaining bounds on these special solutions
is tedious and this, in turn, leads to difficult convergence proofs. In
developing full function theories for the solutions of the equations in
(6.1), some of the noted difficulties cannot be avoided [12]. However,
certain aspects of the subject can be considerably simplified by using
qips. The integral representations that we obtain for the solution (6.1)
will provide relatively convenient integrals for constructing solutions
corresponding to polynomial data and for obtaining bounds on them.
Series representation theorems for the solutions of (6.1a), (6.1b) and
the EPD problem considered in Section 5 will be considered in Section
7.

A. An integral solution for (6.1a). Writing —(D? — u?) = [i(D + p)] -
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[¢((D — p)] and taking ¢(z) to be analytic, it follows from (3.5) that

1 2 i —i
K(z,t,05¢) = E/ el 1=)e? g=te T (D* i) /44 (1) 4p
0
2 ) i /
_ 1 etie”’ (D+uVI=o/2gtie™* (D-uVI=0/2 (1) 4o
27 0
2m
= L [T oo ke D) dg
2 0
1 2w .
_ o e thsindy 1—"(;5(33 + it cos Gm) do.
™ Jo

By splitting the last integration in this into the sum of four integrations
over the intervals kx/2 to (k + 1)x/2, k = 0,1,2,3, and making
appropriate changes of variables in each, one can finally show that

(6.2) K(z,t,0;0)

2 7|'/2
=— / cosh(tpsin0v/1 — o)v(z,tcosv1 — o) df
m™Jo

where v(z,t) = [¢(x +it) + ¢(x — it)] /2 which is a solution of Laplace’s
equation corresponding to the conditions v(z,0) = ¢(x), v(z,0) = 0.
Introducing (6.2) into (3.4), we finally obtain

(6.3) Y (z,t)
t

1 /2
== / 01/2{ / cosh(tusinfv'1 — o)v(z,tcosv1 — o) dﬂ} do.
0 0

™

Note that this has the character of a transmutation formula since it
expresses the solution of the Yukawa problem as an integral transform
of a solution of the Laplace equation.

Now suppose that ¢(z) = z", and let v, (z,t) = {(z + it)" + (v —
it)"}/2. Tt follows that |v,(z,tcosfv/1 —0)| < (22 + t2)*/2 over the
range of integration. Further, |cosh(tusinfy/1— )| < e#l*!. Taking
the absolute value of both sides of (6.3), and using the estimates just
obtained, we find that if Y,,(z, t) is the solution of (6.1a) corresponding
to ¢(z) = 2™, then

(6.4) |V, (2, 1)| < J¢] (2 + £2)"/ Ml
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B. An integral solution of (6.1b). If we write D? + p? = (D +
ip)(D —ip), the we leave it to the reader to show, using the same type
of arguments as in part (i), that

(6.5) H(z,t) = * /0 101/2{ /0 " cos(tpsinfyT—7)

™

-v(z,tcosOvV1 — o) dﬂ} do

with v as above. Further, if H,(z,t) corresponds to the choice ¢(z) =
z", then

(6.6) |H, (z,t)] < |t|(x® 4 t2)"/2.

C. Ezpansion sets. We now construct the solution sets {Y,,(z,t)} and
{H,(z,t)} for the problem (6.1). If ¢(x) = 2™, then we have

(6.7) vp(z,tcosfvV1— o)
[n/2] n
= (=1)* <2k> "R cos?R (9) - (1 — o)F.

=0

B

(a) The {Y,} set. Introducing the last member of (6.7) into the
integral formula (6.3), we find
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where

1 /2
A = / 01/2{ / cosh(tusinfv1 — 0))(1 — o)* cos?* 0d0} do
0 0
1 /L $20,2(1— o) .
- 0—1/2{ / [ I = o) 2 9]
/0 0 Z (25)!

=0

(1 — o)k cos?* ada} do
1 & 12 ( [ ey |
== g o121 - o) do
PINCHRY A
w/2 )
{2/ sin276’-c052k6’d6’}
0

- %i tz;';;)! B(1/2,j+k+1)B(j+1/2,k+1/2)

and the last member of this reduces to moFy (__; k+3/2;t2u2/4)/(2k+1).
But oF1(_;k+3/2;82 % /4) = (D(k +3/2)/(t1/2)* /%) - I )5 (tp) in
which I;(z) denotes a modified Bessel function of index [. Inserting this
value of A\, into (6.8) and simplifying, we find

/2] |
n.

Yo(z,t) = -t kZ:O (*1)k2k+1/zkg(n — 2k)!

wn—?ktk}—l/Q
——— 75— Lit1/2(tp).
pkt1/2 /

(6.9)

If we use the formulas that express the above modified Bessel functions
of half odd integers in terms of the hyperbolic functions [18], we can
show, for example, that

inh(put inh(put
yo(m,t)_w, yl(x,t)_%(#),
x? sinh(ut) _ tcosh(tp) 4 sinh(tu)

}/émat = )
(1) Iz I p?

etc.
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(b) The {H,} set. We leave it to the reader to use the integral
formula (6.3) and the relations (6.7) to show that

[n/2]
n!
Hn(l',t) = \/Et Z(_l)k k+1/2
6.10) 2T SR (n — 2k)!
=2k gk—1/2

W “Jrt1/2(tp)

where J;(z) denotes the usual Bessel function of index [. We also leave
it to the reader to write out the first few of the H,(z,t) in terms of
sin(¢p) and cos(ty).

7. Expansion theorems. Theorems on the representation of
solutions of initial value problems involving the Laplace and the wave
equations in terms of polynomials corresponding to data functions
of the form ¢(z) = z™ have been proved by D.V. Widder [25, 26|
(see [19] for a corresponding treatment of the heat problem). To
indicate his results, let l; ,,(x,t) denote a solution of Laplace’s equation
corresponding to the data I(z,0) = ", l;(z,0) = 0, and let I3 ,(z,t) be
as in Section 4. Then Widder proved that the series

i anln(2,t)
n=0

converges to a solution of Laplace’s equation in the disk z? + t? < R?
but not everywhere in any including circle. Moreover, this solution
corresponds to the data

l(z,0) = ¢(x) = Z anz",
n=0
l¢(x,0) = 0 if ¢(z) is analytic for |z] < R. An analogous theorem holds

for sums of the type
o0
Z anlan(z,t)
n=0

(in this case, the series converges for all z if ¢ = 0). In proving these
theorems, the bounds on |l; ,(x,t)|, |l2,n(z,t)| were employed. Similar
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expansion theorems hold for solutions of the wave equation in terms
of polynomial sets {wyn(z,t)} and {wsn(z,t)}. The corresponding
regions of convergence are squares |z| + |t/ < R. In [10], J.W.
Dettman and the author constructed the earlier mentioned solution
sets {ep, (z,t)}, {bn(z,t)} and radial versions of the Laplace wave, EPD,
and Beltrami polynomials in terms of Jacobi polynomials. Theorems
on representations of the type proved by Widder were obtained for
these polynomial sets by employing bounds on the Jacobi polynomials.
To prove that a series of the above type diverges in some region,
one requires asymptotic estimates of the polynomials. The integral
formulas obtained in Sections 4-6 permitted us to determine bounds,
in a relatively elementary way, on a variety of solution functions
corresponding to polynomial data. We did not, however, deduce the
asymptotic behavior of these polynomials for large n. In view of this,
we limit the following to stating and proving theorems on convergence
regions for representations of solutions of problems related to the
Yukawa equation, the Helmholtz equation and the EPD equation with
—1 < a < 1 in terms of the special solution sets developed for those
equations.

Theorem 7.1 (Yukawa and Helmholtz expansions). Let

¢(z) = Z anz"
n=0

be analytic in x for |z| < R. Then the series Y .. o anY,(x,t) con-
verges to a solution of the initial value problem Yy (x,t) + YVig(z,t) —
p2Y (z,t) = 0, Y(z,0) = 0, Y;(x,0) = ¢(x) for all z if t = 0 and for
z2 +t? < R?. Similarly, the series

i anHy(z,t)
n=0

converges to a solution of the initial value problem Hy(z,t)+Hy,(z,t)+
p?H(x,t) =0, H(z,0) = 0, Hy(x,0) = ¢(x) for the same set of points
(z,t).

Proof. We prove this for the Yukawa problem and note that the same
type of argument works for the Helmholtz case. Since ¢(z) is analytic
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for |z| < R, let R > 0 be selected so that B < R. Let K denote the
open region z2 + t?> < R?. We shall prove that the series

i an Yy (z,t)
n=0

and its various derivatives converge uniformly in K. To do this, select
R so that R < R < R. Since the series

o0
E anR"
n=0

converges, there exists a positive constant M such that |a,| < M/R"
for all n. Let (z,t) € K. Then it follows from (6.6) and the above
bound on |a,| that

> anti(e)| < 3l Voot
n=0 n=0

o0 M N
<> E|t|e“‘t‘(x2 + t2)/2

n=0

< Z % ‘R e"ﬁfzn
n=0

— MR- M i(é/fz)"

n=0

and this last series converges. Hence,

i an Yy (z,t)
n=0

converges uniformly in~I~( . To show that the various derived series
converge uniformly in K, we need to establish bounds similar to those
in (6.6) for the derivatives of the Y,,(z,t). From the definition of v, (z, )
in the line following (6.3), it follows that dv,(z,t)/0z = nv,_1(z,1).
Then, from the definition of Y, (z,t), we can show that 9Y, (z,t)/0z =
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nY,_1(x,t). It then follows that |0Y,(x,t)/0z| = n|Yp_1(z,t)] <
n|t|ettl(z? + ¢2)("~1/2 Using the same argument as above, we can
then show that

< MR- e i n-(R/R)™

n=0

i ap, - OYy(z,t)/0x

n=0

which converges and this shows that the series
(oo}
Z ap, - 0Y, (z,t)/0x
n=0
converges uniformly in K. Likewise, for the series

Z an - 0*Y,(z,t)/0x>.

n=0

The derivatives of the Y, (z,t) with respect to ¢ are more complicated.
We have, in fact,

1 w/2
8Yn(x,t)/(9t:7r*1/ 01/2{/ cosh(tusinf - v1 — o)
0

0

- Uy (z, tcos OV1 — o) dO} do

1 /2
+ E/ 0_1/2{/ sinh(tpsinf - v1—0)(pusinfv1—o)
TJo 0
- v (z, tcos 01 — o) dﬂ} do
t 1 /2
+—/ (7—1/2{/ cosh(tusing - v1 — o)
T Jo 0

- Qv (x,tcos8v1 — o) /0t dﬁ} do.

From the definition of v,(z,t), one can show that |Qv,(z,t)/0t <
n(z? +t2)(»~1/2, Finally, we leave it to the reader to establish that

0Y,, (2, 8) /0t < (@ + ) D2 (Va2 + 42 (1 + |t]e!) + ]
< E("—l)ﬂ[ﬁ(l +R- e"g) +n] for (z,t) € K
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and that the series

Z an0Y, (z,1)/0t
n=0

converges uniformly in K. By an analogous argument, so also does the
series of second order time derivatives. But since the Y,,(z,t) satisfy
the Yukawa equation, the above argument proves that

i an Y, (z,t)
n=0

satisfies Yukawa’s equation in K. But since R is arbitrary, it follows
that this series satisfies the equation for 2% +t? < R2. It is a relatively
easy task to check that the initial conditions are fulfilled. a

Theorem 7.2 (Euler-Poisson-Darboux expansions). Let

o(x) =) _anz"
n=0

be analytic in x for |x| < R. Then the series

(oo}
Z Anenq(,t)
n=0

converges to a solution of the initial value problem ey (xz,t)+(a/t)e(z,t)
= ezz(xat)ae(wao) = ¢7($),6t(x,0) =0 for ‘$| + |t‘ <R ifa>-1

Proof. This is analogous to the proof of Theorem 7.1 except that we
start by letting K denote the interior of the square |z| + |t| = R. Then
we prove that the series

o0
Z anenq(,t)
n=0

and its derivatives converge uniformly in K by using bounds of the
type given in (5.10). The derivatives of the e,, (z,t) satisfy these same
types of bounds as can be proved from the formula (5.9). O
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8. Further examples. Throughout Sections 4 to 7, we have been
concerned with second order initial value problems. To gain a better
perspective on the method of qips, it is useful to consider examples in
which higher order ¢ derivatives, higher order operators, and variable
coefficients (aside from the factor a/t in the EPD case) appear in the
equation. In the following, we provide three examples. The main pur-
pose for the last of these is to illustrate (i) various ways of decomposing
formal solution operator series into component series and, hence, com-
ponent integral solution operators via qips and (ii) the rearranging of
factors, including differential operators, in the exponential appearing
in these integral solution operators. Most of these rearrangements are
carried out to minimize the analyticity requirements on the data.

A. A higher order EPD problem. First we consider the problem
(8.1)

ue(, t) + %ut(m,t) = D*u(z,t),  u(2,0)=¢(x),  wlz,0)=0
with @ > 1. For this example, we have

1 2

K(a:,t,a; ¢) — % et(l—a)eieete*i9D4/4¢($) do
(8.2) ) o 2
_ %/0 e(tcos@ﬂ)D ¢($) do.

In view of the fact that D? generates a semigroup, the integrand in
the last member of this fails to have a meaning whenever we choose
¢(z) to be bounded and continuous. However, if we select ¢(z) to
be entire of growth (2,7) and let h(z,t) denote the solution of the
problem h;(z,t) = D2h(x,t), h(z,0) = ¢(z), then it follows that h(z,t)
is defined in the time strip [¢| < 1/(47) [19]. If we so restrict ¢, it follows

that

1 27
K(z,t,0;¢) = 2—/ h(z,tcosfv1 — o) db.
0

™

By (3.6),

(83) u(z,t) = 2= Y /0 la(“_?’)/Z{ Ohh(w,tcosH\/E)dﬁ}da
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for —o0o <z < co and || < 1/(47).

B. A wariable coefficient problem. As a preliminary to a PDE
problem, let us consider the following ordinary differential equation
problem:

(8.4) y'(t) = APy(t) =0,  y(0)=0, Y (0)=1.

By using series methods, one can show that

(oo}

t4n)\n
2n .
2o rnl- (5/4),

w9 el e

l 1 2T
_ = 0_3/4{/ e(2t2)\1/2 cos 0y/1—0/4) da} do.
0 0

y(t) =t-

Now consider the partial differential equation problem
(8.6)  wy(x,t) = t*D?u(z, t), u(z,0) =0, ut(z,0) = ¢(x).

If we replace A!/2 in the last member of (8.5) by D and then apply the
integral as an operator acting on ¢(x), we obtain the solution formula

1 27
(8.7) wu(z,t)= SL/O 0_3/4{/0 qS(ac + %tQ cosfv1 — O'> dG} do

™

if ¢p(z) € C".

C. Higher order t derivatives. As the final example, we consider the
initial value problem

D}u(z,t) = D*u(z, t), u(z,0) =
uge(,0) = P(x).

The equation in this is of some interest since it is satisfied both by solu-
tions of the wave equation and Laplace’s equation as is clearly evident
from the following factorizations of it: (D? — D?)(D? + D?)u(z,t) =

(8.8) ui(z,0) = ui(,0),
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(D?+ D?)(D? — D*)u(z,t). The polynomial z8+70z%t*+1% is an exam-
ple of a solution of that fourth order equation that is not a solution of
the wave or Laplace equations. One can solve the equation in (8.8) by
reducing it, for example, to the pair of equations (D? — D?)U(x,t) = 0
where (D? + D?)u(x,t) = U(x,t), and this entails solving a wave prob-
lem followed by solving a Poisson problem. One must, of course, choose
the solutions of these so that the initial conditions in (8.8) are satisfied,
and this involves an extensive number of considerations. Were we to
replace the equation in (8.8) by the equation D}u(z,t) = tD?u(z,t),
then this factorization approach would not even be available to us. As
a consequence, we shall employ the method of gips to solve (8.8) and
note that it will also apply to an analogous problem with the basic
equation replaced by one of the type mentioned.

An associated ordinary differential equation problem for (8.8) is given
by y)(t) = Ay(t), y©@ = y'(0) = y"(0) = 0, y"'(0) = L. By using
series methods and making appropriate rearrangements in the terms of
the series, one can show that

3 oo

t ThA" 4
(8.9) w(t) =4 nz:% o TR where 7 = (t/4)*.

Upon replacing \ in this by D* and operating on ¢(z), we obtain the
following formal operator series solution of (8.8):

P& D¢ (z) _ 4
310 o) =G 2 -G, e T

If ¢(z) = 2", n a positive integer, and if we let U, (z,t) denote the
solution of (8.8) corresponding to this ¢(x), then it is not hard to show
from (8.10) that

U\ (W) +2)(45+3)

For other types of data, we need to rewrite (8.10) in integral solution

form by suitable decompositions of the operator series in (8.10) into
operators having integral forms.
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Now the series for y(t) in (8.9) can be variously decomposed, using
qips, as

y(t) = {Fs/2,7/4(7) 0 F5/41(N)} - (£°/3)
(8.11) = {F5/a,7/a(7) © F3/21(N)} - (*/3)
={Fs5/132(1) © Fr/a1(A)} - (£°/3).

In the following we will make use of the second of these gips and note
that the other two lead to similar conclusions. We then have

t3 27

t) = —
y(t) = 15 ;

F5/4,7/4 (Teie)F3/2,1 ()\671’0) d0

Hence, the formal operator series solution in (8.10) can be replaced by
the formal integral solution formula

t3

(8.12) wu(z,t) = Tom

27
/ Fsa7/4(t'e® [4")Fy 51 (e7*D*)¢(x) df.
0

Applying property (2.4) to move around the factors in the arguments
of the F' functions in the integrand of this, we get

3

(8.13) u(z,t) = To-

27
/ Fy/4,7/4(£2e D? /16))(x, t, 0; ¢) df
0

where
(8.14)
Qx,t,0; ) = Fz/2,1 (e *D?/16)¢(x)

1 1 2 —1i6 i —1i
— 4_ 0_—1/2{/ et(l—a')e 98 d)ee ¢D2¢(-’L’) da} do_
T Jo

0
1 1 27 .
- 0—1/2{/ elte™ /% conth/(T=0)/2)D d¢} do
0 0
1 1

27
= 0_1/2{ Bz + te™" cos /(1 —a)/2)dw}da.
0 0

Having thus computed the Q function, we can now compute the
integrand in (8.13). We leave it to the reader to make appropriate
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modifications of formula (2.7) to establish the result

(8.15)  Fya7/4(te’ D?/16)Q(z,t,6; ¢)

3 /1 /1(1 o) AL ag) VA
327 0 0 ! 2
2m
. {/ Q(z + te’/? cos /(1 — 01) (1 — 02) /2,1, 6; ¢) dg} doy dos.
0

Thus, we have completed all of the preliminary calculations to obtain
the integrand for the integral (8.13). If we insert (8.15) into (8.13)
taking into account (8.14), we see that the final integral for u(z,t) is
the six-fold integral

3t3 1 1 1 27T 27 27T
—3/ / / / / / ®(0,01,092,%,5,0) dip ds df dos doy do
2567 Jo Jo Jo Jo 0 0

where
d = 071/201_3/402_1/4¢

(z+ {e7® 2 cospyv/1 — o + €% cos /(1 — 1) (1 — 02)}t/2).

In view of the fact that the equation (8.8) is satisfied both by the wave
and Laplace polynomials and these have different types of bounds on
them, there is the question of what type of bound holds for the above
defined U, (z,t). By carefully working through the integrals in (8.14)
and (8.15) when ¢(z) = z", one can establish the bounding relation
|Up (2, t)| < C|t3] - (|| + [t|)™ for C an appropriate constant. Hence, if
the function

o(z) = Z anz"
n=0

is analytic for |z| < R, one can show that

i an Uy (z,t)
n=0

is a solution of the equation (8.8) in the region |z| + |t| < R. This is
not surprising since it is the smaller of the two convergence regions for
the expansions in wave and Laplace polynomials.
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