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UNIFORM PERSISTENCE IN
REACTION-DIFFUSION PLANKTON MODELS

SHIGUI RUAN

ABSTRACT. In this paper, homogeneous Neumann prob-
lem for reaction-diffusion systems of plankton-nutrient models
with instantaneous nutrient recycling is considered. By using
the main theorem of Hale and Waltman [11], sufficient condi-
tions for uniform persistence are derived.

1. Introduction. Reaction-diffusion equations have been exten-
sively used to model ecological phenomena. For modeling of plankton
dynamics, we refer to Leven and Segel [18], Mimura [20], Okubo [21],
Wroblewski and Richman [24], Freedman and Ruan [7] and references
cited therein.

In order to model the dynamics of plankton, Wroblewski and Rich-
man [24] used a set of simplified reaction-diffusion equations which
has properties characteristic of the pelagic marine ecosystem. They
examined the response of the plankton dynamics to perturbations in
the physical oceanographic environment caused by wind forcing. The
model they constructed is consisted of three components, herbivorous
zooplankton (Z), phytoplankton (P) and dissolved nutrients (V). They
supposed that the nutrients are not limiting and neglected sinking losses
of phytoplankton, vertical migration by zooplankton and vertical ad-
vection of Z, P and N by an organized flow. Hence the system of their
model is closed.

An ecosystem is never totally closed to material fluxes from the
outside, there are generally inputs of nutrients to the system, as well
as losses from the system. In this paper, we consider an open system
represented by a set of reaction-diffusion equations. Based on the model
constructed by Wroblewski and Richman [24], we introduce a constant
nutrient input rate and different constant washout rates to the system.
We also use a general class of functions to describe nutrient uptake and
functional response. The question of persistence is studied.
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Persistence is a fundamental problem in mathematical ecology. When
a system of interacting species is persistent in a suitable sense, it means
that all species survive in the long term. Recently, persistence in
reaction-diffusion ecological systems has been studied by many authors,
see Dunbar, Rybakowski and Schmitt [6], Hutson and Moran [14], Hale
and Waltman [11], Hutson and Schmitt [15], Caristi, Rybakowski and
Wessolek [4], Kuang [17], Hsu and Waltman [13], Cantrell, Cosner and
Hutson [3] and the references cited therein.

In this paper, by using the main theorem of Hale and Waltman [11],
we discuss uniform persistence of reaction-diffusion plankton models
with instantaneous nutrient recycling under Neumann boundary con-
ditions. Sufficient conditions are derived which are equivalent to those
for the case without diffusion effect.

Let X be a complete metric space with metric d and suppose T'(¢) :
X — X, t>0,is a C%semigroup on X; that is, T(0) = I, T(t + s) =
T(t)T(s) for t, s > 0 and T'(t)z is continuous in ¢ and s. Suppose
X = X°U 0X°, where 0X° is the boundary of X°. The semigroup
T(t) is said to be uniformly persistent if there is an n > 0, such that
for any x € X, liminf, ,, d(T(t)z,0X°) > n.

For other undefined terms we refer to the paper of Hale and Waltman
[11].

2. The model. Let Q be an open bounded set in R® with boundary
0. 0/0n represents the outward normal derivative in 99, and A is
the Laplace operator, = is distance, t is time, d; > 0 are diffusion
coefficients, i = 1,2,3. We suppose that all parameters are positive
and are interpreted as follows:

a — maximal nutrient uptake rate for the phytoplankton
¢ — maximal zooplankton ingestion rate
N° — input concentration of the nutrient
D — washout rate of the nutrient
D; — washout rate of the phytoplankton
D> — washout rate of the zooplankton

— phytoplankton mortality rate

€ — zooplankton death rate
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vy — nutrient recycle rate after the death of the phytoplankton,
7 <y
€1 — nutrient recycle rate after the death of the zooplankton,
e1 < ¢
6 — the fraction of zooplankton nutrient conversion, 0<§<1

The model we consider consisting of zooplankton (Z), phytoplankton
(P) and nutrient (V) and involving instantaneous nutrient recycling is
given by the following set of reaction-diffusion equations:

‘;—JZ =d;AN + D(N° — N) — aPu(N)
+ (l — (5)CZ’UJ(P) + "/1P + €1Z
(2.1) oP
e d2AP + aPu(N) — cZw(P) — (y+ Dy)P
0z
a = dgAZ + Z[(SCU)(P) — (8 + Dz)]

with initial value conditions

N(z,0) = Ny(z), P(z,0) = Py(z),

(22) Z(z,0) = Zy(x), reN

and the Neumann boundary value conditions

(2.3) <8N oP 0Z

—, —, — ] =(0,0,0) on 0Q x R*.
677,’ 8n7 877,) ( ¥ )

The homogeneous Neumann boundary value conditions (2.3) can be
interpreted as a “no flux” condition, i.e., there is no migration of any
of the populations across the boundary of habitat.

The function u(N) describes the nutrient uptake rate of phytoplank-
ton and satisfies the following general hypotheses (Hale and Somolinos
[10]).

(i) The function is nonnegative, increasing and vanishes when there
is no nutrient.

(ii) There is a saturation effect when the nutrient is very abundant.
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That is, we assume that u(IN) is a continuous function defined on [0, co)
and satisfies
du

(2.4) u(0) =0, N 0 and ngnoou(N) =1

In particular, this kind of function includes the Michaelis-Menten
function (Wroblewski and Richman [24])

N
U(N):m,

where k is the half-saturation constant or Michaelis-Menten constant.

w(P) represents the response function describing herbivore grazing.
It is also assumed that w(P) is continuous on [0, c0) and satisfies

dw
w(0) =0, P > 0.

Usually, Ivlev’s functional response formulation [16]
w(P)=1—¢

is used to describe the zooplankton grazing, where A is the rate at which
saturation is achieved with increasing phytoplankton levels (per unit
concentration). Alternatively, Mayzaud and Poulet formulation [19]

w(P) = A\P(1 — e™*F)

is also used to describe the food-acclimatized herbivore grazing (Wrob-
lewski and Richman [24]).

We assume that only a fraction of the dead phytoplankton, vy, 71 <7,
is recycled into dissolved nutrient. The zooplankton dynamics includes
growth as assimilated ingested ration and a loss rate of ¢ due to high
level predation, physiological death, etc. Also, we assume that only a
fraction, €1, €1 < ¢, of the dead zooplankton is recycled into dissolved
nutrient.

During consumption, only a fraction of the biomass removed from
the resources compartment, d, § < 1, is assumed to be assimilated by
the consumer, the remainder goes directly to the dissolved nutrient.
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Besides the loss related to consumption, a second phytoplankton loss
term, —yP, represents loss due to extracellular release and senescent
cell autolysis and sinking.

D, D; and D, are washout rates (or removal rates, diffusive rates) of
biotic components from the system resulting from washout, diffusion,
harvesting, burial in deep sediments, soluble metabolic loss or cell
sinking, for example. Those processes in general do not take place
at the same time, so we suppose that D, D; and D5 are different.

For the plankton-nutrient models neglecting diffusion, we refer to
Ruan [22]. The existence of solutions of the Neumann problem
(2.1)—(2.3) can be discussed similarly as in Freedman and Ruan [7].

3. Uniform Persistence. Let X° = {(N, P, Z) € C*(Q, R%)|N >
0,P > 0,Z > 0}. 00X consists of the states with at least one
component zero. Clearly X is open, and X° and 0X° are invariant.
Define

H,={(N,P,Z) e C'(Q,R%) | P = Z =0},
Hiy = {(N,P,2) € C'(0, B) | 2 =0},
We say an equilibrium F of (2.1)—(2.3) is hyperbolic if it, as an equilib-

rium of the corresponding ordinary differential equation, is hyperbolic
(Freedman and So [8]).

Note that Ey = (N?,0,0) is always a spatially homogeneous steady
state of the problem (2.1)—(2.3). Ejy is globally asymptotically stable
with respect to H; and is hyperbolic (Ruan [22]).

By Theorem 2.1 of Kuang [17], we have the following result.

Theorem 3.1. Solutions of problem (2.1)~(2.3) ezist for t > 0 and
are continuous, classical and bounded in C*(Qx R, Ri) Furthermore,
there is a positive constant K such that

tlirgo[N(x,t) + P(z,t) + Z(z,t)] < K.

This result indicates that eventually all nonnegative solutions of
(2.1)~(2.3) will enter a compact set in R%, which is essential for the
uniform persistence of system (2.1).
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Consider the subsystem

‘;—N =d,AN + D(N° — N) — aPu(N) +y, P
(3.1) a;
o= dyAP + aPu(N) — (y+ Dy)P

and the boundary values

52) <aN oP

—, — ) = (0,0 o X R

on’ 871) ( ’ ) on 1 +

where Q; is a bounded and connected domain in R%. By a result of
De Mottoni and Rothe [5], problem (3.1)—(3.2) possesses a positive
steady state if the corresponding ODE has a positive steady state. So
by the analysis of Ruan [22], if the following inequalities

(3.3) a>~y+D;

and

(3.4) NO > y! (7 T D1>
a

hold, then the problem (3.1)-(3.2) has a positive steady state, say
(N1, Py). Hence Ey = (Np, P1,0) is a spatially homogeneous steady
state solution of problem (2.1)—(2.3).

Theorem 3.2. FE; is globally asymptotically stable with respect to
H12.

Proof. Define a Liapunov function as follows:

V(N,P,t):/ﬂl [/]:%dg

au(Ny) — v P n—P
au(Ny) /

dn] dx
P, n

= [ )+ (P
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The derivative of V' along any positive solutions of (3.1)—(3.2) has the
form

av / dvi dN dVy dP
_— = - e — + _ . —— dm
dt o, \dN dt dP dt

B dv; v,
_/Ql (delAN+ ie d2AP> dz

u(N) — u(Ny) 0
+/91 {W[D(N — N) — aPu(N) + 7, P]

au(Ni)) =W o )
cuy)F ~ Pulau(N) (7+D1)]}d.

By using the boundary value conditions (3.2) and Lagrange-Green
identity, we have

Vi dVs
‘/Ql (d—NdlAN+ d—szAP> dx

dN?2 dP2
where
ON\?> [ON\? [oN)\?
2 _ [ 9V giv il
VNl _( xl) +(8x2) (3333) ’
oP\?> [oP\*> [oP\®
PP?=(= el il
VPl ( 901) Jr(‘99@2> +<5$3>
Since
d2V1 o U(Nl) ~0 d2‘/é - i 0
dN?2 (u(N))2 ’ dpP?2 P2 ’
we have
dVv D(N° - N) +yP 9
2 < _

D
+ W(N — Nl)[u(N) — U(Nl)]} d.Z'

Since 73 < 7, by (3.4) and the maximum principle, N < N° for
sufficiently large t > 0, which implies that the first term in the integrand
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is negative. The second term is negative because u(NN) is an increasing
function. Thus, dV/dt < 0 and dV/dt = 0 if and only if N = Nj.
Hence

{(N,P):W :0} c {(N,P): N = N,VP =0}.

Let A be the largest invariant set in the set {(N,P) : dV/dt = 0}.
Then (N, P) € A implies (N, P) = (N1, P;), where P, is a constant.
Hence

dN.
0= d—tl = d;AN; + D(N° — Ny) — aPyu(Ny) + 71 Py,

that is, P, = P;. By the invariance principle (Alikakos [1] or Henry
[12]), we see that for initial values (Ny(x), Py(z)) > 0, the solutions of
(3.1)—(3.2) satisfy

(N(z,t), P(z,t)) = (N1, P1) ast— oo in Ly norm,
which is equivalent to

lim (N (z,t), P(x,t)) = (N1, P1) uniformly on ;.

t— o0

This completes the proof. o

Theorem 3.3. If the inequalities (3.3), (3.4) and

€+ Do
dc

(3.5) w(Py) >
hold, then system (2.1) with (2.2) and (2.3) is uniformly persistent.

Proof. Since there are two boundary equilibria Ey and E7, the omega
limit set of the boundary 0X° consists of exactly Ey and E;. Let
M = {M;,M;} = {Eo,E1} be a covering of the omega limit set
as defined in Hale and Waltman [11]. In order to prove uniform
persistence by using the main theorem of Hale and Waltman [11], we
need to show that

(i) this covering is isolated,
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(i) W*(E,)NX" =2 forn=0, 1, and
(i) this covering is acyclic.

Since Ey and FE; are globally asymptotically stable with respect to
H, and Hia, respectively, there are no cycles on the boundary, (iii) is
proved.

To prove Ej is isolated and W*(Ey) N X° = &, we suppose that every
neighborhood of Ej contains a full orbit. If such an orbit lies in the V-
axis in a small neighborhood of Ey, since Ejy is globally asymptotically
stable with respect to H; and is hyperbolic, by Theorem 2.2 of Dunbar,
Rybakowski and Schmitt [6] or Theorem 4.1 of Butler and Waltman
[2], the alpha limit set of Ey is nonempty and disjoint from Ey, but this
contradicts the stability of Ey. If the orbit lies in the N — P plane, by
condition (3.4) and the second equation of system (3.1), we know Ej is
locally unstable relative to P > 0. Since E; is globally asymptotically
stable with respect to His, for any point of X° sufficiently close to Ej,
the component P must increase along the orbit near Ey and eventually
exits the orbit, hence the point cannot approach E, along W?*(Ej).
Therefore, Ey is isolated and W#(Ep) N X° = @.

By assumption (3.5), we know that Ej is locally unstable relative to
Z > 0. Similarly we can prove that F is isolated and W*(E;)NX° = @.
This completes the proof. o

Remark. If the coeflicients are spatially varying or the Neumann
boundary value conditions are replaced by the Dirichlet boundary value
conditions, uniform persistence conditions could be obtained in terms
of eigenfunctions and eigenvalues of linearized problems (see Cantrell,
Cosner and Hutson [3]). For the above Neumann boundary value
problem, since the equilibria are spatially constants, the eigenfunctions
of linearized problem are constants and the eigenvalues are simply the
numerical values of the zero order coefficients.

Theorem 3.3 demonstrates that if the maximal nutrient uptake rate
of phytoplankton is greater than its loss rate (a > v + D;), there are
sufficient nutrients (N° > u=((y + D1)/a)) and near the boundary
equilibrium E; = (Ny, Py, 0) the growth rate of zooplankton is greater
than its loss rate (dcw(P1) > e + D3), then all three interacting
components survive in the long term. Note also that the uniform
persistence conditions (3.3), (3.4) and (3.5) are equivalent to uniform
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persistence in the ODE models (Ruan [22]).

Consider the functional response functions used by Wroblewski and
Richman [24]. If u(N) is the Michaelis-Menten function and w(P) is
the Ivlev function, i.e.,

N

U(N):m, w(P):l—e_)‘P,

then the spatially homogeneous boundary equilibrium FE; takes the
form

( (v + D)k D(N° — (v + Dy)k)/(a = (v + D1))) 0)
a—(y+D1)’ T+ Di—m v

Now condition (3.4) has the form

0 (v + D)k
(3.6) N° > = (1D
and condition (3.5) becomes
(3.7)
ey | ADOY = (14 D)/ (a = (14 D)))] _ G = (c+Ds)

Y+D1-m dc
If w(P) is the Mayzaud and Poulet function, i.e.

w(P) = AP(1—e™ ),
then condition (3.5) has the form

AD(N® — (v + Dy)k)/(a = (v + D1)))

3.8) exp|—
(3:8) Y+D1i—m

€+ Do

<1 DV — (+ DR (a— (7 + D))’

The above analysis is summarized as the following result.

Theorem 3.4. Let u(N) be the Michaelis-Menten function and w(P)
the Ivlev (or Mayzaud and Poulet) function. If (3.3), (3.6) and (3.7)
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(or (3.8)) hold, then system (2.1) with (2.2) and (2.3) is uniformly
persistent.

4. Discussion. It is well known that if diffusive rates are large
enough, then a reaction-diffusion system has very similar qualitative
properties as those possessed by its reaction system (Hale [9]). This
is also true for the property of persistence in Volterra-Lotka models
(Dunbar, Rybakowski and Schmitt [4] and Kuang [17]). Our analysis
is again consistent with this observation. The conditions we obtained in
this paper for the reaction-diffusion systems are equivalent to uniform
persistence for the case without diffusion effect (Ruan [22]).

We supposed that nutrient recycling is an instantaneous process. It
will be of great interest to consider the models both with delayed
nutrient recycling (see Ruan [23]) and with diffusion effect. We leave
this for future consideration.

Acknowledgments. The author would like to thank the referee for
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