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IMPULSIVE STABILIZATION AND APPLICATIONS
TO POPULATION GROWTH MODELS

XINZHI LIU

ABSTRACT. This paper establishes some stability criteria
for impulsive differential systems. It is shown that impulses
do contribute to yield stability properties even when the
corresponding differential system without impulses does not
enjoy any stability behavior. As an application, these results
are applied to some population growth models.

1. Introduction. Many physical systems are characterized by the
fact that at certain moments of time they experience a sudden change of
their state. For example, when a mass on a spring is given a blow by a
hammer, it experiences a sharp change of velocity; and a pendulum in a
mechanical clock undergoes a drastic increase of momentum every time
when it crosses its equilibrium position. These systems are subject to
short-term perturbations which are often assumed to be in the form of
impulses in the modeling process. Consequently, impulsive differential
equations provide a natural description of such systems [3].

In this paper, we investigate the problem of stability for impulsive
differential systems by Lyapunov’s direct method. In Section 2 we
describe impulsive differential systems and introduce some notations
and definitions. We establish, in Section 3, some stability criteria
which may be considered as impulsive stabilization of the underlying
continuous physical system. It may provide a greater prospect to
solving problems that are basically defined by continuous dynamical
systems, but on which only discrete-time actions are exercised. As
an application, we apply our results, in Section 4, to some population
growth models.

2. Preliminaries. Let a physical system be described by the
following system of differential equations

(2.1) o = f(t,z).
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Let z(t) = (¢, t9,z9) be any solution of the system (2.1) starting
at (tp,xo). The point P;(t,z(t)) begins its motion from the initial
point P;, = (to, zo) and moves along the curve [(t,z);t > to,z = z(t)]
until the time t; > to at which the point P, (t1,z(t1)) is transferred
immediately to P+ = (t1,z7), where 7 = x(t1) + I(z(t1)). Then
the point P; continues to move further along the curve with z(t) =
x(t,t1,z7) until it triggers a second transfer at t, > t;. Once again,
the point P;, = (t2,z(t2)) is mapped into the point P = (t2, 23),
where z] = z(t2) + I(z(t2)). As before, the point P; continues to
move forward with x(t) = x(t,t, 25 ) as the solution of (2.1) starting
at (152,.'1;;r ). Clearly, this process continues as long as the solution of
(2.1) exists and it results in a piecewise continuous trajectory z(t) which
satisfies the following relations

wl:f(tam)a t # tg,
(2.2) Az = I(z), t=tg,
x(to):a?(), k‘:l,Q,...,

where Az(ty) = z{ — z(t;). We call (2.2) an impulsive differential
system.

We denote by I' the class of maps h : Ry X R® — R,, which are
continuous and infh(¢t,z) = 0. Let h,hy € I'. We shall discuss the
qualitative behavior of the map h along solutions of (2.2) whose initial
values are measured by the second map hg. By doing this, we are
able to deal with, in a unified way, several concepts and associate
problems, which are usually considered separately. We shall assume,
for simplicity, that the functions f(¢,z) and Ix(x) satisfy all required
conditions so that all solutions z(t) = x(t,to,zo) of (2.2) exist for all
t > to. For a detailed discussion of this point, see [5].

Definition 2.1. Let h,hg € I'. Then the impulsive differential
system (2.2) is called

(1) (ho,h)-stable if for any € > 0 and ty € R4 given, there exists a
0 = 6(tg,€) > 0 such that ho(tg, o) < ¢ implies h(t, z(t)) < e, t > to,
where z(t) = z(t, to, zp) is any solution of (2.2);

(ii) (ho, h)-attractive if for ty € Ry there exists a o = o(tg) such
that h(to,zo) < o implies lim; o, h(t, z(t)) = 0;
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(iii) (ho, h)-asymptotically stable if (i) and (ii) hold together;
(iv) (ho, h)-unstable if (i) fails to hold.

The concepts of (hg, h)-stability enable us to unify a variety of
stability notions found in the literature, such as stability of a prescribed
motion, partial stability, stability of an invariant set and conditional
stability, to name a few.

Let vy denote the class of functions V : Ry x R™ — R, where V
is locally Lipschitz in z, continuous everywhere except txs at which V'
may have jump discontinuities. For V € vy, (t,2) € R+ x R™ and
t # tx, we define DTV (t,z) by

(2.3) D'V (t,z) = lim sup %[V(t +6,xz+6f(t,z)) — V(¢ ).
§—0+

We denote by K the class of functions ¢ : Ry — R4 which are
continuous, strictly increasing and ¢(0) = 0, Ky the class of continuous
functions ¢ : Ry — R such that ¢(s) = 0if and only if s = 0, and PC
the class of functions A : Ry — R, where A is continuous everywhere
except txs at which A may have jump discontinuities.

Definition 2.2. Let V € vg and h € I'. Then V is said to be

(i) h-positive definite if there exist a constant p > 0 and a function
b € K such that b(h(t,z)) < V (¢, ) if h(t,z) < p;

(ii) h-decrescent if there exist a constant 6 > 0 and a function a € K
such that V(t,z) < a(h(t,z)), whenever h(t,z) < p.

Definition 2.3. Let h,hg € I'. Then we say that hg is finer than h
if h is ho-decrescent.

3. Main results. We shall state and prove our main results in this
section. To motivate our first theorem, let us begin by discussing a
simple example.
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Example 3.1. Counsider the linear impulsive system

= Ax, t#£k,
(3.1) Az =Bz, t=k,
z(0) =m9, k=1,2,...,

where z = (z1,22)7, A = [(1)(1)}, B = [751 _(;)2], 0 < b <1 and
(1 —b;)e < 1. It should be noted that = 0 is an unstable saddle point
of the underlying system =’ = Az. But it is asymptotically stable with

respect to system (3.1). In fact, letting V(z) = (2% + 22)/2, we have

DtV (x)

2V(z),  t#FF
V(z(k™)) < (1-

) V(z(k)), m = 1211212 b,

<
<

which implies that

V(z(k*))e2(t—k), k<t<k+1, k=0,1,2,...,

Viald)) < { V(zo), t=0.

Thus, the conclusion follows from the fact
V(z(kT)) < V(zo)[(1—m)e** -0 ask — oo.

This example shows that an unstable system may be stabilized by
impulses. Let s(h,p) = [(t,2) € Ry x R™;h(t,z) < p|]. We have
the following general result.

Theorem 3.1. Assume that

(i) ho,h €T, hg is finer than h, and there exist constants p and py
with 0 < py < p such that (tg,x) € s(h,po) implies (tg,z + Irx(x)) €
s(h,p) for allk=1,2,...;

(il) V € vy, V(t,x) is h-positive definite, ho-decrescent and there
exists Y, € Ko such that

(3.2) V(th, z+ Ii(2) < eV (tk, ), kE=1,2,...;
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(iii) there exist ¢ € K and p € PC such that

(33)  DYV(tx) <p(t)e(V(tz)),  (tz)€ s(h,p), t# ti;

(iv) there exists a constant o > 0 such that, for all z € (0,0),
b1 ¥i(2) g
3.4 / p(s ds+/ — < =k
(3-4) . (s) W)

for some constant v and k =1,2,... .

Then the system (2.2) is (ho, h)-stable if v, > 0 for all k = 1,2,...,
and (ho, h)-asymptotically stable if, in addition, Y, v = 0.

Proof. Since V(t,z) is hg-decrescent and h-positive definite, there
exist a,b € K and g, ag > 0 such that

(3.5) V(t,x) <a(ho(t,z)), if ho(t,x) < do
and
(3.6) V(t,z) > b(h(t,z)), if h(t,z) < ap.

By condition (i), there exist §; > 0 and ¢ € K such that

(3.7) h(t,z) < ¢(ho(t,z)) < ap, whenever hy(t,z) < ;.

Let ¢ > 0 with 0 < ¢ < p* = min(py,ap) and ¢ty € R4 given. We
may assume that ¢ < tg < to, for if ¢; < 9 < ;41 for some j > 1,
we then set ty = tj4x—1. Choose n = min(b(¢), o) and ¢* such that
0 < 0* < min(n,4¥1(n)). By the definition of a, there exists a d2 > 0
such that

(38) CL(($2) < o*.

Let § = min(d,d1,02), g € R™ such that ho(to,z9) < 4. It is clear
from (3.5)—(3.8) that

b(h(to,xo)) < V(to,.l‘o) < a(ho(to,ﬂfo)) < 0'*,
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which implies h(tg,z9) < €. Let z(t) = z(t,to,zo) be any solution of
system (2.2) with ho(to, z¢) < o. We claim that

(3.9) h(t,z(t)) <e, t > tp.
If this is false, then there exist a solution z(t) = z(t,to,xo) of (2.2)
with ho(to,zo) < 6 and a t* > t; such that ty < t* < gy, for some k,

satisfying

e < h(t",z(t*)) and h(t,z(t)) <e, fority <t <t

By the choice of € and conditions (i), we see
h(ti,z)) = h(trok +1k(@k)) < p,
where zj, = z(t;). Hence, we can find a ¢ such that

e < h(t,z(t)) < p and

(3.10) h(t,z(t)) < p fort € [to,1].

Defining m(t) = V(t,z(t)) for t € [to,t] and using (3.2) and (3.3), we
get

(3.11) {D+m(

) < p(t)e(m(t), t# i,
() < ¢i(m

),  i=1,2...,k

If we suppose that € (¢, t2], then we get from (3.11)

m(%) ds t
(3.12) / — < / p(s) ds.
m(to) c(s) to
Since B
/m@) ds /" ds
- > —_—,
m(to) c(s) b1 () c(s)

/ :p<s> i< [ p(s) ds

and
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it follows from (3.12) that

to P1(n) ds
p(s ds—i—/ — >0,
[ e [0

which contradicts (3.4).

Now suppose for t € [tg,t;] that m(t) < . Then, from (3.11), we
obtain

mt)  de t tit1
(3.13) /m(tj) o0s) < /;z p(s)ds < /;z p(s) ds, t € (ti, tiy1]-
It then follows from (3.4) and (3.13) that, for t € (¢;,¢i41],
m() g b ilm(t) g
(3.14) /m(ti) @ < /tl p(s) d8+/m(t,-) @ < =,
which implies, in view of the fact that v; > 0 and 1/¢(s) > 0,
m(t) <m(t;) <n, forte (¢, tiy1]
It follows by induction that
m(t) <mn, t € [to, 1],
which leads to the following contradiction
b(e) < b(h(E, 2(D))) < m(d) < b(e).

Thus (3.9) is true and the system (2.2) is (hg, h)-stable. We shall
next prove (hg,h)-asymptotic stability under the assumption that

ket Ve = 0.
From (h, h)-stability, we set & = p so that § = 6(p) and ho(to, o) < &
implies
h(t,z(t)) <p,  t=to.
Clearly, (3.11) and (3.14) remain true for all ¢ > ¢o. From (3.14) we see

that m(tg) is nonincreasing in k and thus limg_, o m(tx) = B exists. If
B > 0, then it follows from (3.14) that

k+q—1

m(tetq) < m(tr) — c(B) Z Vj —r —00 as q—» oo.
=k
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This contradiction shows g = 0.

Since m(t) < m(tx) for ¢ € (t, tk+1] and V (¢, x) is h-positive definite,
it follows that lim;_, o h(t,z(t)) = 0. Thus, system (2.2) is (ho, h)-
asymptotically stable and the proof is complete. i

Remark. It should be noted that assumption (3.3) includes the case
when
DtV (t,z) > 0, (t,z) € s(h,p), t # ti,

which indicates unstable behavior of the underlying system. That is,
an unstable system has been stabilized by impulses.

The following example shows that impulses may destroy a stable
system.

Example 3.2. Consider the impulsive differential system

' = —u, t £k,
(3.15) Az =/|zg| -z, t=kF,
z(0) = xo, k=1,2,....

Clearly, = 0 is an asymptotically stable equilibrium point of the
underlying equation 2’ = —z, but it is unstable with respect to (3.15).
Solving (3.15) directly we get

+ —(t—k) _ < —
x(t):{xk_le , (k=1)<t<k, k=12,...,
Lo, tZO,

where z7 = |zo|'/2" exp(— Z?zl 1/27) — e ! as k — oo. Thus,
lim; o, (t) = e 2 and = = 0 is unstable.

The next result provides sufficient conditions under which stability
behavior is preserved under impulsive perturbations.

Theorem 3.2. Assume that conditions (i) and (ii) of Theorem 3.1
hold. Suppose further that

(iii*) there exist functions ¢ € K and A € PC' such that

(3.16)  DTV(t,x) < —A(t)c(V(t,x)), (t,z) € s(h,p), t # ti;



POPULATION GROWTH MODELS 389

(iv*) there ezists a constant o > 0 such that for all z € (0,0)

t P (2) s
(3.17) _ / A(s)ds + / % < =y

te—1 z

for some constant v, and k =1,2,... .

Then the system (2.2) is (ho, h)-stable if vy, > 0 for all k = 1,2,...,
and (ho, h)-asymptotically stable if, in addition, Y .-, v, = co.

The proof of Theorem 3.2 is similar to that of Theorem 3.3 in [4].

The next two theorems are on (hg, h)-instability.

Theorem 3.3. Assume that
(i) ho,h €T, hy is finer than h, and for p > 0

(3.18) inf ho(t,z) = 0; (t,z) € s(h,p)

(ii) V € vy, V(t,z) is bounded on s(h,p) and there exists Y € Ko
such that

(3.19) V(th z+ I(z) > ¥r(V(t, 7)), k=1,2,...;

(iii) there exist c € K and XA € PC such that

(3.20)  —A(t)e(V(t,z)) < DTV(t, ), (t,z) € s(h,p), t # tg;

(iv) there exists a sequence {vyi} with v > 0 for k = 1,2,..., and
> heq Yk = 00 such that

th Ye(2) g
(3.21) —/ A(s) ds +/ — > Yk, z € (0, 00).
th=1 z C(S)

Then system (2.2) is (ho, h)-unstable.
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Proof. Let § > 0 be sufficiently small. Then (3.18) implies that there
exists (to,x0) € s(h, p) such that ho(to,zo) < d. Let z(¢) = (¢, t0, o)
be a solution of (2.2) starting at (fo,z0). We claim that (¢,z(t))
will leave the set s(h,p) in a finite time. Suppose, for the sake of
contradiction, that (¢, z(t)) stays in the set s(h, p) for all ¢ > t¢. Setting
m(t) = V (¢, xz(t)), t > to, it follows from (3.19) and (3.20) that
(3.22) {D+m(t) > = A(t)e(m(t)), t>to, t#tg,

' m(ty) > Yr(m(tr)), k=12,...,

which implies

This, together with (3.21), yields

m(t]) d t Yr(m(te)) d
/ : _Szf/ )\(s)ds+/ 2>y,
m(t+ ) C(S) te—1 m(tk) C(S)

k—1

which shows

m(td) = m(ti_y), k=23,...,
and
m(tf) > m(tf_) — c(m(t)ye,  k=2,3,....
Thus
k+m
m(th) 2 m(t:ﬂ) —c(m(t])) Z v; — —00 asm — 00,
j=k

which contradicts the boundedness of m(t). Hence the point (t,z(t))
must leave the set s(h, p) in a finite time and therefore the system (2.2)
is (hg, h)-unstable. O

Remark. Condition (3.20) includes the case when
DTV (t,z) <0, (t,z) € s(h,p), t #tg

which indicates stable behavior of the underlying system.
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Theorem 3.4. Assume that conditions (i) and (ii) of Theorem 3.3
hold. Suppose further than

(ili*) there exist c € K and p € PC such that

(323)  D'V(ta) = p(He(V(La)), (o) € s(hyp), ¢ # b

(iv*) there exists a sequence {vi} with v >0 for k =1,2,..., and
> hey Yk = 0o such that
[PEN] i (z) ds
(8.24) / p(s)ds + / >, 2 €(0,0).
123 2 C(S)

Then the system (2.2) is (hg, h)-unstable.

The proof of Theorem 3.4 is similar to that of Theorem 3.3; we omit
the details.

4. Applications. In this section we present a fish population model
which exhibits impulsive behavior in its state variable and may have
applications in fisheries management.

Consider a fish population in a lake which connects the upper and
lower streams of a creek. Suppose that all members of the fish popu-
lation have identical ecological properties. This means that age differ-
ences among members of the population are not important. Under this
assumption the population can be modeled by the nonlinear differential
equation

(4.1) N' = NF(N) +u,

where N(t) is the population at time ¢, N(¢)F(N(t)) is the natural
growth rate of the fish population and u > 0 represents a constant
influx rate of the population into the lake from the creek.

Suppose that the natural growth of the fish population is disturbed
by making catches and adding fish brood, i.e., at times ti,ts,...,
a part of the fish population with amount E;(N),E3(N),..., are
removed from the lake and simultaneously a new brood of fish with
amount D(N), Ds(N),..., are released. Then the growth of the fish



392 X. LIU

population is impulsive and can be described by the following impulsive
differential equation

(4.2) N'=NF(N)+u, t#t,
' AN = I;(N), t=ty, k=1,2,....

We shall first consider the case w > 0 and obtain some results on sta-
bility properties of system (4.2). To motivate appropriate assumptions,
let us consider the logistic equation

(4.3) N' =aN(C — N) +u,
where a, C' > 0 are constants. It is easy to verify that
aN(C—-N)+u=—-a(N—-L)(N+M),

where L = (1/C? + 4u/a+C)/2 > 0and M = (1/C? + 4u/a—C)/2 >

0. Thus, we have
(4.4) (N —L)[aN(C = N) +u] < —aM(N — L)

Motivated by this observation, we make the assumption on the right-
hand side of (4.1) that there exist constants L, > 0 such that

(4.5) (N —L)INF(N)+u] < —o(N — L)?, N >0.

Under this assumption and applying Theorem 3.2 to system (4.2), we
get the following result.

Theorem 4.1. Assume that

(i) F(N) is continuously differentiable and there exist constants
L,o > 0 such that (4.5) holds;

(il) Ix(N) is continuous and I(L) =0 for all k =1,2,...;

(i) for any z € (0,L), there exists a sequence {yk}, v > 0 for all

k=1,2,..., and Y p>, vk = o0, such that

)

|- HEZE]) <,

z

(4.6) —o(tk — tg—1) + max <1n [1 + M]
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Then the steady state N = L of (4.2) is asymptotically stable.

Proof. Condition (4.5) implies that LF (L) + uw = 0. This, together
with condition (ii) shows that N = L is a solution of (4.2). Let
h = hg = |[N — L| and V(N) = (N — L)?. Then it follows from
(4.2) and (4.5)

(4.7) DYV(N) < —20V(N), t # tg,

(4.8)
V(N(t+))_{[ V(N(t)) + In(L+ VV(N(:))))?, if N> L,
WV - (L VNP, N <L

forall k =1,2,....

Set AM(t) = o, ¢(V) = 2V and ¥(V) = (VV + I(L + VV))2,
Ur(V) = (VV = It(L — v/V))2. Then application of (3.17) yields (4.6).
Thus, all conditions of Theorem 3.2 are satisfied and the conclusion of
Theorem 4.1 follows.

In case the inequality (4.5) is reversed or equality holds, then we get,
in view of (4.8) and Theorem 3.4, the following result on instability.
mi

Theorem 4.2. Assume that conditions (i) and (ii) of Theorem 4.1
hold except that the equality (4.5) is reversed or equality holds. Suppose
further that

(iii*) for any z € (0, L), there exists a sequence {yk}, ve > 0 for all
k=1,2,..., and > po, vk = o0, such that

(4.9) —o(ty — tr_1) + min <ln [1 + @]7
AR

Then the solution N = L of (4.2) is unstable.

In the case when v = 0, which means biologically, that the environ-
ment is closed, it can be seen from (4.3) that we will have, instead of
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(4.4),
(4.10) (N —C)aN(C — N) = —aN(N — C)?

since L = C and M = 0.

Thus, assumption (4.5) has to be modified. One possibility is that
we set a threshold Ny > 0 such that
(4.11) E(N)=0 if N < Ny,

forallk =1,2,..., which means that harvesting is not allowed when the
fish population stays below the threshold value Ny. Under assumption
(4.11), we can obtain the same conclusions as in Theorem 4.1 and
Theorem 4.2 if we revise (4.5) to

—o(N —C)?, if N> N,

(4.12) (NC)NF(N)S{O if 0 < N < Np.

The details for this case are left to the interested reader.

Finally, we consider a special case for the logistic equation (4.3) with
u=0. We set t, = kd, d > 0 and

0(N-C), if N>C,
0, otherwise,

(4.13) Ii(N) = {

where § € (0,1) is a constant. For this case, the condition (3.17) in
Theorem 3.2 reduces to, in view of (4.12),

(4.14) e’ > 144

If 74 < 1 + 6, then it can be verified by direct computation that

(C*ﬂ)e’g’g(t’kd)+ﬁ’ te (kd, (k + 1)d]7
(4.15) N(t) = k=0,1,2,...,
ﬂ _ aCé t = 0’

(140)(1—e=0d) >
is a periodic solution of the impulsive system

4.16) { N' = aN(C = N), t# kd,

AN = I(N), t = kd.
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Thus, N = C is unstable which shows the sharpness of condition (3.17).
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