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LIAPUNOV-RAZUMIKHIN FUNCTIONS AND
AN INSTABILITY THEOREM FOR AUTONOMOUS
FUNCTIONAL DIFFERENTIAL EQUATIONS
WITH FINITE DELAY

JOHN R. HADDOCK AND YOUNHEE KO

1. Introduction and notation. It is well known that Liapunov’s
direct method sometimes provides a useful tool in the study of insta-
bility of functional differential equations (FDEs). See, for example,
[1] and [3, 4]. However, an obstacle often is encountered when one
tries to apply this method; namely, it frequently is difficult—if not
impossible—to construct appropriate Liapunov functions or function-
als in order to make use of known instability theorems. The purpose
of this paper is to provide an instability theorem that eliminates some
of the obstacles imposed by this difficulty. In particular, we employ
Liapunov-Razumikhin techniques and omega limit set properties in or-
der to present an instability result (Theorem 2.1) for autonomous FDEs
with finite delay. An example is given to illustrate that this theorem
often is straightforward to apply—when applicable—and can be used
to retrieve and extend previously known instability results.

We use the standard notation for finite delay FDEs. Let |-| denote any
convenient norm on the real Euclidean space R™ of (column) n-vectors.

Further, let r > 0 be given, and let C = C([—r, 0], R™) with
I¢]] = max |¢(s)

—r<s<0
For H > 0, define Cy C C by
Cu={speC:|¢l|<H}.

Ifx: [-r,A) — R" is continuous, 0 < A < oo, then, for each t in [0, A),
z¢ in C' is defined by

, peC.

zi(s) =x(t+ s), —r<s<0.
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Let G be an open subset of C' and consider the autonomous system of
FDEs with finite delay

(1.1) a' = f(z),

where f : G — R" is continuous and maps closed and bounded sets into
bounded sets. Further, we assume that solutions depend continuously
on initial data. It follows from these conditions on f that each initial
value problem

(1.2) ' = f(xy), =09 €cG

has a unique solution defined on some interval [0,A4), 0 < A < oo.
This solution will be denoted by z(¢$)(-) so that zo(¢) = ¢. If z is
a solution of (1.1) defined and bounded on [0, A) with A < co, then
either z; tends to the boundary of G as t = A~ or x can be extended
as a solution past A. In particular, if z is a solution of (1.1) contained
in a closed and bounded subset of G on any finite interval for which it
is defined, then z can be defined as a solution of (1.1) on [0,00). For
details, we refer to [4].

Let ¢ in C be such that z(¢)(t) is defined for all ¢ > 0. Then the
omega limit set, Q[z:(¢)] (or, simply, 2[¢@]), of ¢ with respect to (1.1)
is defined by

Qo] ={¢ € C : a2, (¢) — ¢ for some sequence {t,} T co}.

A set S is said to be positively invariant with respect to (1.1) if, for
each ¢ in S, x:(¢) € S for all t > 0 for which z;(¢) is defined. S is
invariant with respect to (1.1) if the mapping z; : S — S is defined and
onto for t > 0, i.e., 2;(S) = S for each t in [0, 00). In particular, if S is
invariant, then (i) for each ¢ in S, z;(¢) is defined and in S on [0, c0)
and (ii) for each fixed ¢t > 0 and % in S, there exists £ in S such that
zi(€) = 9.

By a Liapunov function V : R™ — R, we mean a locally Lipschitzian
function V such that (a) V(0) = 0 and (b) if 0 # z(¢o) is such that z is
differentiable at ¢y, then (d/dt)V]z(t)] exists at ¢t = ¢y. In particular,

d

av[ﬂc(t)]t:to = grad V]z(t)] - 2'(t)1=t,

— Z %{fo)]ﬁ(mto)‘
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For a Liapunov function V', we define the functional V(I1.1) :G — R by

1
! _ 4 _ —
Vaylél = Jim sup 1(19(0) + b ()] — VIp(0)).
It is well known (see, for example, [4] or [6]) that if z : R — R is
differentiable at t; with z;, = ¢, then

d

‘/(’1.1)[(75] = dat

VIOl = 3 T o),

where z;, = ¢.

Remark. We have chosen the above definition of Liapunov function
in order to use V[r] = |z|, while at the same time to allow for
straightforward calculations. An excellent discussion regarding the
computation of V(; ;)[¢] can be found in [6, Section 32].

Definition 1.1. The zero solution, z = 0, of (1.1) is stable if for
each € > 0 there exists § = d(¢) > 0 such that ||@|| < § implies that
|z(4)(t)] < € for all ¢ > 0. The zero solution is said to be unstable if it
is not stable.

2. The main theorem.

Theorem 2.1. Suppose there exists a Liapunov function V : G —
R* such that V[0] =0 and V]z] > 0 if © # 0. If either

(i) Viiplel >0 forall ¢ in G for which
]

21 VIOO)] = max VIg(s)] >0
or

(i) V{iy)lgl >0 forall ¢ in G for which
(2.2)

Vi) = _min Vio(s)] > 0.

then © = 0 is unstable.
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Proof. Let € > 0 be given, where C. C G, and consider any ¢ with
0<d<e.

Case (i). Let ¢ in C be chosen so that V[#(0)] = max,<s<o V]9(s)]
and §/2 < |¢(s)] < 6 for all s in [-r,0]. Thus, ||¢|| < § and
V{1.1y[¢] > 0. We claim that there exists ¢t* > 0 such that |z(¢)(t*)| =
€. Suppose not. Then z(t) and z'(t) are defined and bounded
on [0,00) and V[z(¢)(¢)] is increasing at ¢ = 0. It follows that
Viz(o)(t)] = max_,<s<o V(zi(9)(s)] for all ¢ > 0; in particular,
V{z(¢)(t)] is strictly increasing on [0,00). Therefore, there exists p
in R such that V[z(¢)(t)] — p as t — oo. Also, the positive orbit
0"[@] = 01 [z4(9)] = {z:(o) : t > 0} (through ¢) is precompact and the
w limit set, Q[¢], is nonempty. So, there exist ¢ in Q[¢] and a sequence
{tn} 1 00 such that

ze (p) = ¢ asn — oo.

Note that z;, (¢)(s) — ¢(s) and n — oo for all s in [—r,0]. It
follows that V[¢(s)] = p on [—r,0]. Since Q[¢] is positively invariant,
zi(¢) € Q[¢] for all ¢ > 0. Hence, Vizi(¢)(s)] = p on [—r,0]
for all ¢ > 0; that is, V is identically constant along z(v)(t). But
V[(0)] = max_,<s<o V[¢(s)] implies V{, ;[z:(4)] > 0 for all ¢ > 0,
which is a contradiction, and case (i) is proven.

Case (ii). We first note that, for any initial function £ in C, there
does not exist ¢y > 0 such that V[z(£)(to)] = min_,<s<o V]z(§)(to +
s)] # 0. Otherwise, since V[z(£)(+)] is differentiable at such a ty, we
would have (d/dt)V[z(£)(t)]t=t, < 0, which contradicts the hypothesis
for this case.

Let ¢ in C be chosen so that /2 < |¢(s)| < § for all s in [—r,0]. So
there exists a > 0 such that V]¢(s)] > a, —r < s < 0. It follows that
Viz(¢p)(t)] > « for all t > 0. If not, then there exists tog > 0 such that
Viz(9)(to)] = min_,<s<o V[z(¢)(to+ s)] = a > 0, which cannot occur.
Again, we claim that there must exist ¢t* > 0 such that |z(¢)(t*)| = e.
Suppose not. Then, as in Case (i) above, 07 [¢] is precompact and Q[¢]
is nonempty. Also,

tlim inf Viz(4)(t)] = 8 > « exists.
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It follows that there exist ¥ in Q[¢] and a sequence {t,, } 1 oo such that
Viz(o)(tn)) = B8 and x,(¢) =9 asn— oo.

Note that V]z, (¢)(s)] = V[¥(s)] > B as n — oo for all s in [—7,0].
In particular,

5= VIp(0)] = _min V()] 0.
Now [¢] is invariant (and not just positively invariant), so by a well-
known property of invariance (cf., e.g., [5, pp. 166-167]), z,(Q[¢]) =
Q[¢] for each t > 0. In particular, the mapping z; : Q[¢] — Q[¢] is onto
for each t > 0. Fix ¢ty > 0. Since ¢ € Q[¢], there exists £ = {(tp) such
that z,(§) = 4. Thus, from (2.1),

B=Viz(©)(to)] = min Va(e)(to +5)] >0,
which is impossible since t; > 0. This contradiction completes the
proof of the theorem. i

3. An example. It is well known (see, e.g., [3, Section 5.2]) that
the zero solution of the linear equation

(3.1) x'(t) = azx(t) + bx(t — 1), r >0,

is unstable if a+b > 0. In fact, several techniques—including the use of
the characteristic equation and the use of the Liapunov functions (cf.
[3])—have been employed to prove this. However, it becomes a more
complicated matter when related nonlinear equations are considered.
The situation is simplified significantly though if we apply Theorem
2.1.

Example 3.1. Consider the (possibly) nonlinear scalar equation
(3.2) 7' (t) = ah(x(t)) + bh(z(t — 1)),

where r > 0 and h : R — R is continuous and strictly increasing with
h(0) = 0. We will employ Theorem 2.1 to show that the zero solution
z = 0 of (3.1) is unstable whenever a + b > 0. Define V: R — R by
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V(z) = |z|, and let z(-) denote a solution of (3.1). We will consider
several cases, but many of the details are straightforward and, therefore,
omitted.

(a) Suppose b < 0. Then, for this case, a > |b] = —b. Suppose
t > 0 is such that V(x(t)) = max_,<s<o V(z(t + s)); that is, |z(¢)| =
max_,<s<o |z(t + s)| > 0.

(i) If z(t) > 0, then z(t) > z(¢t — r) and

V'(2(t)) = lz(t)| = 2’ (t) = ah(z(t)) + bh(z(t — 7))
> ah(z(t)) + bh(z(t))
= (a + b)h(z(t)) > 0.

(i) If z(t) < 0, then z(t) < z(t — r) and

V'(@(t)) "= —a'(t) = —ah(x(t)) — bh(x(t — 7))
(z(t)) — bh(z(t))
+

b)h(z(t)) > 0.

z(t)
> —ah
= —(a
Thus, (2.1) of Theorem (2.1) holds.

(b) Suppose b > 0. Let ¢ > 0 be such that |z(t)| = min_,<,<o |z(t +
s)| > 0.

(i) If z(t) > 0, then z(t) < z(t —r) and

V'(z(t)) = ah(x(t)) + bh(z(t — 7))
> (a+b)h(z(t)) > 0.

(if) If z(t) < 0, then z(t) > z(t — r) and
V(x(t)) = —ah(xz(t)) — bh(z(t —r))
> —(a+b)h(z(t)) > 0.

It follows that (2.2) of Theorem 2.1 holds.

In conclusion, we have shown that, for a + b > 0, condition (2.1) of
Theorem 2.1 holds if b < 0 and (2.2) holds if b > 0. In any case, it
follows from Theorem 2.1 that z = 0 of (3.2) is unstable.
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