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SYMMETRIC PERIODIC SOLUTIONS
OF RATIONAL RECURSIVE SEQUENCES

YULIN CAO AND G. LADAS

ABSTRACT. We consider the rational recursive sequence

k-1
a—+ S biTn—
(%) Tni1 = Do bittnos L n=0,41,42,...
Tn—k

where
a € (0,00) and bg,...,bx_1 € [0,00)

and show that, under appropriate hypotheses, when the lin-
earized equation

k—1
Eyni1+ Byn k= » bign—ir  n=0,+1,42...

i=0
about the positive equilibrium E of () has a periodic solution

with minimal period 2(k + 1), then (%) also has a periodic
solution with the same minimal period.

1. Introduction. Consider the rational recursive sequence

k—1
a+ Zi—o by

(1) Tpi1 = = . n=0,41,42,...,
Tn—k

where

(2) a € (0,00) and bg,...,bx_1 € [0,00).

Our aim in this paper is to show that, under appropriate hypotheses,
when the linearized equation

k—1

(3) Eyni1+ Eyn—y = Z biYn—is n=0+1,+£2, ...
i=0
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about the positive equilibrium E of (1) has a periodic solution with
minimal period 2(k 4 1), then (1) also has a periodic solution of the
same minimal period.

A finite sequence of real numbers {c¢;,¢j41,-.- ,Cm—1,Cn} is called
symmetric if
C; = Clym—i fori=1 ... m.

Throughout this paper we will assume, without further mention, that
the coefficients {bg,b1,... ,bk—1} form a symmetric sequence of non-
negative numbers, that is

(4) Oébi:bkflfi fori:O,...,k—l

and that the initial conditions for a solution of Equation (1) are of the
form

(5) Tpn =, forn=1,... k+1

where the numbers (,, are positive and the sequence {p1,... ,@k11} is
symmetric, that is,

(6) 0 < @i = Prya—i fori=1,... ,k+1.

One can now show that, with such initial conditions given, (1) has
a unique solution {z,}>2 which is positive and symmetric in the
sense that

— 0o

(7) 0<mp==ok19-pn forn=0+1,+2,....

A sequence {x,}%2 _  is called periodic of period p if

(8) Tpyp =&y, forn=0,£1,£2,....

The least positive number p for which (8) holds is called the minimal

period of the sequence. Equation (1) has a unique positive equilibrium,
E. The equilibrium, F, satisfies the quadratic equation

k—1
E? - (Zbi)E—azo,
=0
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and is given by

(s0) +y(2n) o

) E= .

Equation (3) is the linearized equation of (1) about E. The main result
in this paper is the following:

Theorem 1. Assume k is odd. Suppose that the linearized equation
(3) has a periodic solution with (minimal) period 2(k + 1). Then
Equation (1) has infinitely many symmetric periodic solutions, each
with (minimal) period 2(k 4+ 1) and arbitrarily near the equilibrium E.

The oscillation and stability of (1) was investigated in [2]. The peri-
odic character of solutions of some special cases of (1) were investigated
by Lyness [3]. See also [1] and [2].

2. A system of algebraic equations. In this section we will es-
tablish a system of algebraic equations which yields symmetric periodic
solution of (1). Suppose k = 2m — 1 is an odd number. If {z,},>° _ is

a symmetric periodic solution of (1) with period 2(k 4+ 1) = 4m, then

(10) Tn = Tomal-n and Tpigm =z, for all n.
Let

0 0 0 1

0 0 1 0
(11) D=0 10 0

1 --- 0 0 0

be the m x m-antidiagonal matrix. Define
(12) Xi = (Tim+1, Timt2, - - - > Timam)' €R™  for all ,
and set

(13) W =Xs—Xo= (Tomt1 — T1,--- ,Tam — Trm)’ € R™.
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Then, (10) yields
(14) X1 :DX(), XQ :X0+W, X3 :DXQ :D(X0+W),

and
Xy =X; fori=0,+£1,4£2,...,

where the equality X3 = DXy is because Z3;m41n = Tomt+1-3m—n =
Tom4m41—n for n =1,2,... ,m. On the other hand, if X; satisfies (14)
for some W € R™ and {x,,};/>° __ is determined by (12), then it is easy

to verify that {z,} satisfies (10). Now let

0 bO bl bm73 bm72
0 0 by -+ bp—s bp-s
R R
0 0 0 0 bo
0 0 O 0 0
0 0 0 0 0 0
bom—2 0 0 0 0 0
By — bomm—3 bgm,g 0 0 0 0
b1 bmi2  bmas bam—2 0 0
bm bm—i—l bm,+2 b2m—3 b2m,—2 0
and
bm —1 bm bm,+1 b2m—3 b2m—2
bp—2 bpm—1 by bom—4  bam—3
B1 _ bm73 bm72 bmfl e b2m75 b2m74
bl b2 b3 bm—l bm
bo by by o bme2 by

and let A = (a,a,...,a)” € R™. Clearly,
(15) DByD = Bs, DByD=B; and DB;D = By
or, equivalently,

DBO = Bgl)7 DBl = BlD and DBQ = B()D



RATIONAL RECURSIVE SEQUENCES 137

For any U = (uy,ug, ... ,um)T and V = (v1,v2,... ,0,)7 in R™, define
(16) UV = (u1v1, ugva, . .., Umvm)t € R™.
With this notation, (1) can be rewritten in the form

(17) Xivo* Xy = A+ BoX; + B1 X1 + Ba Xy,
i=0,4+1,42,... .

For ¢ = 0 and 1, Equation (17) becomes

(X0+W) x* Xo=A+ (Bo +BlD—|—B2)X0+B2W
(18)  (D(Xo+W))* (DXo) = A+ BoDXo + Bi(Xo + W)
+ B2 D(Xp + W),

where the relations in (14) were used. Notice that D? = I (identity
matrix), DA = A, and (DU) x (DV) = D(U % V) for any U,V in ™.
By multiplying by D and by using (15), the second equation in (18)
becomes

(Xo+ W) * Xg= A+ (By+ B1D + By)Xo + BiDW + ByW.

By subtracting this equation from the first equation in (18), Equation
(18) is equivalent to the following equations

(X0+W) *XO :A+ (Bo+BlD+BQ)X0—|—BQW

19 ~
( ) BlW :0,

where £~31 = By+ B1D — By. Therefore, a symmetric periodic sequence

{x,}52° _ with period 4m (that is, satisfying (10)) is a solution of (1)

if and only if (17) is satisfied for ¢« = 0,1,2,3. When i = 2,3, (17)
becomes
X4 * X2 =A + BOX2 + Bng + BQX4

20
( ) X5*X3:A+BoX3—|—BlX4—|—BQX5.

Since

X4*X2:X0*X2:X2*X0, X5*X3=X3*X1,
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By X5+ B1 X5+ Bo Xy = Bo(Xo+ W)+ B1D(Xo+ W) + By Xy
= (Bo + B1D + B3)Xo + BoW + BiDW
and
ByXs + B1 Xy + BX5 = ByD(Xo + W) + B1 X + BoD X,
= BoDXg + B1 X0 + BoDXg + BoDW,

we see that (20) is also equivalent to (19). In summary, we have
established the following lemma.

Lemma 1. Suppose k = 2m — 1 is an odd number. If {z,}>°

is a symmetric periodic solution of (1) with period 4m, then (Xo, W)
as giwen by (12) and (13) is a solution of (19). On the other hand, if
(Xo, W) € R™ x R™ is a solution of (19) and X; for i = +1,4+2,...,
and {x,};7°>° __ are given by (14) and (12), respectively, then {x, }.7>°

n=-—oo n=-—oo
is a symmetric periodic solution of (1) with period 4m.

In a similar way, consider (3), and suppose that {y,}>° _ is a

symmetric periodic solution of (3) with period 2(k + 1) = 4m. Define
(21)  Yi = Yim+1, Yims2s- - s Yimem) € R, i=0,+1,+2,...
and

(22) V=Y, Y.

Then (14) becomes

by VDV M=YosV. Y= DOG+V)
and Yy; =Y; foralli.

As in the above discussion with (1), (3) is reduced to the following
equations:

E(Yo+V)+ EYy = (Bg+ B1D + B3)Yy + BoV
B,V =0.
That is,
(2EI — (Bo + B1D + Bs))Yy = (By — EI)V

24 %
(24) BV =0,
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where By = By + B1D — Bs.

Lemma 2. Suppose k = 2m — 1 is an odd number. If {y,} >
is a symmetric periodic solution of (3) with period 4m, then (Yo, V) as
defined by (21) and (22) is a solution of (24). On the other hand, if
(Yo, ) € R™ x R™ is a solution of (24) and Y; fori = +1,+2,. 0 and
{yn}2°  are defined by (23) and (21), respectively, then {yn
is a symmetric periodic solution of (3) with period 4m.

n—=—oo

3. The proof of Theorem 1. In view of Lemma 1, finding
a symmetric periodic solution of (1) with period 2(k + 1) = 4m is
equivalent to finding a solution of (19). Since x,, = F is an equilibrium
of (1), if Xo = (E,E,...,E)T € ®™, then (Xo,W) = (X0,0) is a
solution of (19). It is clear that the linearization of (19) for (Xo, W)
around (X, 0) is just (24). Since (24) is equivalent to (3), by Lemma 2
we have the following result about the symmetric periodic solutions of

(3)-

Lemma 3. Suppose that a > 0 and b; >0 fori=0,1,2,...  k—1.
Then the following statements are true:

(i) Equation (3) has a nontrivial periodic solution with period p if
and only if, for some integer q, A = €29™/P_ 2 = —1, is a solution of
the equation

(25) E(\F 4 1) Zb AFI

(ii) Equation (3) has no nontrivial periodic solution with period
(k+1).

(i) If k =2m —1 is odd and (3) has a nontrivial periodic solution
with (minimal) period 4m, then (3) has a nontrivial symmetric periodic
solution with (minimal) period 4m.

Proof. (i) is obviously true because (25) is the eigen-equation of (3).
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Since

k—1 ) k—1

D bNTI <> by for any A =1
j=0 j

— =

and
k—1 k—1 _
im0 bi /(X020 bi)? +da ]

E= 2 >ij’

there is no solution of (25) satisfying A**! — 1 = 0. Therefore, it
follows from (i) that there is no nontrivial periodic solution of (3)
with period (k + 1). Finally, if (3) has a nontrivial periodic solution
of period 2(k + 1) = 4m, then it follows from (i) that there exists
a solution A\ = e24™/4m of (25), for some integer ¢. According to
(ii), the integer ¢ is odd. Since A = e~24™/4™ is also a solution
of (25), {csin(ngr/(2m) + 0)},7>° __ is a periodic solution of (3) for
any fixed ¢, € R. In particular, if ¢ = 1 and § = —gn/2, then
{sin[(2n — 1)qm/4m]}/>° __ is a symmetric periodic solution of (3) with
period 4m. If the nontrivial periodic solution is of minimal period 4m,
then g is relatively prime to 4m. Therefore, the symmetric periodic

solution is of minimal period 4m also. The proof is complete. ]
Now we are ready to establish Theorem 1.

Proof of Theorem 1. Let k = 2m — 1, and suppose that (3) has a
nontrivial periodic solution {y,};>° __ with period 4m. According to

n=-—oo
iii) of Lemma 3, we may assume that {y,} > _ is symmetric. B
Yy Y Y Yy

Lemma 2, there is a nonzero solution (Yg, V) of (24) corresponding to
{yn}i° Notice that if (Yp,0) is a nonzero solution of (24), then

{yn IEO:OO as defined by (23) and (21), it is a periodic solution of (3)
with period k + 1 = 2m. Therefore, it follows from (ii) of Lemma 3
that

det (QEI - (B() + B1D + Bg)) 75 0.
Consequently, the existence of (}A/O, IA/) implies that
V#0 and det(B;)=0.

By the discussion about the linearization of (19) at the beginning of
this section, it follows from the implicit function theorem that there
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exists ap > 0 and a continuous function Xy = Xo(a) from (—ayg, o)
into R™ such that (Xo(a), aV) satisfies (19) for all & € (—ayp, ap) and
Xo(0) = (E,E,...,E)T € R™. Moreover, one can write

(26) Xo(O[) = (E?Ev s 7E)T + O[)/;O +OL2)?O(O[)’

where Xo(a) is a continuous function from (—ag,aq) to R™. By
Lemma 1, (Xo, W) = (Xo(a), (Jé‘/}) yields a symmetric periodic solution
{z, ()}, of (1) with period 4m for each a € (—ag, ap). Moreover,
it follows from (26) that one can write

z,(a) = E+ ay, + a*i,(a) forn=0,+1,42,...

and
a € (—ag, ap)

where Z,(a) for n = 0,4+1,42,..., are continuous functions in « €
(—ap, ag). Consequently, if {y,}1>° _ is of minimal period 4m, then

n=—oo

{x,},}2° . is also of minimal period 4m for o near zero. The proof is

complete. u]

4. Examples. Before we present some examples, we obtain the
following consequence of Lemma 3.

Lemma 4. Assume that k = 2m — 1. Then (3) has a nontrivial
(symmetric) periodic solution of period 4m if and only if the polynomi-
als (25262 bjA*™=17) and (A?™ 4 1) have a common factor. If there

is a solution A = e?™/2™ of the equation

2m—2

> AT =0
j=0

with ¢ and 2m being relatively prime, then this X is a solution of (25),
and the corresponding symmetric periodic solution of (3) in (iii) of
Lemma 3 is of minimal period 4m.

Proof. According to Lemma 3, Equation (3) has a nontrivial (sym-
metric) periodic solution of period 4m if and only if there exists a
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solution \g = €24™/4™ (g integer) of (25). By (ii) of Lemma 3, ¢ is an
odd integer. Therefore, A3™ + 1 = 0. This is equivalent to the state-
ment that the polynomials (Z?:&Q bjA?™=177) and (A*™ + 1) have a
common factor. From this equivalence, the last part of Lemma 4 is a
consequence of part (iii) of Lemma 3. m]

Ezample 1. For k =2m — 1 =3, (1) becomes

a+boxp +b1Tp—1 + boTp_o

x =
(27) o Tn—3
n=0,%£1,4+2,...
where by = by, for the symmetry. By Lemma 4 we compare the

polynomial (bgA? + b1 A% + bo\) and (A* + 1). Since
M=+ V2A+ 1)\ = V2A+ 1),

these two polynomials have a common factor if and only if b; = v/2bg.
A2 +v2X + 1 = 0 has two solutions A = e3™/4 and \ = 65”/4,
which yield symmetric periodic solutions of (3) with minimal period 8
according to Lemma 4. Therefore, by Theorem 1 we have the following:

Theorem 2. If by = /2by > 0 and a > 0, then there exist infinitely
many symmetric periodic solutions of (27) with minimal period 8 near
the positive equilibrium E of (27).

Ezample 2. For k =2m — 1 =5, (1) becomes

a+boxp +b1Tp—1 + boTp_o
Tpy1 = ’
(28) Tn—3

n=0,41,42, ...

where bg = b; and by = by for the symmetry. Since
A +1= A2+ 1)\ +VBA+1)(A2 = VBA+1),
one can write

T = boA® + DI At + Do A3 + b1 A2 + b
= A[(boA® + bid + by — bo) (A* + 1) + (2bo — ba)],
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" FOO) = A(DoA* + (b1 F V/3bo)) (A2 £ VBA+1)

+ (ba F V/3b1 + bo)A?).

By Lemma 4, if by = 2by or by — v/3by + by = 0, then (3) has
nontrivial symmetric periodic solutions of period 12. Observe that
A +vV3A+1=0 yields solutions A = el1mi/12 gp( 13mi/12 Therefore,
it follows from Lemma 4 that if by — v/3by + by = 0, then there exist
periodic solutions of (3) with minimal period 12. In view of the above,
we have the following result:

Theorem 3. Assume that by, by € [0,00) and a > 0. If by = 2by or
by — V/3by + by = 0, then (28) has infinitely many symmetric periodic
solutions of period 12 near the positive equilibrium E of (28). More
precisely, if by —+/3b1+by = 0, then (28) has infinitely many symmetric
periodic solutions, each with minimal period 12 and arbitrarily near the
positive equilibrium E.
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