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SYMMETRIC PERIODIC SOLUTIONS
OF RATIONAL RECURSIVE SEQUENCES

YULIN CAO AND G. LADAS

ABSTRACT. We consider the rational recursive sequence

(∗) xn+1 =
a +

∑k−1

i=0
bixn−i

xn−k
, n = 0,±1,±2, . . .

where
a ∈ (0,∞) and b0, . . . , bk−1 ∈ [0,∞)

and show that, under appropriate hypotheses, when the lin-
earized equation

Eyn+1 + Eyn−k =

k−1∑
i=0

biyn−i, n = 0,±1,±2 . . .

about the positive equilibrium E of (∗) has a periodic solution
with minimal period 2(k + 1), then (∗) also has a periodic
solution with the same minimal period.

1. Introduction. Consider the rational recursive sequence

(1) xn+1 =
a +

∑k−1
i=0 bixn−i

xn−k
, n = 0,±1,±2, . . . ,

where

(2) a ∈ (0,∞) and b0, . . . , bk−1 ∈ [0,∞).

Our aim in this paper is to show that, under appropriate hypotheses,
when the linearized equation

(3) Eyn+1 + Eyn−k =
k−1∑
i=0

biyn−i, n = 0,±1,±2, . . .
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about the positive equilibrium E of (1) has a periodic solution with
minimal period 2(k + 1), then (1) also has a periodic solution of the
same minimal period.

A finite sequence of real numbers {cl, cl+1, . . . , cm−1, cm} is called
symmetric if

ci = cl+m−i for i = l, . . . , m.

Throughout this paper we will assume, without further mention, that
the coefficients {b0, b1, . . . , bk−1} form a symmetric sequence of non-
negative numbers, that is

(4) 0 ≤ bi = bk−1−i for i = 0, . . . , k − 1

and that the initial conditions for a solution of Equation (1) are of the
form

(5) xn = ϕn for n = 1, . . . , k + 1

where the numbers ϕn are positive and the sequence {ϕ1, . . . , ϕk+1} is
symmetric, that is,

(6) 0 < ϕi = ϕk+2−i for i = 1, . . . , k + 1.

One can now show that, with such initial conditions given, (1) has
a unique solution {xn}∞n=−∞ which is positive and symmetric in the
sense that

(7) 0 < xn = xk+2−n for n = 0,±1,±2, . . . .

A sequence {xn}∞n=−∞ is called periodic of period p if

(8) xn+p = xn for n = 0,±1,±2, . . . .

The least positive number p for which (8) holds is called the minimal
period of the sequence. Equation (1) has a unique positive equilibrium,
E. The equilibrium, E, satisfies the quadratic equation

E2 −
( k−1∑

i=0

bi

)
E − a = 0,
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and is given by

(9) E =

( ∑k−1
i=0 bi

)
+

√( ∑k−1
i=0 bi

)2

+ 4a

2
.

Equation (3) is the linearized equation of (1) about E. The main result
in this paper is the following:

Theorem 1. Assume k is odd. Suppose that the linearized equation
(3) has a periodic solution with (minimal) period 2(k + 1). Then
Equation (1) has infinitely many symmetric periodic solutions, each
with (minimal) period 2(k + 1) and arbitrarily near the equilibrium E.

The oscillation and stability of (1) was investigated in [2]. The peri-
odic character of solutions of some special cases of (1) were investigated
by Lyness [3]. See also [1] and [2].

2. A system of algebraic equations. In this section we will es-
tablish a system of algebraic equations which yields symmetric periodic
solution of (1). Suppose k = 2m−1 is an odd number. If {xn}+∞

n=−∞ is
a symmetric periodic solution of (1) with period 2(k + 1) = 4m, then

(10) xn = x2m+1−n and xn+4m = xn for all n.

Let

(11) D =

⎡⎢⎢⎢⎢⎣
0 · · · 0 0 1
0 · · · 0 1 0
0 · · · 1 0 0

...
1 · · · 0 0 0

⎤⎥⎥⎥⎥⎦
be the m × m-antidiagonal matrix. Define

(12) Xi = (xim+1, xim+2, . . . , xim+m)T ∈ �m for all i,

and set

(13) W = X2 − X0 = (x2m+1 − x1, . . . , x3m − xm)T ∈ �m.
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Then, (10) yields

(14) X1 = DX0, X2 = X0 + W, X3 = DX2 = D(X0 + W ),

and
X4+i = Xi for i = 0,±1,±2, . . . ,

where the equality X3 = DX2 is because x3m+n = x2m+1−3m−n =
x2m+m+1−n for n = 1, 2, . . . , m. On the other hand, if Xi satisfies (14)
for some W ∈ �m and {xn}+∞

n=−∞ is determined by (12), then it is easy
to verify that {xn} satisfies (10). Now let

B0 =

⎛⎜⎜⎜⎜⎜⎝
0 b0 b1 · · · bm−3 bm−2

0 0 b0 · · · bm−4 bm−3

0 0 0 · · · bm−5 bm−4

· · · · · ·
0 0 0 · · · 0 b0

0 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎠ ,

B2 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 · · · 0 0 0

b2m−2 0 0 · · · 0 0 0
b2m−3 b2m−2 0 · · · 0 0 0

· · · · · ·
bm+1 bm+2 bm+3 · · · b2m−2 0 0
bm bm+1 bm+2 · · · b2m−3 b2m−2 0

⎞⎟⎟⎟⎟⎟⎠
and

B1 =

⎛⎜⎜⎜⎜⎜⎝
bm−1 bm bm+1 · · · b2m−3 b2m−2

bm−2 bm−1 bm · · · b2m−4 b2m−3

bm−3 bm−2 bm−1 · · · b2m−5 b2m−4

· · · · · ·
b1 b2 b3 · · · bm−1 bm

b0 b1 b2 · · · bm−2 bm−1

⎞⎟⎟⎟⎟⎟⎠
and let A = (a, a, . . . , a)T ∈ �m. Clearly,

(15) DB0D = B2, DB1D = B1 and DB2D = B0

or, equivalently,

DB0 = B2D, DB1 = B1D and DB2 = B0D.
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For any U = (u1, u2, . . . , um)T and V = (v1, v2, . . . , vm)T in �m, define

(16) U ∗ V = (u1v1, u2v2, . . . , umvm)T ∈ �m.

With this notation, (1) can be rewritten in the form

(17)
Xi+2 ∗ Xi = A + B0Xi + B1Xi+1 + B2Xi+2,

i = 0,±1,±2, . . . .

For i = 0 and 1, Equation (17) becomes

(18)
(X0 + W ) ∗ X0 = A + (B0 + B1D + B2)X0 + B2W

(D(X0 + W )) ∗ (DX0) = A + B0DX0 + B1(X0 + W )
+ B2D(X0 + W ),

where the relations in (14) were used. Notice that D2 = I (identity
matrix), DA = A, and (DU) ∗ (DV ) = D(U ∗ V ) for any U, V in �m.
By multiplying by D and by using (15), the second equation in (18)
becomes

(X0 + W ) ∗ X0 = A + (B2 + B1D + B0)X0 + B1DW + B0W.

By subtracting this equation from the first equation in (18), Equation
(18) is equivalent to the following equations

(19)
(X0 + W ) ∗ X0 = A + (B0 + B1D + B2)X0 + B2W

B̃1W = 0,

where B̃1 = B0 +B1D−B2. Therefore, a symmetric periodic sequence
{xn}+∞

n=−∞ with period 4m (that is, satisfying (10)) is a solution of (1)
if and only if (17) is satisfied for i = 0, 1, 2, 3. When i = 2, 3, (17)
becomes

(20)
X4 ∗ X2 = A + B0X2 + B1X3 + B2X4

X5 ∗ X3 = A + B0X3 + B1X4 + B2X5.

Since

X4 ∗ X2 = X0 ∗ X2 = X2 ∗ X0, X5 ∗ X3 = X3 ∗ X1,
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B0X2 + B1X3 + B2X4 = B0(X0 + W ) + B1D(X0 + W ) + B2X0

= (B0 + B1D + B2)X0 + B0W + B1DW

and

B0X3 + B1X4 + BX5 = B0D(X0 + W ) + B1X0 + B2DX0

= B0DX0 + B1X0 + B2DX0 + B0DW,

we see that (20) is also equivalent to (19). In summary, we have
established the following lemma.

Lemma 1. Suppose k = 2m − 1 is an odd number. If {xn}+∞
n=−∞

is a symmetric periodic solution of (1) with period 4m, then (X0, W )
as given by (12) and (13) is a solution of (19). On the other hand, if
(X0, W ) ∈ �m × �m is a solution of (19) and Xi for i = ±1,±2, . . . ,
and {xn}+∞

n=−∞ are given by (14) and (12), respectively, then {xn}+∞
n=−∞

is a symmetric periodic solution of (1) with period 4m.

In a similar way, consider (3), and suppose that {yn}+∞
n=−∞ is a

symmetric periodic solution of (3) with period 2(k + 1) = 4m. Define

(21) Yi = (yim+1, yim+2, . . . , yim+m)T ∈ �m, i = 0,±1,±2, . . .

and

(22) V = Y2 − Y0.

Then (14) becomes

(23)
Y1 = DY0, Y2 = Y0 + V, Y3 = D(Y0 + V )

and Y4+i = Yi for all i.

As in the above discussion with (1), (3) is reduced to the following
equations:

E(Y0 + V ) + EY0 = (B0 + B1D + B2)Y0 + B2V

B̃1V = 0.

That is,

(24)
(2EI − (B0 + B1D + B2))Y0 = (B2 − EI)V

B̃1V = 0,
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where B̃1 = B0 + B1D − B2.

Lemma 2. Suppose k = 2m − 1 is an odd number. If {yn}+∞
n=−∞

is a symmetric periodic solution of (3) with period 4m, then (Y0, V ) as
defined by (21) and (22) is a solution of (24). On the other hand, if
(Y0, V ) ∈ �m×�m is a solution of (24) and Yi for i = ±1,±2, . . . , and
{yn}+∞

n=−∞ are defined by (23) and (21), respectively, then {yn}+∞
n=−∞

is a symmetric periodic solution of (3) with period 4m.

3. The proof of Theorem 1. In view of Lemma 1, finding
a symmetric periodic solution of (1) with period 2(k + 1) = 4m is
equivalent to finding a solution of (19). Since xn ≡ E is an equilibrium
of (1), if X̂0 = (E, E, . . . , E)T ∈ �m, then (X0, W ) = (X̂0, 0) is a
solution of (19). It is clear that the linearization of (19) for (X0, W )
around (X̂, 0) is just (24). Since (24) is equivalent to (3), by Lemma 2
we have the following result about the symmetric periodic solutions of
(3).

Lemma 3. Suppose that a > 0 and bi ≥ 0 for i = 0, 1, 2, . . . , k − 1.
Then the following statements are true:

(i) Equation (3) has a nontrivial periodic solution with period p if
and only if, for some integer q, λ = e2qπi/p, i2 = −1, is a solution of
the equation

(25) E(λk+1 + 1) =
k−1∑
j=0

bjλ
k−j .

(ii) Equation (3) has no nontrivial periodic solution with period
(k + 1).

(iii) If k = 2m − 1 is odd and (3) has a nontrivial periodic solution
with (minimal) period 4m, then (3) has a nontrivial symmetric periodic
solution with (minimal) period 4m.

Proof. (i) is obviously true because (25) is the eigen-equation of (3).
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Since ∣∣∣∣ k−1∑
j=0

bjλ
k−j

∣∣∣∣ ≤ k−1∑
j=0

bj for any |λ| = 1

and

E =

∑k−1
j=0 bj +

√
(
∑k−1

j=0 bj)2 + 4a

2
>

k−1∑
j=0

bj ,

there is no solution of (25) satisfying λk+1 − 1 = 0. Therefore, it
follows from (i) that there is no nontrivial periodic solution of (3)
with period (k + 1). Finally, if (3) has a nontrivial periodic solution
of period 2(k + 1) = 4m, then it follows from (i) that there exists
a solution λ = e2qπi/4m of (25), for some integer q. According to
(ii), the integer q is odd. Since λ = e−2qπi/4m is also a solution
of (25), {c sin(nqπ/(2m) + θ)}+∞

n=−∞ is a periodic solution of (3) for
any fixed c, θ ∈ �. In particular, if c = 1 and θ = −qπ/2, then
{sin[(2n−1)qπ/4m]}+∞

n=−∞ is a symmetric periodic solution of (3) with
period 4m. If the nontrivial periodic solution is of minimal period 4m,
then q is relatively prime to 4m. Therefore, the symmetric periodic
solution is of minimal period 4m also. The proof is complete.

Now we are ready to establish Theorem 1.

Proof of Theorem 1. Let k = 2m − 1, and suppose that (3) has a
nontrivial periodic solution {yn}+∞

n=−∞ with period 4m. According to
(iii) of Lemma 3, we may assume that {yn}+∞

n=−∞ is symmetric. By
Lemma 2, there is a nonzero solution (Ŷ0, V̂ ) of (24) corresponding to
{yn}+∞

n=−∞. Notice that if (Y0, 0) is a nonzero solution of (24), then
{yn}+∞

n=−∞ as defined by (23) and (21), it is a periodic solution of (3)
with period k + 1 = 2m. Therefore, it follows from (ii) of Lemma 3
that

det (2EI − (B0 + B1D + B2)) 	= 0.

Consequently, the existence of (Ŷ0, V̂ ) implies that

V̂ 	= 0 and det (B̂1) = 0.

By the discussion about the linearization of (19) at the beginning of
this section, it follows from the implicit function theorem that there
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exists α0 > 0 and a continuous function X0 = X0(α) from (−α0, α0)
into �m such that (X0(α), αV̂ ) satisfies (19) for all α ∈ (−α0, α0) and
X0(0) = (E, E, . . . , E)T ∈ �m. Moreover, one can write

(26) X0(α) = (E, E, . . . , E)T + αŶ0 + α2X̂0(α),

where X̂0(α) is a continuous function from (−α0, α0) to �m. By
Lemma 1, (X0, W ) = (X0(α), αV̂ ) yields a symmetric periodic solution
{xn(α)}+∞

n=−∞ of (1) with period 4m for each α ∈ (−α0, α0). Moreover,
it follows from (26) that one can write

xn(α) = E + αyn + α2x̃n(α) for n = 0,±1,±2, . . .

and
α ∈ (−α0, α0)

where x̃n(α) for n = 0,±1,±2, . . . , are continuous functions in α ∈
(−α0, α0). Consequently, if {yn}+∞

n=−∞ is of minimal period 4m, then
{xn}+∞

n=−∞ is also of minimal period 4m for α near zero. The proof is
complete.

4. Examples. Before we present some examples, we obtain the
following consequence of Lemma 3.

Lemma 4. Assume that k = 2m − 1. Then (3) has a nontrivial
(symmetric) periodic solution of period 4m if and only if the polynomi-
als (

∑2m−2
j=0 bjλ

2m−1−j) and (λ2m + 1) have a common factor. If there
is a solution λ = eqπi/2m of the equation

2m−2∑
j=0

bjλ
2m−1−j = 0

with q and 2m being relatively prime, then this λ is a solution of (25),
and the corresponding symmetric periodic solution of (3) in (iii) of
Lemma 3 is of minimal period 4m.

Proof. According to Lemma 3, Equation (3) has a nontrivial (sym-
metric) periodic solution of period 4m if and only if there exists a
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solution λ0 = e2qπi/4m (q integer) of (25). By (ii) of Lemma 3, q is an
odd integer. Therefore, λ2m

0 + 1 = 0. This is equivalent to the state-
ment that the polynomials (

∑2m−2
j=0 bjλ

2m−1−j) and (λ2m + 1) have a
common factor. From this equivalence, the last part of Lemma 4 is a
consequence of part (iii) of Lemma 3.

Example 1. For k = 2m − 1 = 3, (1) becomes

(27)
xn+1 =

a + b0xn + b1xn−1 + b0xn−2

xn−3
,

n = 0,±1,±2, . . .

where b2 = b0, for the symmetry. By Lemma 4 we compare the
polynomial (b0λ

3 + b1λ
2 + b0λ) and (λ4 + 1). Since

λ4 + 1 = (λ2 +
√

2λ + 1)(λ2 −
√

2λ + 1),

these two polynomials have a common factor if and only if b1 =
√

2b0.
λ2 +

√
2λ + 1 = 0 has two solutions λ = e3πi/4 and λ = e5πi/4,

which yield symmetric periodic solutions of (3) with minimal period 8
according to Lemma 4. Therefore, by Theorem 1 we have the following:

Theorem 2. If b1 =
√

2b0 > 0 and a > 0, then there exist infinitely
many symmetric periodic solutions of (27) with minimal period 8 near
the positive equilibrium E of (27).

Example 2. For k = 2m − 1 = 5, (1) becomes

(28)
xn+1 =

a + b0xn + b1xn−1 + b0xn−2

xn−3
,

n = 0,±1,±2, . . .

where b3 = b1 and b4 = b0 for the symmetry. Since

λ6 + 1 = (λ2 + 1)(λ2 +
√

3λ + 1)(λ2 −
√

3λ + 1),

one can write

f(λ) = b0λ
5 + b1λ

4 + b2λ
3 + b1λ

2 + b0λ

= λ[(b0λ
2 + b1λ + b2 − b0)(λ2 + 1) + (2b0 − b2)],
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or
f(λ) = λ[(b0λ

2 + (b1 ∓
√

3b0))(λ2 ±
√

3λ + 1)

+ (b2 ∓
√

3b1 + b0)λ2].

By Lemma 4, if b2 = 2b0 or b2 − √
3b1 + b0 = 0, then (3) has

nontrivial symmetric periodic solutions of period 12. Observe that
λ2 +

√
3λ + 1 = 0 yields solutions λ = e11πi/12 and e13πi/12. Therefore,

it follows from Lemma 4 that if b2 − √
3b1 + b0 = 0, then there exist

periodic solutions of (3) with minimal period 12. In view of the above,
we have the following result:

Theorem 3. Assume that b1, b2 ∈ [0,∞) and a > 0. If b2 = 2b0 or
b2 − √

3b1 + b0 = 0, then (28) has infinitely many symmetric periodic
solutions of period 12 near the positive equilibrium E of (28). More
precisely, if b2−

√
3b1+b0 = 0, then (28) has infinitely many symmetric

periodic solutions, each with minimal period 12 and arbitrarily near the
positive equilibrium E.
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