A GEOMETRIC CHARACTERIZATION OF THE WEAK-RADON NIKODYM PROPERTY IN DUAL BANACH SPACES

V. FARMAKI

ABSTRACT. We give a geometric characterization of convex, weak*-compact subsets of a dual Banach space with the weak-Radon Nikodym property as those sets in which every closed, convex subset is the weak*-closed convex hull of its x^{**} -weak*-strongly exposed points for each element x^{**} of X^{**}

1. Introduction. After the characterization by Musial [9] and Janicka [8] of dual Banach spaces with the weak-Radon Nikodym property (that is, the Radon-Nikodym property for the Pettis integral) as the spaces with predual not containing l_1 , many characteristic properties for the weak*-compact subsets of such spaces were proved (see [7, 12]). Many of these properties localized to provide equivalent properties for weak*-compact subsets of dual spaces [6, 10, 11, 13].

A convex, weak*-compact subset K of a dual Banach space X^* has the weak-Radon Nikodym property (w-RNP) if and only if it is a Pettis set $[\mathbf{5},\ \mathbf{13}]$ or equivalently if it is weakly fragmented $[\mathbf{5}]$ (K is weakly fragmented if for every nonempty, w^* -compact subset F of $K, \varepsilon > 0$ and $x^{**} \in X^{**}$ there exists a nonempty, relatively open subset U of (F,w^*) such that $O(x^{**},U)<\varepsilon$). Also, characteristic properties of a convex, weakly fragmented set K are that the norm-closed convex hull of F is equal to the weak*-closed convex hull of F for every weak*-compact subset F of K and that every convex, weak*-compact subset F of F is equal to the norm-closed convex hull of its extreme points F of F is equal to the norm-closed convex hull of its extreme points F of F is equal to the norm-closed convex hull of its extreme points F of F is equal to the norm-closed convex hull of its extreme points F of F is equal to the norm-closed convex hull of its extreme points F of F is equal to the norm-closed convex hull of its extreme points F of F is equal to the norm-closed convex hull of its extreme points F of F is equal to the norm-closed convex hull of its extreme points F of F is equal to the norm-closed convex hull of its extreme points F of F is equal to the norm-closed convex hull of its extreme points F of F is equal to the norm-closed convex hull of its extreme points F of F is equal to the norm-closed convex hull of its extreme points F is equal to the norm-closed convex hull of F is equal to the norm-closed convex hull of F is equal to the norm-closed convex hull of F is equal to the norm-closed convex hull of F is equal to the norm-closed convex hull of F is equal to the norm-closed convex hull of F is equal to the norm-closed convex hull of F is equal to the norm-closed convex hull of F is equal to the norm-closed convex hull of F is equal to the norm-closed convex hull of F is equal to the norm-closed conv

In this paper (see Theorem 8) we give a geometric characterization of convex, weak*-compact, with the w-RNP subsets of a dual Banach space as those sets in which every weak*-compact, convex subset is the weak*-closed convex hull of its x^{**} -weak*-strongly exposed points for each element x^{**} of X^{**} . An extreme point x^{*} of K is an x^{**} -weak*-strongly exposed point of K for some x^{**} in X^{**} if there exists

Received by the editors on November 1, 1992.

an x in X such that, for every sequence (x_n^*) in K, the sequence $(x^{**}(x_n^*))$ converges to $x^{**}(x^*)$ whenever the $(x_n^*(x))$ converges to $x^*(x) = \sup\{y^*(x): y^* \in K\}$. An example of an extreme point which is not x^{**} -weak*-strongly exposed is given (Example 2). By the same example we have that in the characterization the weak*-closure may not be replaced by the norm-closure. The proof of this theorem is based on techniques similar to those used in the proof of the analogous characterization for sets with the RNP [4].

2. Notations. Let Y be a topological Hausdorff space and f a real valued function on Y. For $A \subseteq Y$, the oscillation of f on A is the $O(f,A) = \sup\{|f(y) - f(x)| : x,y \in A\}$ and the oscillation of f at a point $x \in Y$ is $O(f,x) = \inf\{O(f,U) : U \subseteq Y \text{ is open and } x \in U\}$. Obviously, f is continuous at x if and only if O(f,x) is equal to zero.

Let X be a Banach space. We denote by X^* and X^{**} the dual and second dual of X, respectively. If A is a subset of X, then we denote by norm-cl A the norm-closure of A, by w^* -cl A the weak*-closure of A and by conv A the convex hull of A. The set of the extreme points of a convex set C is denoted by ext C. If K is a bounded subset of X^* , then a w^* -slice (or w^* -open slice) of K is a set of the form $S(K, x, \varepsilon) = \{f \in K : f(x) \geq M(x, K) - \varepsilon\}$ where $x \in X$, $\varepsilon > 0$ and $M(K, x) = \sup\{f(x) : f \in K\}$.

Definition 1. Let X be a Banach space, K a w^* -compact, convex subset of X^* and $x^{**} \in X^{**}$. An extreme point x^* of K is an x^{**} -weak*-strongly exposed point of K (written $x^* \in x^{**}$ - w^* -strexp K) if and only if there exists an $x \in X$ which x^{**} - w^* -strongly exposes x^* . This means that $M(K,x) = x^*(x)$ and for every $\varepsilon > 0$ there exists a slice $S(K,x,\delta)$ of K with $O(x^{**},S(K,x,\delta)) < \varepsilon$. Equivalently, x^* is x^{**} -weak*-strongly exposed by x if and only if for every sequence (x_n^*) in K such that $x_n^*(x) \to x^*(x) = M(K,x)$ we have $x^{**}(x_n^*) \to x^{**}(x^*)$. We denote by x^{**} - w^* -SE(K) the set of elements of X which x^{**} - w^* -strongly expose an element of K. It is easy to see that $x \in x^{**}$ - w^* -SE(K) if and only if for every $\varepsilon > 0$ there exists a slice $S(K,x,\delta)$ of K with $O(x^{**},S(K,x,\delta)) < \varepsilon$.

The following example shows that there exist extreme points which are not x^{**} -weak*-strongly exposed for some $x^{**} \in X^{**}$.

Example 2. Let X denote the Banach space c_0 . Then $X^* = \mathbf{l}_1$ and $X^{**} = \mathbf{l}^{\infty}$. Let $e_n, n \in \mathbf{N}$ be the unit vectors in \mathbf{l}^1 and K the weak*-closure of the convex hull of $\{e_n : n \in \mathbf{N}\}$. Since the w^* -limit of (e_n) is 0, we have that $0 \in K$. Moreover, 0 is an extreme point of K. But 0 is not an x^{**} -weak*-strongly exposed point of K for $x^{**} = (-1, -1, \ldots) \in \mathbf{l}^{\infty}$, because $\lim_n x^{**}(e_n) = -1 \neq 0$.

The following lemma is influenced by the analogous lemma of Bishop [2].

Lemma 3. Let K be a w^* -compact subset of a dual space X^* and $x^{**} \in X^{**}$. If for every $\delta > 0$ and $x \in X$ there exists a $y \in X$ such that $||x - y|| < \delta$ and y determines a slice S(K, y, a) of K with $O(x^{**}, S(K, y, a)) < \delta$, then $K = w^*$ -clconv $(x^{**} - \operatorname{strexp} K)$. Moreover, x^{**} - x^{*}

Proof. For every $\varepsilon>0$, let O_ε be the set of all $x\in X$ which determine a slice S of K with $O(x^{**},S)<\varepsilon$. Then O_ε is open, since for every $x\in O_\varepsilon$ and every slice S(K,x,a) of K there is a $\delta>0$ such that $S(K,y,a/2)\subseteq S(K,x,a)$ whenever $y\in X$ and $||y-x||<\delta$. Also O_ε is dense in X by hypothesis. Hence by the Baire category theorem the set $\cap_{n=1}^\infty O_{1/n}$ is dense and G_δ in X. It is immediate that x^{**} - x^* -x

If $K_1 = w^*$ -clconv $(x^{**} - w^* - \operatorname{strexp} K)$ is a proper subset of K, then from the separation theorem we can find a w^* -slice S(K, x, a) of K which is disjoint from K_1 . Since x^{**} - w^* -SE(K) is dense in X there exists a y in $x^{**} - w^* - SE(K)$ such that $S(K, y, a \setminus 2) \subseteq S(K, x, a)$. If $x^* \in K$ is $x^{**} - w^*$ -strongly exposed by y, then $x^* \in K_1 \cap S(K, y, a/2) \subseteq K_1 \cap S(K, x, a)$, a contradiction. \square

The following lemma is a version of the superlemma [1, 3] and the proof is analogous.

Lemma 4. Let X be a Banach space, K, K_0 and K_1 be w^* -compact, convex subsets of X^* , $\varepsilon > 0$ and $x_1^{**}, \ldots, x_n^{**} \in X^{**}$ with $||x_i^{**}|| = 1$ for $i = 1, \ldots, n$. Suppose that:

- 1. K_0 is a subset of K and $O(x_i^{**}, K_0) < \varepsilon$ for every i = 1, ..., n.
- 2. K is not a subset of K_1 .
- 3. K is a subset of conv $(K_0 \cup K_1)$.

Then there exists a w^* -slice S of K which contains a point of K_0 and $O(x_i^{**}, S) < \varepsilon$ for every $i = 1, \ldots, n$.

Proposition 5. Let C and K be w^* -compact and convex subsets of a dual space X^* , $x^{**} \in X^{**}$ and $\varepsilon > 0$. If K has the w-RNP and $K \setminus C \neq \varnothing$, then there exists a w^* -slice S of conv $(K \cup C)$ such that $S \cap K \neq \varnothing$ and $O(x^{**}, S) < \varepsilon$.

Proof. Let $J=\operatorname{conv}(K\cup C)$. Obviously, J is a w^* -compact and convex subset of X^* . Also, let $D=\{x^*\in J\colon \text{there is an }x\in X \text{ such that }x^*(x)=M(J,x)>M(C,x)\}$. Then $\varnothing\neq D\subseteq K$ and w^* -clconv $(D\cup C)=J$ (for more details see [4,(3.5.2)]). Since K is weakly fragmented there exists $[\mathbf{10}]$ a w^* -slice S^1 of $D^1=w^*$ -clconv D such that $S^1\cap D\neq\varnothing$ and $O(x^{**},S^1)<\varepsilon/3$. Let $K_0=w^*$ -clconv $(S^1\cap D)$ and $K_1=w^*$ -clconv $[(D\backslash S_1)\cup C]$. Then the sets J,K_0,K_1 satisfy the hypotheses of Lemma 4. Hence, we can find a w^* -slice S of J such that $S\cap K\neq\varnothing$ and $O(x^{**},S)<\varepsilon$. \square

Lemma 6. Let X be a Banach space and $x \in x$ with ||x|| = 1. For t > 0 denote by V_t the set $\{x^* \in X^* : x^*(x) = 0 \text{ and } ||x^*|| \le t\}$. Assume that $x_0^*, y^* \in X^*, x_0^*(x) > y^*(x)$ and $||x_0^* - y^*|| \le t/2$. If $y \in X$, ||y|| = 1 and $x_0^*(y) > M(y^* + V_t, t)$, then $||x - y|| \le 2/t ||x_0^* - y^*||$.

For the proof, see [4, Lemma 3.3.3].

Theorem 7. Let K be a w^* -compact, convex subset of a Banach space X^* and $x^{**} \in X^{**}$. If K has the w-RNP, then $K = w^*$ -clconv $(x^{**} - w^* - \operatorname{strexp} K)$. Moreover, x^{**} - w^* -SE(K) is dense and G_δ in X.

Proof. It is sufficient to check the hypotheses of Lemma 3. Let $0 < \delta < 1$ and $x \in X$ with ||x|| = 1. Since K is bounded, there exists a $y^* \in X^*$ such that $y^*(x) < x^*(x) - 1$ for every $x^* \in K$. Let $V = \{x^* \in X^* : x^*(x) = 0 \text{ and } ||x^*|| \le 2M/\delta\}$ where $M = \sup\{||x^* - y^*|| : x^* \in K\}$ and let $C = y^* + V$. Then $K \cap C = \emptyset$, hence $K \setminus C \neq \emptyset$ and from Proposition 5, there exists a w^* -slice S = S(J, y, a) of $J = \operatorname{conv}(K \cup C)$ such that $x_0^* \in S \cap K \neq \emptyset$ and $O(x^{**}, S) < \delta$. It is easy to check that $S \cap C = \emptyset$ and M(K, y) = M(J, y). Since $K \subseteq J$ we have that $S(K, y, a) \subseteq S(J, y, a)$ and hence $O(x^{**}, S(K, y, a) < \delta$. Finally, from Lemma $6 \mid |x - y|| \le \delta/M \mid |y^* - x_0^*|| \le \delta$.

Combining the above we have the following characterization:

Theorem 8. Let K be a w^* -compact, convex subset of a dual Banach space X^* . Then the following are equivalent:

- 1. K has the weak-Radon Nikodym property.
- 2. Each w^* -compact, convex subset C of K satisfies:

$$C = w^* - \operatorname{clconv}(x^{**} - w^* - \operatorname{strexp} C)$$

for every x^{**} in X^{**} .

3. For each w^* -compact, convex subset C of K and each $x^{**} \in X^{**}$ the set $x^{**} - w^* - SE(C)$ is dense and G_{δ} in X.

Proof. $1 \Rightarrow 2$ and 3. If K has the w-RNP, then each w^* -compact, convex subset C of K has the same property. Hence, from Theorem 7 $C = w^* - \operatorname{clconv}(x^{**} - w^* - \operatorname{strexp} C)$ and $x^{**} - w^* - SE(C)$ is dense and G_{δ} in X for every $x^{**} \in X^{**}$.

 $3\Rightarrow 1$. We will prove that K is weakly fragmented. Let F be a w^* -compact subset of K, $x^{**}\in X^{**}$ and $\varepsilon>0$. If $C=w^*$ -clconv F then x^{**} - w^* - $SE(C)\neq\varnothing$ from 3. Hence there exists a w^* -slice S of C with $O(x^{**},S)<\varepsilon$. Of course, $S\cap F$ is a nonempty relatively open subset of (F,w^*) and $O(x^{**},S\cap F)<\varepsilon$. Hence, K is weakly fragmented.

 $2\Rightarrow 1$. Let F be a w^* -compact subset of K and $x^{**}\in X^{**}$. If $C=w^*$ -clconv F, then from 2 we have that x^{**} - w^* -strexp $C\neq\varnothing$. Hence x^{**} - w^* - $SE(C)\neq\varnothing$. The proof is continued as in $3\Rightarrow 1$.

Corollary 9. A dual Banach space X^* has the w-RNP if and only if every convex, w^* -compact subset of X is the w^* -closed convex hull of its x^{**} -weak*-strongly exposed points for every x^{**} in X^{**} .

Remark 10. It is not true that every w^* -compact, convex, with the w-RNP subset K of X^* is equal to the norm-closed convex hull of its x^{**} - w^* -strongly exposed points for every x^{**} in X^{**} . For example, let $X^* = \mathbbm{1}^1$ and $K = w^*$ -clconv $\{e_n : n \in \mathbbm{N}\}$. As we prove in Example 2, $0 \in K$ and 0 is not an x^{**} -weak*-strongly exposed point of K for $x^{**} = (-1, -1, \ldots)$. The Milman theorem gives that ext $K \subseteq \{e_n : n \in \mathbbm{N}\} \cup \{0\}$, hence x^{**} - w^* -strexp $K \subseteq \{e_n : n \in \mathbbm{N}\}$. Since K has the w-RNP we have $K = w^*$ -clconv $(x^{**}$ - w^* -strexp K), but $K \neq || \quad || - \operatorname{clconv}(x^{**} - w^* - \operatorname{strexp}K)$ since $0 \notin || \quad || - \operatorname{clconv}\{e_n : n \in \mathbbm{N}\}$.

REFERENCES

- 1. E. Asplund and I. Namioka, A geometric proof of Ryll-Nardzewski's fixed point theorem, Bull. Amer. Math. Soc. 73 (1967), 443–445.
 - 2. E. Bishop, Unpublished letter to R.R. Phelps, 1966.
- 3. J. Bourgain, A geometrical characterization of the Radon-Nikodym property in Banach spaces, Compositio Math. 36 (1978), 3-6.
- 4. R.D. Bourgin, Geometric aspects of convex sets with the radon-nikodym property, Springer Lecture Notes 993 (1983).
 - 5. V. Farmaki, Weak fragmentability, to appear.
- **6.** N. Ghoussoub, G. Godefroy, B. Maurey and W. Schachermayer, *Some topological and geometrical structures in Banach spaces*, Mem. Amer. Math. Soc. **378** (1987).
- 7. R. Haydon, Some more characterizations of Banach spaces containing l_1 , Math. Proc. Cambridge Phil. Soc. 80 (1976), 269–276.
- 8. L. Janiska, Some measure-theoretical characterizations of Banach spaces not containing l_1 , Bull. Acad. Polon. Sci. Math. 27 (1979), 561–565.
- $\bf 9.~\rm K.~Musial,~\it The~weak~\it Radon-Nikodym~\it property~for~\it Banach~\it spaces, Studia~\it Math.~\bf 64~(1978),~151-174.$
- 10. L.H. Riddle, E. Saab and J.J. Uhl, Sets with the weak Radon-Nikodym property in dual Banach spaces, Indiana Univ. J. 23 (1983), 527-541.
- 11. E. Saab, Some characterizations of weak Radon-Nikodym sets, Proc. Amer. Math. Soc. 86 (1982), 307-311.

- 12. E. Saab and P. Saab, A dual geometric characterization of Banach spaces not containing l_1 , Pacific J. Math. 105 (1983), 415–425.
- ${\bf 13.~M.}$ Talagrand, $Pettis~integral~and~measure~theory, Mem. Amer. Math. Soc. <math display="inline">{\bf 307}~(1984).$

University of Athens, Department of Mathematics, Panepistemiopolis-Ilissia, 15784 Athens, Greece