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REGULAR SOBOLEV TYPE ORTHOGONAL
POLYNOMIALS: THE BESSEL CASE

FRANCISCO MARCELLAN, TERESA E. PEREZ AND MIGUEL A. PINAR

ABSTRACT. In this paper, given a regular linear functional
u on the linear space P of polynomials with real coefficients,
we consider the bilinear symmetric form ¢(p,q) = (u,pq) +
Ap'(c)¢'(c) where X and c are real numbers and p, ¢ € P.
A necessary and sufficient condition to warrant the existence
of a sequence of orthogonal polynomials with respect to ¢
is given, and different expressions in terms of the orthogonal
polynomials associated to u are studied. Also, we consider
the relations between these polynomials and the orthogonal
polynomials associated to the linear functional u; = (z—c)?u.
Finally, we illustrate these ideas with a nontrivial example, the
functional associated to the Bessel polynomials.

1. Introduction. In the last years, a nonstandard class of orthog-
onal polynomials has attracted considerable attention. The so-called
Sobolev type orthogonal polynomials (see references [2, 3, 5, 9, 10])
are associated to inner products like

(P @w = /R p®) (2)g™) () dpui ()

where pg is a finite positive Borel measure and pg, £ = 1,..., N are
discrete measures.

In this work, if w is a regular linear functional on the linear space
P of polynomials with real coefficients, we shall consider the bilinear
symmetric form

o(p,q) = (u, pq) + Xp'(c)q'(c)
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where A and ¢ are real numbers and p, ¢ € P. A necessary and sufficient
condition to warrant the existence of a sequence {Q,}, of orthogonal
polynomials with respect to ¢ is given, and different expressions in
terms of the orthogonal polynomials associated to u are obtained.

From the definition of ¢, we deduce that the shift operator is not self-
adjoint for the bilinear form ¢ and, therefore, the usual properties for
the standard orthogonal polynomials are no longer valid. However, the
operator associated to the multiplication by the polynomial (z —c)? is
self-adjoint with respect to ¢. Consequently, we can obtain a five term
recurrence relation for the orthogonal polynomials associated to .

The functional u; = (z — c)?u provides a very interesting interpre-
tation of the Sobolev-type orthogonal polynomials. They are quasi-
orthogonal polynomials of order two with respect to uy, and therefore
they can be expressed as a linear combination of three consecutive or-
thogonal polynomials associated with u;.

These problems have been considered by several authors in the
positive definite case (see Marcelldin and Ronveaux [9], Bavinck and
Meijer [3], Alfaro et al. [2]).

Finally, we consider the particular case of Bessel polynomials (see
[8]). These polynomials constitute an interesting example of a nonpos-
itive definite regular functional. We study the Sobolev-type orthogonal
polynomials associated with the Bessel functional with ¢ = 0. This
point has been selected in order to preserve the classical character for
the functional u;. For these polynomials we get the asymptotic behav-
ior for the coefficients of the recurrence relation. Moreover, differential
properties for the polynomials are obtained. In particular, we obtain a
Rodrigues-type formula and a second-order linear differential equation
with polynomial coefficients, with their degrees not depending on n.

These results can be compared with those of Hendriksen (see [7]). He
essentially studies

(u, pq) + Ap(0)q(0)

where u is a regular (nonpositive definite) functional for the simple
Bessel polynomials. He derives a second order differential equation for
these Bessel type polynomials.
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2. Regular Sobolev-type orthogonal polynomials. Let u be
a regular linear functional on the linear space P of polynomials with
real coefficients; that is, a linear functional u where the corresponding
Hankel determinants Hy(u) are different from zero. We will denote by
{P,}n» the monic orthogonal polynomial sequence (MOPS) with respect
to u. Then

(uy P Pr) = knbnm

where k,, # 0 for all n € N.
Let ¢ : P x P — R be the bilinear form defined by

(2.1) o(p,q) = (u, pq) + Ap'(c)q'(c)

where ¢ € R and A € R —{0}. If ¢ is not degenerate, we can construct
a sequence of monic polynomials {Q,}, such that

(i) degree of Q,(z) =n,Vn € Ny ={0,1,...},

(2.2) N - .
(11) (p(an Qm) = knénma kn, 7é 0,Vn € Np.

This system of polynomials will be called the Sobolev-type monic
orthogonal polynomial sequence (MOPS) with respect to .

Denote by

o) = — Pi(z)Pi(y)
Kulet) = 2 =0 h)

the reproducing kernel of order n associated with the family of orthog-

onal polynomials {P,},, and denote by Ky(f’s)(x, y) the corresponding
partial derivatives

() ar+s
Knr,s (x,y) = &ﬂ&ys Kn(x,y)

Conditions for the existence of the MOPS with respect to ¢ are given
in the next proposition.

Proposition 2.1. A necessary and sufficient condition for the
existence of an MOPS {Qy},, with respect to ¢ is

(2.3) 1+ )\K,(ll_’ll) (c,e) #0, Vn>1.
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In this case, the polynomial Q. (x) can be expressed as

Q)

(0,1)
1+)\K(1’11)(c C)K 21 (@,0).

n

Proof. If a family of polynomials {Q,}, satisfying (2.2) exists, we
get

Qule) = Palo) + 3" a3 (o).

From the orthogonality we deduce that

o= (W QnPy)  9(Qn, Fj) — AQ(€) Pi(c)
J (u, P?) (u, P?)
Qn(c)Pj(c)

(u, P}) ~

=)

for 0 < j <n-—1, and, in this way

(2.5) Qu(z) = Pa(z) — AQL ()K" (2, ¢).

If we differentiate (2.5), and then evaluate at z = ¢, we obtain

(2.6) Q) (1 + KLY (¢,0) = PL(o).

If 1+ )\K,(Ll_’ll)(c, ¢) = 0 for some value of n, equality (2.6) implies
that P!(c) = 0, and therefore 1 + )\Kr(Ll’l)(c, ¢) = 0. Thus, we get
Pl (c) = 0, for all m > n, and by derivation in the three term
recurrence relation, we obtain Py, (c) = 0 for all m > n, which leads to
a contradiction, since two consecutive standard orthogonal polynomials
have no common zeros. In this way, 1+ )\KT(Ll’l)(c, c) #0for alln € N,
and by substitution in (2.5), we obtain expression (2.4).

Conversely, if 1 + )\K,(ll’l)(c, ¢) # 0 for all n € N, the polynomials
defined by (2.4) have exact degree n and satisfy the orthogonality
conditions (2.2). o
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We remark that, if v is a regular functional, ¢ is nondegenerate for
every value of A except for an infinite and discrete set of values. If u is
positive definite, then K,(ll’l)(c, ¢) > 0, and it suffices to take A € R* to
obtain a nondegenerate form. We will suppose that ¢ is nondegenerate
for the rest of this paper. If we denote by

An =14+ AKMY (¢, ¢),
kn = <u’ Pr%(l'»’
Zzn = SO(Qna Qn)a

then we have

Corollary 2.2.
(i) QL(c) = PL(c)/(1+AK"Y (e, 0))

(i) kn = (An/An—1)kn.

3. Representation formulas for the polynomials (),,. From
the Christoffel-Darboux relation, we obtain

where T;(Pj, ¢)(x) denotes the Taylor polynomial of degree ¢ associated
to Pj(x) in c. By substitution in (2.4), we get a formula relating Q,(z),
P, (z) and P,,_1(x).

Proposition 3.1. The polynomials {Q,}. satisfy

(32)  (z-0)°Qu() = e2(z,n)Pu(x) + a1 (w,n) Ps (2),
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with ,
q@(z,n) = (z — ¢)® — )\i:—fcl)Tl(Pn,l, c)(z)
YRI5 S

A Pl(c)P,-1(c)

)‘n—l kn—l ’
ai(z,n) = AQk:Ecl) Ty (Py, ¢)(z)
A [P(e)? LPA(C)Pn(C)‘

- )\nfl knfl (x a C) * )\nfl knfl
The above proposition shows that (z — ¢)?Q,,() is a quasi-orthogonal

polynomial of order four with respect to w; that is,

Proposition 3.2.

(& — ¢)2Qn(@) = Poya(z) + i) Posi (2) + ol Py (2)
+ a(nn_)an,l(x) + a(n) Pn72(w)7

n—2

(3.3)

where

n A PP _(c)
angl = (/Bn + Brg1 — 20) Y ! )
n—1 n—1
(n) —

O’ =Yn+ Yn+1 + (ﬁn - 6)2

— (Bn-1+ Bn — 2¢) X )‘_ Pl (c)P, _,(c)

1 n—1
A Pi(e)P, 5(c)
Tn—1 )\n—l kn—l ’
(n) An A Pria(e)P(c)
= n— n — 2 n )
Qn 1 (IB 1 + B C)’Y )\n—l + )\n—l kn—l
n An
aé_)g = 'Yn'Yn—l)\ - 7A 0.
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4. Five term recurrence relation. Christoffel-Darboux type
formula.

Proposition 4.1. The polynomials {Q}, satisfy the following five
term recurrence relation

(@ = €)2Qu(2) = Qusa(@) + ) Qui1 (@) + M Qn ()
+ ™ Quor (@) + My Qnos(2),

A Phn(@F () A Bi(a)P, (¢

Cn+1 (Bn + Bnt1 — 2¢)+

)\n+1 knJrl )\nfl knfl ’
An—
et = S+ Angr + (Bn — 0)’]

A PP, 5(c) An
- 1|1

)‘n kn T 1|: - An—1:|

A PP, (o) An
- ET{[(@L1 + Bn — 2¢)] [1 + )‘n—1:|

R ANCIAC
>\n—1 kn ’

Proof. Tt is sufficient to expand (z — ¢)?Q,(z) in terms of the
polynomials {Q;};
n+1

(@ = 0)2Qu(x) = Quiz(z) + Y i Qu(2)
k=0

with
) _ #((@ = 0)?Qn(), Qr(x))
k ©(Qr, Q)
p(Qn(z), (z — ¢)*Qk())
©(Qr, Qr)

=0,
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0 < k < n —3. The expressions for the coefficients cgn) are deduced

from Proposition 3.2. o

Finally, in the usual way, from the recurrence relation, we deduce a
Christoffel-Darboux-type formula. First, we need the following lemma

Lemma 4.2. IfneN,i=0,1,..., n—2andi—2 < j <i+ 2,
then

07(171_—1]) _ C;n_—ji)
kn—j kn—i

Proposition 4.3. The following Christoffel-Darbouz-type formula
holds

— k;
_ %[Qn+2(x)Qn(y) ~ Qu()Qns2(y)]
+ 1_1 Qi 1(2)@n-1(9) — Qnr (2)Qn11(v)]
o
+ 2L10,1(2)0n(0) ~ Qu(o) Qs 1)}

5. The kernels. We define by

Lo(z,y) =Y Qi(w;:?i(y)

i=0 i
the n-kernel associated to the MOPS {Q,}, and denote by

8r+s

LG (@) = G Lal@.)

the corresponding partial derivatives. They satisfy the usual reproduc-
ing properties
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Proposition 5.1. Ifp(z) € P, and r =0,1,...,

(5.1) (L) (z,y), p(z)) = p)(y).

Proposition 5.2.

KO (@, 0) KV (y, )

(52) Ln(may) = Kn(xay) - A
1+ /\K,(zl’l)(c, ¢)

Proof. We can expand L,, as a polynomial in the variable z in terms
of P;(z), with coefficients dependent on the parameter y

where

_ Py LV wo)Pie)

(u, P?) (u, P?)

by using the reproducing property. Then
Lo(z,y) = Kn(z,y) = ALY (y, ) KD ().

If we differentiate this expression with respect to £ and then evaluate
at * = ¢, we get

LY (y, o)1 + AEY (e, 0)] = K%V (y, ¢)

n

and finally

K’S,OJ) K’r(LOJ)
Ln(may) = Kn(xay) - A (w’C)(l 1) (y,C)' o
14+ MKy (c,0)
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6. Relation with the modification associated to (z — c)2.
The concept of quasi-orthogonality gives the Sobolev-type orthogonal
polynomials another interesting aspect. In fact, let p(z) € P,,_3, and
consider

P(Qn(2), (z — ¢)*p(x)) = (v, Qu(x)p(z)(z — ¢)*) = 0.

This equality shows @, (z) to be a quasi-orthogonal polynomial of order
2 with respect to the functional u;, defined by u; = (z — c)?u. This
quasi-orthogonality condition implies that @, (z) can be expressed as
a linear combination of the monic orthogonal polynomials with respect
to the functional u;, if they exist, that is, if u; is a regular functional.
In [9], the following necessary and sufficient condition to warrant the
regularity of the functional u; is shown

Proposition 6.1. wu; is a regular functional if and only if K, (c,c) #
0 for all n € N.

From now on, we suppose that p; is a regular linear functional. The
relations between the polynomials {P,},, and the MOPS associated to
uy are expressed in the next lemma.

Lemma 6.2. Let {P!¢(z)} be the MOPS associated to uy. Then

61) (= OP ) = Pue) = o n K a(oo)
(6.2 PEL(E) = Pale) = gt s K e,

(6.3)  (z =)y~ K,  (2,) = Kn(z,y) —
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If we denote by k&, = (u, (P°))?), then
Kn(c )

. kS {1 =kp——mF7—
(6 5) n—1 Kn—l(cy C)

Proof. For (6.1)—(6.4) see Alfaro and others [2]. For (6.5), we use the
relation (6.1) and the reproducing properties for the kernels

ko1 = (un, (Br)%) = (u, (2 — €)X (P4 (2))%)

P,(c)?
o

Kn—l(
P,(c)? K,(cc)
koK, 1(c, c)] = Fn K, 1(c,c)’

~

= (u,P,) + u, K, 1(z,c¢)?)

%)

Proposition 6.3. Suppose that w1 is a regular linear functional, and
denote by {P}°},, the MOPS with respect to uy. Then

(6:6)  Qu(z) = Pre(@) + ol Pre (2) + alV, Py (a),
where
(n ]’%n )\n Kn72(ca C) kn
= = 0
fn=2 szz )\n—l Kn—l(ca C) kn—l 7& ’

Pu()Prii(c) \ Pr(e)Pr 4(c)
K, (¢, c)kn An1kn1

Proof. Expand @, (z) in terms of the polynomials {P}}:
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)

where ) )
a(n) o <u17QnPj’ > - <u’ (:L‘ - C)2QRZDJ’7 >
i 1,c - 1,c
T {u, (P9)?) (u1, (P;7)?)
j=0,1,...,n—1,
and therefore ag.") =0 for j < n—2, since @, () is orthogonal to every
polynomial of degree less than n, and

_ {u, (2~ ¢)’QuP,T)

a() _ <u17Qn n— 2>
T (Br)?) T (un (Bry)?)
(Qna ( c)zpi c2)
(w1, (P,%5)?)
B kychz B )\n—l Kn—l( c, )kn—l 7&0

() we consider (2.4) and Lemma 6.2,

To obtain a,,”;,
= (u, (z — ©)°QuPpy)

(u1, QuPhe)) =
:<u, {Pn(a:) Ai (I)K(D’l)(m c)} (-0
[P n(@) = —Kinl((cc), g Kl C)] >

= (u, (z — C)Pn(x)2> N W

BP0k [ Pa(c)?
Anflknfl anl(cac)kn '

Finally, using the three term recurrence relation, we get

<U1,an,,tf1> _ Kn—l(ca C) —c
)2) - Kyu(c,c) C

a ")1 = I
n—
<U1, (Pnfl

_Pu©)Paci(9) _ Pa©)Ph (o)
Kn(ca c)kn—l /\n—lkn—l
_ Pn(c)2
N [1 B K, (e, c)kn} C)
- Pn(C)Pnfl(c) - P,( )P'r’z l(c)
)\nflknfl '

K,(e,0)kn_1
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Corollary 6.4.

(6.7) Qulz) = [z — (85—, — al) IPye1(z) — (Vs — allVy)Prly(a),

where B5_; and 5 _, are the coefficients of the three term recurrence
relation for the polynomials {le’c(x)}.

Proof. Tt is sufficient to substitute in (6.6) the three-term recurrence
relation for the polynomials {le’c(x)}. o

Remark. This corollary shows that the polynomials Q,(z) can be
obtained by a perturbation of the three-term recurrence relation for
the orthogonal polynomials associated to wus.

Conversely, the polynomials P!¢(x) can be expressed by means of
three consecutive polynomials Q;(z).

Proposition 6.5.

(6.8) (¢ —¢)*PY(2) = Quiz() + b0, Quia () +5Q, (2),

where

Proof. Expand the polynomial (z — ¢)?P}¢(z) in terms of {Q;(x)}:
n+1

(& — )2Ph(2) = Quiz(z) + Y b Qil).

i=0
From the orthogonality, we deduce

pm _ (Qis (z = 0)?Pye)
¢ @(inQi) ’
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and bgn) =0,i=0,...,n— 1. The coefficients b%n), bgﬂzl are obtained
from the relation (6.5)

o 2@ a = *PE) (w1, Q,PL)
" ¢(Qn, Qn) P(Qn, Qn)
k_ycl — )\n—l Kn—i—l(ca C) kn—i—l
kn A Kp(c,e)  ky
An—1 Knyi(c,c) 2D
B )\n+1 anl(cac) -1 7&0
b(n) - (Qn+lv (m — C)QP#C)
wH (P(Qn-i-la Qn—i—l)
_ (1, @i Pr) vy R
(Qn+17 Qn—i—l) n kn+1

From the above propositions, we can obtain again the five-term
recurrence relation for the polynomials {Q,(x)}.

Proposition 6.6.

(& — €)2Qn(@) = Quia(2) + e, Qnia(2) + M Q, ()
+ e Quo1 (@) + ¢y Qua(2)

where, if n > 2,

cn—i—l_ n-g +a£Ln—)1’

C%") — p(n) + a(”) b(”—l) + a(")
b (n) b(" 2)

_ -1)
1= 0p-10n1 +n2n17

(6.9)
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Proof. From Propositions 6.3 and 6.5, we deduce

(@ = ©)*Qu(x) = (z — 0)?P"(x) + al (x — €)2PL" ()
+(z— )%, Py < )
= Quia(@) + (051 + 0 1)Qnia (2)
+ (0 + @l bV 4 al,)Qn ()
+ (@005 + b ) Qna (2)
+ap " PQ, o(z). O

Proposition 6.7. The coefficients of the relations (6.6) and (6.8)
satisfy

n+2 c c
1(1++1 ) +b1(1+)1 n+1 +ﬁ -

a4 b 6D b = A8+ (B - c) + %5,

blya ™ 0 al = (85 + By — 2e),

‘E’L = ’Yn’}/n—l‘

(6.10)

—

3

—

b

3

Proof. By using relations (6.6) and (6.8), we obtain

(& — ¢)2P1(2) = Quaa(@) + b, Qnit (2) + bV Qn(2)
= Pyty(w) + (i + 00 Pre (x)

+ (agln—l—Z) + b(n) (n+1) +b( ))PI’C(CE)
+ (0l b alY P (2)

+ b1(1 )ain—)2pi’—c2($)-

In this way, we only need to compare with the five-term recurrence
relations satisfied by the polynomials P}¢(z). o

Remark. The above results provide a recursive algorithm to compute
the polynomials {Q, ()}, from the coefficients of the three-term recur-
rence relation of the polynomials {P!:¢(z)},. From the relation (6.10)
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we can deduce the coefficients b&”), bg:jzl, al"™ and a(rff) from a( )2

a™ (nfll) and a(n+ ) , for n > 2,

Ap_1y Ay

b = (1 )i
b'EH—l = (1/0’ "+1 )b/n( n+1 + /BC - 26) b(n) 51_)1]7
a%"”) =48+ (8BS — ) +4¢ — b( n) a(n+1) bsln)’

a‘E’LT—Li—JEQ) =B+ 0B, —2c— bgﬁzr

(6.11)

The initial conditions are given by

M _ (g, — ¢) 4 TP

Qg = = (/81 C) + Kl (C, C)k‘l ’
k§ kg
pO = B 0 _ ()50
0 k'O 1 0 k'l

7. The Bessel case. In this section we consider the particular case
of Bessel polynomials (see [6, 8]). These polynomials constitute an
interesting example of an MOPS with respect to a regular functional
which is not positive definite.

The generalized Bessel polynomials y,(z;a,b) were introduced by
Krall and Frink [8] as the polynomial solutions of the Bessel polynomial
differential equation

(7.1) z*y" + (ax +b)y —n(n+a—1)y=0

where b # 0 and a # 0,—1,—2,..., satisfying y,(0;a,b) = 1. It is easy
to see that y,(bz; a,b) is independent of b. Consequently, we consider
the polynomials

Yn(a) (l’) = yn(w; a+2, 2)

where a # —2,—3,.... From now on, they will be called the Bessel
polynomials. In the same paper, Krall and Frink [8] give the orthogo-
nality relation

(7.2)

1 2a+1 -1 n+1 |
L[ v @)y () (2) dz = U™ n

2mi Jop m C 2n+a+1)I(n+a+1)

nm:»
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where

2a+1

oo 2 k
(@) () = _z
(7:3) () I(a+1) kZ:O oH—l ( z>

and the integration is around the unit circle. Here (a), denotes the
Pochhammer’s symbol, defined by (a), = a(a+1)---(a+n—1). Thus,
{Y,Sa)(x)} is a quasi-definite or regular OPS.

Denote by BT(LO‘)(:U) the monic Bessel orthogonal polynomial. In this
case, the following properties are known (see Krall and Frink [8],
Grosswald [6])

Ezxplicit representation.

(7.4) B (z) = ﬁ n (Z) (n+ o+ 1) <g>k

k=0

Orthogonality condition.

(15) 5 /T B(®) (2) B ()0 (2) d=

on 2 2a+1( 1)n+1n! 5
N <(n+a+1)n> 2n+a+1)I(n+a+1) "™

in particular,

o 1 « [0
ki) = 2ms T(Bﬁ )(2))%p ) (2) dz

on 2 2a+1(_1)n+1n!
B ((n+a+1)n> Cn+a+1)l(n+a+1)

(7.6)

The three-term recurrence relation.

2B (2) = By (@) + BB (@) + 7B (@), n> 1,
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where
2a

(@) — _

(7.7) & 2n+a)2n+a+2)’
4dn(n + )

(@) —
(7.8) T Cn+a+1)(2n+a)2@2n+a—1)’
and

B @) =1 BY@) =a+ o

Differential equation.

(7.9) xzd—zB,(f‘) (x)+[(a+2)m+2]iBg‘)‘)(m)—n(nJraH)Bga)(m) =0.

dx? dx

Differential relation.

B (z) =nB aﬁz)(a:).

d
1 —
(7.10) B

Rodrigues formula.

(7.11) B{®(x) = e/ T P (gPntee /),

(n+a+1),
where D" = d"/dz".

Structure relation.
xziB(a)(x) _ n(m _ 2 )B(a) (m)
de " 2n+a) "
4 dn(n + a) (@)
(2n+a)2(2n+a—1) "7t

(7.12)

().

From the above properties, we deduce the values of the parameters
which appear in the expressions of the Sobolev-type polynomials.

on 2n—1
B@@Q)= —= BeY(y=n—
0= e B O =
(-D)"T(n+a+1)
K — =
n-1(0,0) 20+l (p—1)!

(-1)"T'(n+a+2)

K(lvl) —
n—1 (07 0) 2043 (TL _ 2)'

[n(n+a) - (a+2)]
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Let o > —2, and let u(® be the functional associated to the Bessel
polynomials {B(*),,},,. We consider the bilinear form ¢(® defined by

¢ (f,9) = (W, fg) + Af'(0)g'(0).

The point ¢ = 0 has been selected in order to preserve the classical
character for the functional (u(®);.

By Proposition 2.1 a necessary and sufficient condition to warrant
the nondegeneracy of ¢(® is

1+ AKV(0,0) £0, Vo> 1.

Because the sequence {\Kff;ll) (0,0)|} diverges (for o > —2), the set
of values )\, such that ¢(® is degenerate, is contained in a bounded

interval, and, therefore, ©(® is nondegenerate for

2a+3

(1,1) -1
A K = .
Al > 1K (0, 0)] Ma+4)(a+2)

Denote by {Q&a)}n the MOPS associated to a nondegenerate bilinear
form ¢(®). By using the results in Proposition 2.1, we can obtain the

first representation formula for the polynomials {lea)}n.
Proposition 7.1.

(7.13) QW () = B () -

where A\, = 1 + )\K,(LM)(O, 0).

Corollary 7.2.

(i) Q¥(0) = (1/Aa_1)(2n/(n+a+1),)[1 — A((=1)"/228)(T(n +
a+3)/(n—2))],

(i) (Q5)(0) = (n/Aue)(@2" Y/ (n+ a + 2)n_1).

Proposition 3.1 becomes
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Proposition 7.3.

(7.14) 22Q() (2) = gz (z, n) B (2) + q1(x,n) B', (),
where
(7.15)

9 2n(n+a+1)

¢@2(z,n) = «” - (n—-1)(2n+a—-1)(2n + a)

v ||

2n(n+ a+1) r
(n—12n+a—-1)2n+«a)

[1—%]%@]-

The polynomials {QS{X)}” satisfy a five-term recurrence relation. Next,
we get the asymptotic behavior of the coefficients in this relation. First,
we need some preliminary results.

(7.16)

q(z,n) = [

Lemma 7.4.
. . 14+ AKSY(0,0)
lim = lim U 1) D,
n—o00 )\n—l n—00 1 + )‘Knil (0,0)

n

=1

Proof.

n

lim

-1 M(n+ta
1+ MNP a3 (n+ D(n+a+1) — (a +2)]

= lim —
n—yo0 1+ MG s D n(n + ) — (a+2)]
o 2 et Dtatl) - (@+2)]
= uam T — = y
n—oo -+ n(n+a) = (a+2)]

because

. L (-D)"T(n+a+2)
n11_>n010 Zn = nll)ngo)\ 345 (n_2) 0. a
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Lemma 7.5. Let {a,}n and {b,}, be the sequences

A (BY)Y(0)(BY,) (0)

an = N k:fl'i)l
B n(n+a+1) L An—2
C (n=-1)2n+a-1)(2n+a) A2’
y A (B (0)(B7)(0)

An ]%(10‘)

_ (n=2)2n+a-3)2n+a—-2)2n+a—-1)2n+a) [1_ )\n_l]
B dn(n+a)(n+a+1) ’

Then lim,, o an = 0, lim,, s b, = +00.

Proof.

A (BE)(0)(BYY,)(0)

lim a, = lim

n—00 n—00 \,_1 kfzoi)l
. 2n(n+a+1) An—2
= lim - =0,
A D ta- DT [ A
. A (BY)(0)(B2,) (0)
lim b, = lim —
n—o0 n—oo >\n k%‘l)
~ lim m=2)2n+a—-3)2n+a—-2)2n+a—1)2n+ a)
T nooo dn(n+a)(n+a+1)
A
[l — )\nl} = 4o00. O

Proposition 7.6 (Five-term recurrence relation). The polynomials
{ng‘)}n satisfy
2Q (2) = Qs (@) + 1 Q7 ()
+eMQ (@) + Qi (@) + 60, Q1 5 (a),
with

Jnm e = Jim o) = lim .7, = lim e,% =0



1452 F. MARCELLAN, T.E. PEREZ AND M.A. PINAR

Proof. Recalling the expressions of the coefficients in the five-term
recurrence relation, applying

lim 8 =0, lim 7 = lim o

n—00 n— 00 n—00 kz‘_l

=0,

and using the above lemmas, we obtain

: m) _ 1 (n)
lim Cri1 = lim ¢, =
n— oo n— oo n— o0

Finally,
Anf a a a
o) = F0E + i+ ()]
B 4n—1)(n—2)(n+a—1)
m+a+)2n+a-2)2n+a—-1)2n+a)2n+a+1)

Anfl An
1-— 1
[ )‘n } [ * An—l]
An—l

a a An An
- )\—an{(ﬁr(l)1 + B )){1+ \ ] + an+1}»

n n—1 Anfl

and we deduce that

lim cgl") =0. O
n— oo

Now we can get the expressions for Q%a) (z) in terms of the orthogonal
polynomials associated with the linear functional (u(®));. In this case
the MOPS corresponding to (u(®)); is {Bﬁfwz)}n. Then Propositions
6.3, 6.4 and 6.5 give

Proposition 7.7.
(7.17) Q' (x) = B (2) +a(”, B (@) + a{”, BYH (2),

n— n—

where

(7.18)
) A dn(n —1)
In-2= A1 2n+a—1)(2n+0)22n+a+1)’
n) 4n
n-1= 2n+a)(2n + a+ 2)
n(n+a+1) An—2].
(7.19) T -D@nta-1)(nta) [1_ )\nl]’



THE BESSEL CASE 1453

(7200 Q@) = (=GB (@) - 6B (@),
where
(7.21)
_ 2 2n(n+a+1) A2
Gn = 2n+a+(nfl)(2n+a71)(2n+a) [1 )\n_l:|’
(7.22)
€ = — dn—-1)(n+a+1) [1 n )\n]'
" @nta—-1)2n+a)2@2n+a+1) n+a+1i_1]

(7.23)  @?BE(2) = Q' (x) + b, QL) () + b Q (x),

where

(7.24)
B An—1 dn+a+1)(n+a+2)
" An 2n+a+1)2n+a+2)2(2n+a+3)’
(7.25)
pm An Ma(n+l)_
1 M: mal Om

(e+2)

The classical character of the polynomials B allows us to obtain

differential properties for the polynomials Qn .

Proposition 7.8 (Rodrigues-type formula). The polynomials Q%a) (2)
satisfy
(7.26)
1

2272/ Q() (z) = (n+tatl) D3 gt 2e 72/ p(im) ),

where p(x;n) is a polynomial of degree 2, given explicitly by

(n+a+1l)(n+a+2)

(2n+a+1)(2n+a+2)[(2n+a+1)(2n+a+2)$2

pla;n) =
+402n + o+ 2)x + 4]
+ afln)l(n +a+1)[(2n+ a)z + 2]
+ a(") 22n+a—-1)(2n+ ).
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Proof. Write the Rodrigues formula, given in (7.11), for the polyno-
mials {B,({Hz)}n

1

a+2 72/wB(a+2) —
% e 2T () ot

D" [x2n+a+2672/z]‘

By substitution in (7.17), we deduce

—2/x a 1 n n+a —2/x
222 QM (x) = (n+a+3) [ tat2em2/e]
(n) ;anl 2nta,—2/z
+a,’y (mntat2)ns [z e ]
+ a(") ;Dn—Z[wZn-ﬂ—a—Ze—Q/m]‘

"2nt+a+l),
Then

2222 Q@) () = 1 5 Dng{((n—i—a—i- D(n+a+2)

(n+a+ 2n+a+1)2n+a+2)
DZ[m2n+a+2€72/w]

+ a;n_)l(n + a4 1)D[g?"Fe=2/2]
+ agbn_)2(2n +a-1)2n+ a)m2"+°‘_2e_2/$},

and

—2/z (a 1 n— n+a—2_-2/z
e mQ @) = o D e (),

where p(z;n) is a polynomial of degree 2, whose expression is

m+a+l)(n+a+2)
2n+a+1)(2n+a+ 2)

plz;n) = ( [(2n+a+1)(2n + o+ 2)z?
+4(2n+a+ 1)z +4]
+ aflnjl(n +a+1)[(2n+ a)z + 2]
+a£l"_)2(2n+a - 1D(2n+ a). O

Finally, we can deduce a second order linear differential equation for

the polynomials {Q%a) (z)}, with polynomial coefficients, whose degrees
do not depend on n.
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Proposition 7.9. The polynomials {Q%a)(ac)}n satisfy a second order
linear differential equation
(7.27)

2
Aa(,m) 15 Q) () + Bol,m) 5-QI (2) + Cal, QY () = 0,

where Aq(x,n) is a polynomial of degree 4, Bs(z,n) is of degree 3, and
Ca(z,n) is of degree 2.

Proof. Taking the structure relation for the polynomials {Bl-(a“)},
BEtD () = 20 gt F 1 G, 1)Bt?

o2 (@) = Faor@” By 7 (2) = Fooi(n = 1)(@ = Gn1) B2y (2),
where

(2n+a —1)(2n + a)?
4dn—1)(n+a+1)

Gn—l and Fn—l =

:2n+a

By substitution in (7.20), we get

QW (2) = [z — Cu + EnFu1(n — 1)(z — Gn_1)] B P ()

d _(a
_gnFnile_ (+2)(m).

dx n—1 ’

then

(o7 d (o7
(7.28) Q) (@) = Mie,m) BT (@) + Na(e,n) - BI3 P (@),
where M (z,n) is a polynomial of degree 1 and Na(z, n) is a polynomial
of degree 2. By differentiation and substitution in the differential
equation of the Bessel polynomials {BZ»(QH)}, we deduce that

Q@) = [Mi(,m) + EuFua (0~ 1)(n + a4 2)] B

+ [Mi(z,n) + Nj(x,n)



1456 F. MARCELLAN, T.E. PEREZ AND M.A. PINAR

i.e.,

B (),

n—

(129) Q) = N, m) B (@) + N ()

&~

where My(x,n) is a polynomial of degree 0 and Ny (z, n
of degree 1.

~

is a polynomial

Taking the expressions (7.28) and (7.29), we have a system of equa-
tions, whose solution is given by

(7.30) N a+2)( = ‘ gba)(x) Ms(z,n)
A0 P = (100 (@) Ni(wn) |
(7.31) ] ()
w2 Mi(z,n no(x
Bofw,m) - B3 (@) = Moﬁw,ni (d/dx) (%“))(@ ’

where Ay(z,n) = My (z,n) Ny (2,n) — Na(z,n) My(z,n) is a polynomial
of degree two. Taking derivatives in (7.30), we get

[e% d @
Ay, m) By (@) + Do, ) - B ()

= Ni(z,n)Q) (x)
d2

+ [Nl m) — Ny )] Q0 () — Nl m) 10 Q1 (2)

and eliminating with equation (7.31), we obtain

2

Bl 1) Vol )5 Q4 (2) + [Aa(ar )N (s, m)

— Ao(z,n) Ny (z,n) + Ag(z, n) My (z,1)

~ Ay m)Nafa )] L Q1 (@)

+ [AY (2, n) Ny (z,n) — Ag(x,n)My(z,n)
— Ag(z,n)N] (z,n)]QM(x) =0. D
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