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A NEW SUFFICIENT CONDITION
FOR THE DENSENESS OF
NORM ATTAINING OPERATORS

MARIA D. ACOSTA, FRANCISCO J. AGUIRRE AND RAFAEL PAYA

ABSTRACT. We give a new sufficient condition for a Ba-
nach space Y to satisfy Lindenstrauss’s property B, namely
the set of norm-attaining operators from any other Banach
space X into Y is dense. Even in the finite-dimensional case,

our result gives new examples of Banach spaces with property
B.

Introduction. As a special case of the Bishop-Phelps theorem [5,
6], the set of norm-attaining functionals on a Banach space is dense in
the dual space for the norm topology. In their earlier paper [5], Bishop
and Phelps addressed the question of what Banach spaces might play
the role of the scalar field in their theorem. Intensive research on this
question was initiated by J. Lindenstrauss [15], who introduced the so-
called property B. Given two Banach spaces X and Y, let us consider
the Banach space L(X,Y) of bounded linear operators from X into Y,
and let us denote by NA(X,Y) the set of norm-attaining operators.
Thus, T € NA(X,Y) means that there is some & € Sx (the unit
sphere of X) such that ||[Tz|| = ||T||- The Banach space Y is said
to satisfy property B if NA(X,Y) is dense in L(X,Y) for all Banach
spaces X. Therefore, the Bishop-Phelps theorem gives that the scalar
field has property B. We are not concerned in this paper with the
corresponding property A (when Y is taken as the domain space) also
introduced by Lindenstrauss in [15]. The interested reader may consult
the papers by J. Bourgain [7], C. Stegall [19] and W. Schachermayer
[18]. Unlike property A, present knowledge of property B is far from
being satisfactory. Let us give a brief outline of known results and some
open problems.
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Lindenstrauss gave a sufficient condition for property B which was
later called property 8. The Banach space Y has property 3 if there is
a set

{(yx,un) : AEA}CY" XY
and a constant p < 1 satisfying
(1) ly3ll = llyall = y3(ya) =1 for A € A.
(i) [y3(yu)l S pfor A, pe A, XN # p.

(iii) [yl =sup{lyx(¥)| : A€ A} fory €Y.

For instance, the space ¢; clearly satisfies 8 (with p = 0) and a finite-
dimensional real normed space has property S if and only if its unit
ball is a polyhedron. The proof by J. Lindenstrauss that 8 implies B
is a successful application of the Bishop-Phelps theorem. As shown by
J. Partington, property [ entrains no isomorphic restriction on a Ba-
nach space, since any Banach space can be equivalently renormed to
satisfy 8 [16]. On the other hand, by refining the arguments in a cele-
brated paper of J. Bourgain [7], R. Huff proved that any Banach space
failing the Radon-Nikodym property can be equivalently renormed to
fail B [11]. Actually, apart from the obvious one-dimensional case,
no Banach space is known to satisfy property B in every equivalent
renorming. For instance, the “irritating” question [13] if R? with Eu-
clidean norm has property B seems to be still open. Thus, even in
the finite-dimensional case, to decide if a concrete Banach space has
property B may be a hard task. Concerning negative results, Linden-
strauss already proved that norm-attaining operators from cy into a
strictly convex Banach space must have finite rank, so a strictly convex
Banach space fails B as soon as there is a noncompact operator from
¢o into it [15]. The proof by W. Gowers that I, fails property B for
1 < p < oo runs in a similar way, the space cg is useless in this case but
Gowers finds a suitable substitute in a predual of a Lorentz space [10].
A slight refinement of Gowers’ result can be found in [2]. The question
if every finite-dimensional space satisfies property B is probably the
most relevant open question concerning norm-attaining operators.

The original motivation for the research done in this paper came
from a very simple observation. One can easily prove that property B
is stable under cy-sums, but a cy-sum of spaces with 3 fails to satisfy
[ unless the constants p in the definition of 8 can be taken bounded
away from 1. Thus, it was natural to look for a property weaker than 3,
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still implying B and stable under c¢y-sums. Of course, the new property
should be satisfied by some spaces which are not isometric to cy-sums
of spaces with 3. Let us explain how to find such a property, which we
call quasi-B. By using the Hahn-Banach theorem and the “reversed”
Krein-Milman theorem (see [12] for example) one sees that condition
(iii) in the definition of 8 holds if and only if every extreme point of
the unit ball By« lies in the w*-closure of the set {ty} : A € A, |t| = 1}.
Thus, we can get a weaker property if we only require a “local” version
of condition (ii), more concretely, the estimate in (ii) is only required
for those functionals y} which are actually needed to approximate each
extreme point in By~ (see below for the precise definition).

Our proof that quasi-g implies B, the main result in this paper,
is a nontrivial improvement of the above mentioned argument by
J. Lindenstrauss for property 3. We use the result by V. Zizler that
the set of operators between arbitrary Banach spaces whose adjoints
attain their norm is dense [20], combined with the fact that the norm
of a w*-continuous operator between dual spaces must be attained at
an extreme point provided that it is attained somewhere in the unit
ball.

The well-known description of the extreme points in the unit ball of
an [1-sum allows an easy proof that property quasi-3 is stable under cy-
sums. Moreover, there are Banach spaces with property quasi-# which
are not isometric to cp-sums of spaces with 5. We give two examples
of this kind. Surprisingly enough (at least it was surprising to the
authors) there are even finite-dimensional spaces satisfying property
quasi-g and not 3. Furthermore, the space used by Gowers to show
that I, fails property B happens to be a natural example of an infinite
dimensional space with property quasi-8 which fails 8 and cannot be
decomposed into a nontrivial cy-sum of Banach spaces, actually its dual
space has no nontrivial L-summands.

Let us start with the precise definition of property quasi-g:

Definition 1. We will say that a Banach space Y has property
quasi-g if there exist a subset A C Sy+, a mapping 0: A — Sy and a
real-valued function p on A satisfying the following conditions:

(1) y*(o(y")) =1 for y* € A.
(i) [z*(a(y™))] < ply") < 1fory*, 2" € A, y* # 2.
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(iii) For every extreme point e* in the unit ball of Y*, there is a
subset A.- of A and a scalar ¢ with |¢| = 1 such that te* lies in the
w*-closure of A.+ and sup{p(y*) : y* € Aex} < 1.

Sometimes, if it is necessary to be more precise, we say that Y satisfies
property quasi-8(A4, o, p).

If Y has property 3 (see the introduction) for a set {(y},yx) : A € A}
in Y* x Y and certain constant 0 < p < 1, we know already that
every extreme point of By lies in the w*-closure of the set {ty} : A €
A, |t| = 1}, so Y has property quasi-3(A, o, p) where A = {y} : A € A},
o(y}) = yx for X € A and p is constant. Note also that condition (iii)
in the definition of property quasi-8 clearly implies that the set A is
norming, that is,

llyl| = sup{ly*(y)| : ¥* € A}, VyeY

It follows, for any Banach space X and any operator T' € L(X,Y), that
T = sup{|[T"y"|| : y* € A},

a fact that will be used without comment. We can now state the main
result in this paper.

Theorem 2. Property quasi-B implies property B. More explicitly,
if X,Y are Banach spaces and Y satisfies property quasi-3, then the
set of norm-attaining operators from X into Y is norm-dense in the
operator space L(X,Y).

Proof. Let X and Y be Banach spaces and assume that Y has
property quasi-3(A4, o, p).
First of all, we apply the result by V. Zizler [20, Proposition 4] that

the set
{TeL(X,Y): T" e NA(Y*, X™)}

is dense in L(X,Y). Thus, we are left with showing that for every T
in this set, with ||T|| = 1, and arbitrary ¢ > 0 there is an operator
S € NA(X,Y) such that ||T — S|| < e.

By aresult due to T. Johannesen (see [14, Theorem 5.8]), T attains
its norm at an extreme point e* of By« and the definition of property
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quasi-3 gives us a subset A.« C A and a scalar ¢ with |¢| = 1 such that
te* lies in the w*-closure of A.~ and

r:=sup{p(y*) : y* € Ae-} < L.

From this point on, our argument is analogous to the one used by
Lindenstrauss for property 8 [15, Proposition 3]. We fix 0 < v < ¢/2

satisfying
14r(S4q)<(1+2)a— )
rlE V-
27 2 7
and use that 1 = ||T*(te*)|| = sup{||T*y*|| : y* € A.-} to find a

YT € Ae~ such that ||[T*y5|| > 1 — 7.

By the Bishop-Phelps theorem we can choose z* € X* attaining its
norm and satisfying

2 = 1T yill > 1=, 2" = T7y1ll <.

Now we define the operator S by

where y; = o(y7). Then
€ * * * % €
IS Tl < Sl + e~ Tl < S v <

and we will prove that S attains its norm. Since

* ok * ok * 6* * * ok * *
S*yt=T"y +y(y1)<5z +z —Ty1> Vy*eYr,

for y* € A, y* # y;, we have

* ok % g £
Isarll < o) (5 +7) <1+7(5+0)



412 M.D. ACOSTA, F.J. AGUIRRE AND R. PAYA

while, for y* = y§, we get S*y} = (1 +¢/2)z*, so
* € *
Iseuil= (14517
5
> <1+ —>(1 —7)
2
€
> 1+7“<§ +’}/>

Therefore, ||S*|| = ||S*yi]|, but S*y; is a multiple of z*, so it attains
its norm as a functional on X, hence S attains its norm. o

In what follows we briefly discuss the stability of property quasi-8 and
provide some suggestive examples. The following simple observation
motivated our search for such a property.

Proposition 3. Property B is stable under cy-sums.

Proof. Let A be an arbitrary nonempty set and ¥ = (®rcaYh)e,
where the Banach spaces Yy have property B. For T' € L(X,Y) with
[|IT|| = 1, let us write T\, = P\T where P, is the natural projection of Y’
onto Y) for each A. Given ¢ > 0, let o € A be such that ||T,,|| > 1—¢/2
and use property B of Y, to find an operator S, € NA(X,Y,) such that
[|Sall = 1and ||Sq —Tu|| < e. If S € L(X,Y) is such that PyS = T), for
A # aand P,S = S,, it is clear that ||S—T|| <e and S € NA(X,Y).
O

Property quasi-3 enjoys the same stability.
Proposition 4. Property quasi-8 is stable under cy-sums.

Proof. With the same notation as in the previous proof, let us now
assume that each Banach space Y, actually satisfies property quasi-
B(Ax, o, py) for each A € A. Let I, be the natural embedding of
Y, into Y and taking into account the standard identification Y* =
(PareaYy);, note that Py is in its turn the natural embedding of Y*
into Y*. An extreme point of By- must be of the form Pye} for some
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A € A and some extreme point e} in By:. With this observation in
mind, it is straightforward to verify that Y has property quasi-8(A4, o, p)
where A = UyeaP5 Ay and

a(Pxyy) = I\(oa(yy)),  p(Pryr) = pa(y3)

for any y; € Ay and A € A. O

It is not difficult to give an example of a cg-sum of spaces with
property B (even two-dimensional spaces) which fails 8. We now give
examples of spaces with property quasi-3 which are not isometric to
co-sums of spaces with 3. The first one is even finite-dimensional.

Example 5. Let us write a,, = (sinmw/2",cos7/2",0). Consider the
set
A=1{a,:neN}u{0,1,1),(0,1,-1)} C R3,

and let Y be R? provided with the norm such that By~ = co (AU—A).
Note that the set of extreme points in By« is AU —A so that the third
condition in the definition of property quasi-# will be trivially satisfied.
Now one can easily verify that Y has property quasi-3(A4, o, p) where

ola,) = an VneN,
7(0,1,+1) = (0,1/2, £1/2)

and
p(a,) = cosm /2"t VneN,

p(0,1,£1)=1/2.
Also Y fails property 8 because its unit ball is not a polyhedron.

Let us remark that Y cannot be decomposed into a nontrivial di-
rect sum with maximum norm, equivalently Y* has no nontrivial L-
summands. If Y* = U @V with ||u+v|| = ||u]| +]|v]| for all u € U and
v € V, then every extreme point of By~ must be in UUV so A CUUV.
If U (say) were one-dimensional, then V' would contain three linearly
independent points of A, a contradiction.

The above example is clearly inspired in the well-known construction
of a three-dimensional normed space such that the set of extreme points
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in its unit ball is not closed. Actually it is not difficult to show that a
finite dimensional real normed space has property quasi-g if and only if
the set of extreme points in the dual unit ball is a discrete topological
space. In particular, quasi-3 and (8 are equivalent for two-dimensional
real spaces. Instead of going farther in this line, we prefer discussing a
somehow more natural infinite dimensional example.

We need the following lemma which amounts to a characterization of
the set A appearing in the definition of property quasi-3. Recall that
an element y* in the unit sphere of a dual Banach space Y* is said to
be strongly w*-exposed by y € Sy if y*(y) = 1 and ||y} — y*|| — 0 for
any sequence {y;} in By such that y(y) — 1.

Lemma 6. Let Y be a Banach space with property quasi-B(A,a,p).
Then each y* € A is strongly w*-exposed by o(y*). Conversely, if
y* € Sy~ is strongly w*-exposed, then there is a scalar t with |t| = 1
such that ty* € A.

Proof. Since the absolutely convex hull A of A is w*-dense in By, to
prove the first assertion it is enough to show that, for given y* € A and
e > 0, there is a v > 0 such that ||z* — y*|| < ¢ whenever z* € A and
|1 — z*(o(y*))| <. We check that v = (1 — p(y*))/2 works. Let us
write z* = > p_, try) with yf € A, > "¢ _, |tk] < 1 and assume without
loss of generality that yi = y*. Then, from

7> 1 =2(o(y"))l

n
(1—t1)— Z kYr (o
> |1 -ty —p(y*)Z\tk\
k=2

> 1 —t1] = p(y*)(L = [t1])
> 1=t](1—p(y"))

we deduce
2" =yl <21 -ti] <e.

For the converse, let e* € Sy« be strongly w*-exposed by y € Sy.
Since e* is an extreme point of By« and e*(y) = 1, the definition of
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property quasi-§ gives a sequence {y} in A such that |y} (y)| — 1 and
r = sup p(y%) < 1. Passing to a subsequence if necessary and up to
a rotation, we can assume that y)(y) — 1 so that ||y; — e*|| — 0.
However, for n # m, we have

Ym = Ynll = 11— yp(o(ym)) =1 —7>0

so the sequence {y’} is eventually constant, and e* € A (up to
rotation). o

Example 7. We recall the definition of a Banach space considered
by W. Gowers in [10]. For a sequence y of real numbers and each
natural number n, let us write

#) = g sww { Syl 7 € N1 =}

JjEJ

where |J| is the cardinality of the set J and H,, = > ,_; k~'. We will
denote by GG the Banach space of those sequences y satisfying that

lim ®,(y) =0

n—r0o0

with norm given by
lyll = sup{®n(y) : n e N},  yed.

Let {e,} be the unit vector basis of G, and denote by {e},} the sequence
of biorthogonal functionals, which is a basis for G*. Actually, G* can be
identified with the Lorentz sequence space d({1/n}, 1), more concretely
the norm of G* is given by

: |y (ex)
il =sup { 5 x)
4 n=1

where the supremum is taken over all permutations 7w of N. We will
show that G has property quasi-3. Let A be the set of those y* € S+
which are of the form

* 1 *
(1) V= Zsje]-
"jes
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where J C N, n = |J|, s; = £1 for j € J and s; = 1 for kK = min J.
The set of extreme points of Bg« is AU—A (see [9, Section 3, Theorem
1], for example). We define a mapping o on A by

o(y*) = % > sjej
=y
provided that y* € A is given by (1). It is easy to check that
y (o) =lle@)ll=1  Vy" €4,
and we are left with showing that p(y*) < 1 for every y* € A, where
p(y") = sup{|z"(o(y"))| : 2" € A, 2" #y"}.
So let y* € A be given by (1), and let
1
z* = . iezltief

be the analogous expression for z* € A with z* # y*. Then

Hy
o) = -l

and it is not difficult to deduce from this inequality that

Hy,
Hn+1

2" (e (y™))] <

provided that I # J. If I = J we have s =ty = 1 for K = min J and
sj = —t; for some j € J, so
n—2 H,

< .
n Hn+1

12" (e (y™))] <

Thus p(y*) = H,,/Hy+1 < 1 as required.

Next we see that G fails property 8. Suppose on the contrary that
G has property (3 for a certain subset {(y},yr) : A € A} CY*xY
and some constant 0 < p < 1. By the above lemma, we must have
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{xy} : A € A} = AU —A. Then, for y*,2* € A with z* # y* we can
find A, u € A, A # p, such that y* = +y3 and 2* = +y;;. In any case
we have

lly™ — 2"l = llyx £ yull > |¥3(yu) £1/ >1-p > 0.

However, for any natural number n we can take

1 n+1 1 n
y*: 6*, Z*:— 6*
Hn+1;k Hn;k
and we get
1 1 1
1—p<|ly* —2*|| = — = )(Hn41 - 1) =0,
Pl =l =g+ (- gy ) e =)

a contradiction.

Let us finally remark that G* contains no nontrivial L-summands.
Suppose that U and V are complementary L-summands in G*, and
recall that every extreme point of Bg~ must belong to UUV. If ef € U
(say) and e € V for some n > 1, we would have ||e] + €| = 2, which
is clearly false, so e}, € U for all n and U = G*.

nl
n

Paralleling the investigations on norm attaining operators, the prob-
lem of the denseness of numerical radius attaining operators has also
received some attention in recent years [8, 17, 3]. Property 8 was
found useful also in this context [1] and property quasi-3 might play
some role as well.
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