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THE SEQUENCE z/n AND ITS SUBSEQUENCES

R.C. BAKER AND G. HARMAN

1. Introduction. We begin by mentioning two problems which
seem to have no relation to each other.

Problem 1. A positive integer n is said to be sparsely totient if

¢(m) > ¢(n)

for all m > n, where ¢ is Fuler’s function. Find the smallest number
A such that, for all sparsely totient numbers n, we have

(1.1) n;‘z}zxp = O.((logn)***).

Here and subsequently, p denotes a prime number and € an arbitrary
positive number.

Now let K be an algebraic number field with degree d; the size of an
algebraic integer € in K is the maximum of the set of absolute values
of the d conjugates of #. Let ay,...,a, be n > 3 distinct algebraic
integers in K and p a nonzero algebraic integer in K.

Problem 2. Give a bound for the size of solutions X,Y of the Thue
equation
(X—a1Y)"'(X—a2Y) =K

in algebraic integers X,Y .

Such a bound can be expressed in terms of d and the heights of
ai,...,Qn, 4 and some algebraic integer generating K [1, Section 4.2].
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Surprisingly, both problems are linked to the behavior of the se-
quences of the form

(1.2) z/n

for given real z, and natural numbers n in a suitable interval.

The authors became aware of Problem 1 in 1983, when D.W. Masser
posed the following problem in a letter to G. H.:

For what positive arithmetic functions f(N) is it true that

x
i — N
fmin < ()
for all real x?
Here ||...|| denotes distance from the nearest integer, while {...}

will denote fractional part. No satisfactory solution has been found.
One can show by examples that f(N) has to be at least c;tN~'/2. On
the other hand, as we shall explain later in this section, we may take

F(N) = ea(log N)~™.

(By ¢1,¢2,... we denote positive, effectively computable constants,
absolute unless otherwise indicated.)

The problem is easier if we restrict the size of  in relation to N, say
|z| < N°3;

van der Corput’s method of exponential sums comes into play and one
can replace ca(log N)™1 by caN~% (c4,cs depend on c3). See, e.g.,
Graham and Kolesnik [18] for van der Corput’s method. It turned
out that Masser, in joint work with P. Shiu [30] on sparsely totient
numbers, needed to solve a Diophantine inequality of the form

T Xz
1. 1——— <=t <1
(13) 16v2<{p}<

with p prime, 2v < p < 3v, for a given x and v related by

v <z < v
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The significance of the constant cg in connection with Problem 1 will
appear in Section 4. Thus Masser and Shiu were concerned with a
subsequence of (1.1).

An inequality like (1.3) is best approached via the study of sums

> A(n)e(z/n)
2u<n<3v
where A is von Mangoldt’s function. These sums can be decomposed
into ‘bilinear’ sums

(1.4) S(z) = ZaZbe(%)

where a,.,bs; have bounded modulus and 7, s run over integers in inde-
pendent intervals, subject to 2v < rs < 3v. See, for example, Section
24 in [10] (‘Vaughan’s identity’). Since Vaughan’s identity demands
special attention to the case

(1.5) ZaZe(%)

where the coefficients in the inner sum are 1, this immediately links
back to the study of sequences (1.2).

By using results about sums (1.4), (1.5), Harman [23] obtained (1.1)
with A = 2—8/65. In a forthcoming paper in Ann. Fac. Sci. Toulouse,
the authors reduce the value of A to 37/20. An outline of the method
is presented in Section 4: Vaughan’s identity is superseded here by the
sieve approach of Harman [22].

In a recent paper, E. Bombieri [7] used the ‘Thue-Siegel principle’ to
obtain results on Problem 2. We shall not quote the actual results, but
rather mention an auxiliary result (Theorem 2 of [7]):

Theorem 1. Let K be a number field of degree d over the rational
field Q, let T' be a finitely generated subgroup of K>, and let &1,... ,&
be a set of generators of T /tors (T').

Let A € K*, let v be an archimidean absolute value of K, and let
el and k > 0 be such that

0 <[1— A¢|, < H(AE)™".
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Let us define @ =1 ift =0 and
s t
Q _ (ell5d/n t)t+1 H h(é-z)
i=1

ift > 1. Then we have
(1.6) h(A€) < max(Qh(A),[Q]!).

The presence of the factorial is an unpleasant drawback of (1.6). It
originates in the following simple result (Lemma 4 of [7]):

Proposition 1. Let z;, © = 1,...,t, be rational integers, let \;,
1 = 1,...,t be positive real numbers with \1... s = 1, and let M
and Q be positive integers with Q > max \t. Then there are a natural

number r and rational integers p;, t =1,... ,t, such that
(17) |xl - Tpi| < T)‘iQ_l/t7 i=1,...,t
and

(Q—-1)!M <r < QM.

Proof. Let ¢; = z;/(Q!M). By a variant of Dirichlet’s theorem [39,
Theorem 1A], we have

|pig — pil < Q™Y1

for some natural number ¢ < @ and integers py,...,p;. Let r =
Q'M/q. Then r is an integer and

< NQTV

D
r
The proposition follows at once. u]

We make two simple observations.
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(i) Q! can be replaced by the least common multiple of 1,...,Q,
which is, of course,

exp((1 +0(1))Q).

(i) The z; can be real numbers without affecting the proof. Ac-
cordingly, taking t =1, M =1, @ = [(log N)/2] + 1, we obtain

T

1<r<N

;. H <2(log N)~!

min H

for R exceeding an easily computed constant c;. Hence we can indeed
take f(IN) = ca(log N)~! in Masser’s problem.

Bombieri asked one of the authors (R.C.B.) whether he could
strengthen the above lemma. For example, one might seek to solve
(1.7) in a range

(1.8) R<r<20QR

where R is a given natural number. (If cs < @ < (1/2)log R, the range
(1.8) is attainable via the argument used in Proposition 1.) However,
G. H. had essentially given a counterexample in 1983, in demonstrating

that f(N) must be at least ¢; N~ /2. See [3] for details of such an
example; it is still conceivable that one could get a range

R <r<cyQ’R

in place of (1.8).

To obtain a result that would be serviceable in the context of Problem
2, the authors restricted the size of x and were led to the following
theorem.

Theorem 2. Let R be a natural number, x € Rt and
|x| < R,
Let Q be a natural number,

(1.9) c11 <Q < R
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and let 1y, ..., be positive numbers with
(110) 'l/)z S clg(logQ)ft, 1= ]., e ,t
Y1y = Q1
Then
ﬂ Swla i=1,...,t
r

for some integer r satisfying (1.8). Here c1a depends on cio; c11 and
c13 depend on cig,t.

We give the proof for ‘large’ x in Section 3; it turns out that a
suitable application of Dirichlet’s theorem takes care of smaller x, see
[3]. Bombieri informs us that Theorem 2 can indeed by applied to
strengthen Theorem 1, and consequently to give new results on Thue
equations; but this is not yet written up.

2. Sequences z/n: Other results and applications. The earliest
occurrence of the sequence z/n in the history of mathematics is perhaps
in Dirichlet’s work on the error term in the divisor function d(n). Let

Az) = Z d(n) —z(logz + 2y — 1).
n<x
Dirichlet showed that

A)=-2 3 q/;(%) +0(1);

ngzl/z

see [18, p. 40]. Here
U(z) = {a} - 172

It follows at once that
A(z) = O(«*/?).

To go further, one reduces the problem to the study of exponential

o S(hz) = Y e<%>

mn~ M
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(h integer). Much effort has gone into improving Dirichlet’s exponent
by this approach and, in particular, trying to sum nontrivially over h.
See [18] for further discussion and references. A slight variant of the
technique leads to a similar analysis of the error term R(z) in the circle
problem,
R(z) = Z 1— 7z
(a,b);a24+b2<z
see [18, p. 42].

The exponential sum (1.4), and in particular (1.5), is also needed
when we look for almost primes in short intervals. Here we sieve

A={n:z 2% <n<az}

It is crucial to have good bounds on average for the remainders Ry
defined by

Since

roff)o(57),

it is apparent that S(z), and indeed S(hz) (averaged over a range
of integers h) will be an object of study for this problem. Chen [8]
showed that one can find a number with at most two prime factors in
Aif § = 1/2 and z is large enough. Later he was able to take § = 0.477
[9]. The value of 6 has subsequently been reduced by Halberstam,
Heath-Brown and Richert [20], Iwaniec and Laborde [26], Halberstam
and Richert [21] and Fouvry [14]. The most recent published result
is = 0.44 given by Wu Jie [41]. Besides exponential sums one again
needs sieve ideas, this time the Rosser-Iwaniec sieve [25] and weighted
sieve technique.

Wu also took up another nice problem [42] in which the exponential
sums (1.4) had been used earlier (by Bantle and Grupp [6]). The
problem originates with Erdés [12], who proved that there is a number
0 < 1 with the following property:

Let B be a sequence of natural numbers

by <by <bg<---
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which are coprime in pairs and have convergent reciprocal sum
o0
>3
b;
i=1 "

For x > x¢(0, B), there is an integer in (z —x
in B.

Szemerédi [40] was able to take any 6 > 1/2; Bantle and Grupp
had 6 > 9/20; Wu’s condition is § > 17/41. In contrast to Bantle and
Grupp, Wu was able to use exponential sums (1.5), instead of (1.4) with
‘unknown’ a,, bs. Sieve ideas are important in this work too—Wu uses
a ‘fundamental lemma’ (Friedlander and Iwaniec [16]). The simplest
example (B = squares of the primes) yields a square-free number in
(z — 2%, x]. Here, however, any # > 1/5 is admissible (Filaseta and
Trifonov [13]; the technique is combinatorial (no exponential sums)).

9 x] which has no divisor

Another approximation to the classical conjecture that I, = (z —
z'/2? z] contains a prime number, if z is sufficiently large, was given by
Ramachandra [31]. He found a constant # > 1/2 such that I, contains
an integer having a prime factor > z%, for large . Ramachandra’s first
value of § was 15/26; later he got 5/8 [32]. Several authors [28, 17, 2,
27, 29] have worked on this problem, and we now know that § = 0.732
is admissible (Baker and Harman [4]). Once again, sieve methods
are used in conjunction with exponential sums (1.4) and (1.5); this
time, both the Rosser-Iwaniec sieve and the alternative sieve method
of Harman [22] are helpful.

A well-known conjecture of Erdos states that the binomial coefficient
(2:) is not square free for any n > 4. Sirkozy [36] converted this

into a problem about exponential sums and was able to prove Erdos’s
conjecture for sufficiently large n. Recently Granville and Ramaré [19]
proved Erdés’s conjecture for n > 2617 via an effective bound for the

o S) = 3 Ale( %)

y<n<y’

where y < (1/5)2%/5 and y <9/ < 2y

50 z 1/(4(2*-1)) /4
1S(y,y')| < ?y<m> (log 16y)'Y/
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for any positive integer k. Vaughan’s identity is used and once again
generates exponential sums (1.4) and (1.5). A less precise estimate of
this kind had already been given in [11]. As for 4 < n < 2617 this
is finished off by Granville and Ramaré via computer verification; only
n = 2F requires effort.

One can, of course, study the sequence z/n in its own right; this is the
subject of a paper by Isbell and Schanuel [24] and an interesting series
of papers by Saffari and Vaughan [33, 34, 35]. We quote a couple of
results from [34].

Suppose that y = y(z) is increasing, y = o(z) and y — oo as z — oo.
Suppose further that 0 < o < 1 and that

O y(a) =y~! Z 1

n<y
{z/n}<a

has a limit as ¢ — co. Then the limit is o [34, Theorem 2].
Let G be Dickman’s function, so that
G(u) =1, 0<u<l,
G is continuous, and
(uG(u)) = —G(u — 1), u> 1
G is monotone decreasing and
0<Gu) <T(u+1)"

We have
limsup 6, ,(a) > G(u)
T—>00
for 0 < o < 1, y = (logz)*. Consequently, if 0 < o < G(u), 0, ()
does not have a limit as z — oo [34, Theorem 4].

The following result of Dyer [11] answers a question raised in [34].

As © — o0, we have

sup  sup Y. 1-(B-4)a|=04)
A<B<2A a€0,1) {z/n}€0,a)
A<n<B
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provided that

p(w) < A=ofx).

loglog x

3. Proof of Theorem 2 for ‘large’ x. By ‘large’ x we shall mean
that
m?xﬁf’i_l\wﬂ > c13RQ(log Q)".

Our method is adapted from W. Schmidt’s beautiful work [38] on

inequalities
lein?|| < i,  di=1,...,t,

where n is to be found in a given interval 1 < n < N. (See Schiffer
[37] for recent progress in the case ¢ = 2.) We write down a theorem
about lattices which implies Theorem 2. The unit ball in R” is written
By (or, in case t = 1, Byp).

Theorem 3. Let A be a lattice in R with determinant d(A) = Q,
(3.1) ANBy ={0}.
Let R and Q be natural numbers satisfying (1.9). Lety € R,
(3:2) c13RQ(log Q)" < |y| < R T
where c13 = c13(c10,t) is sufficiently large. Then
(3.3) rly € A+ By
for some integer r in [R,c1aRQ(log Q)!~*A71]. Here

A=XA) =min{|l| : I € A, # 0}.
Naturally, it took some experimentation to arrive at this format—a

key point is that ‘small’ vectors x in Theorem 2 require a separate
treatment. Our proof of Theorem 3, by induction on ¢, works with



THE SEQUENCE z/n AND ITS SUBSEQUENCES 805

far greater efficiency because no orthogonal lattice basis is required to
exist.

To deduce Theorem 2 for ‘large’ x, let A be generated by l,b;lej,
j=1,...,t, where eq,eq,... is the standard basis. Let (y1,...,y:) =
(x197", ...,z Y), and suppose (3.2) is satisfied. The integer r
supplied by Theorem 3 satisfies

:Ei'l/)i_l’f‘71 c ¢i_1Z+BO,
SO
Cl?i/’l“ ecZ -+ ’(/JiBO

as required. As for the upper bound on r, (1.10) yields

r < c14RQ(log Q)" ' max; < 2RQ.
J

It remains to prove Theorem 3. Implied constants in the rest of the
section depend at most on ¢y and ¢.

Let us give the induction step from ¢t — 1 to t. (Having seen it, the
reader will be able to fill in the case t = 1.) Suppose no suitable r
exists. In particular, we cannot solve (3.3) with

(3.4) R<r <2R.

By Lemma 2 of [3] which employs a smooth auxiliary function which
is A-periodic and vanishes outside A + By, we are led to

(3.5) 3 ‘Ze(i—yﬂ > R.

pell
o< |pl<t

Here py is inner product and II the lattice polar to A; the summation
condition (3.4) is left implicit.

After dividing up the sum over p in standard fashion, we find a
number B such that

(3.6) B<‘Ze<‘;—y>‘g23
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for all p in a set B counted within (3.5), of cardinality
B > RB™!(log Q)3

moreover,

B> RQ~'=.

By (1.9), van der Corput’s exponential sum estimates, and the lower
bound in (3.6), we are driven to conclude that

d (py
dr \ r

must be < 1/2; and accordingly [18, Lemmata 3.1, 3.5]

Z@(pr_y> < D!

T

D = max
re[R,2R)

for p € B. This leads to

py| < R|B|log @
and a box principle yields a p in IT having |p| < 2t,
(3.7) py| < Rlog Q.

We may suppose without loss of generality that p is primitive. (Notice
that we have again used exponential sums ) e(z/r).) Now

Z=y— P
Ip[?

lies in the (¢t — 1)-dimensional orthogonal complement p* of p. For a
suitably large c15, let

A = (e15A) N pt, Q' = det A

This determinant is shown in [38] to be

(3.8) Q' =ci;'Qlp|
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which in turn (as shown in [38]) is
(39) Z Ciglclﬁ,

and for suitable choice of ¢15 this is > ¢17 (K, t — 1).

Suppose, as we may, that c;5 > 2. Then
AN By=0
and

(3.10) A(A) > A(A).

We now apply the (t—1)-dimensional case of the Proposition, working
in pt rather than Rt~!. In place of y and A we take ci5z, A’, and in
place of R,

(3.11) R = c17R|p| ' log Q
where cy7 > 2t. We have

(3.12) R > RlogQ, c1s|z| < csly| < (RHEFL

If c17 is suitably chosen, we obtain an inequality we need below,

lpy| 1
3.13 < =
519 bR 2

from (3.7) and (3.11). Moreover, Q" < (R')¢ because
Q< Q<R < (R)(logQ)

from (3.8) and (3.11).

The remaining condition that we have to verify is the appropriate
lower bound for ¢;5|z|. We have

py| 1
ol 1yl % > on(enn O RQoE Q)
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from (3.2), (3.7), (3.9). It can be seen that
cis|z| > ci3(K,t — eirRIp| Hlog Q - c157QIpl(log 15 [p|@)*
for a suitable choice of ¢13(c10,t). The last expression is, of course,
c13(K,t —1)R'Q' (log Q") ".
Accordingly, there is an integer r,
(3.14) R <r <cilcio t —1)R'Q (log Q) 2/ A(A)

such that
7‘71015Z S AI + Bo.

In particular,

1
r7lz e A+ §B0'

We can work back from z to y, since

1
Iy _ )| < lpy| 2
from (3.13). Thus,

r ly € A+ By.

Now, for a suitable choice of c14(c19,t) we have

R <r < c14(c10,t)RQ(log Q)t_l/)\(A).

This is a consequence of (3.14), (3.11), (3.8) and (3.10). The existence
of such an integer r contradicts our hypothesis, and we have completed
the induction step.

4. Prime factors of sparsely totient numbers. We shall sketch
a proof of the following result: Pj(n) denotes the jth largest prime
factor of n.

Theorem 4. Let n be a sparsely totient number. Then

(4.1) Pi(n) < c16(logn)37/%.
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The key to the improvement of [23] is work of Fouvry and Iwaniec
[15] on exponential sums

(4.2) Z Z Z Ay m, e(AMEmTtms?)

m mi msa

where e(f) = e2™. The sums we need here are of the particular form

(4.3) ;Zth<h—j>

It is well known that there are devices for estimating this sum more
efficiently than (4.3); see, e.g., Iwaniec and Laborde [26], Baker [2],
Fouvry and Iwaniec [15], Wu [41], Liu [29] and Baker and Harman [5].
These devices would, perhaps surprisingly, make no difference to the
final result if we employed them here.

It is interesting to note that for j > 2 and n > ny(j,¢), a sparsely
totient number n satisfies

(4.4) Pj(n) < <L1 + 5> log ;
see [23]. We shall make use of (4.4) in proving (4.1).

Proposition 2. For all z,v sufficiently large and

W37/ < < o2,

there are
T
vlog x
solutions in primes p to
T T .
(4.5) 1_161)2 <{]—)}<1, with 2v < p < 3v.

Proposition 2 is proved by the sieve method developed by Harman
[22] and Baker, Harman and Rivat [5]. We are able to use the same
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numerical work as in [5]; this saves a great deal of space. Sums (4.3)
arise, as one would expect, in bounding the remainder terms of the
sieve.

The deduction of Theorem 4 from Proposition 2 follows [23]. Suppose
that n is a sparsely totient number and
Pyi(n) > ci(logn)*™/%,
so that n is large. From [30], we know that
Pi(n) < (logn)%

Let py = Pi(n) and write m = n/p;. We apply the Proposition with
x = p1, v = logn. It follows that there are

> p1/(vlogpy)

solutions to (4.5). From (4.4), there are at most three primes between
2v and 3v which divide n. We deduce that (4.5) has a solution with
p1tn. Let

r=[pi/p]+ L.

Evidently mrp > n. We now use (4.5) to show that ¢(mrp) < ¢(n).
We have

¢(n).

(4.6) d(mrp) < r¢(m)p<1 _ 1) _p (1=1/p)

p) ~ p1(1=1/p1)

Now

p1 D1 D1 9Ip1
_h_ )R
" { } < 1602 < T6p?

from (4.5). Hence

(4.7) <4 —.

Combining (4.6) and (4.7),

o(mrp) sas(n)(l—ﬁw(pil))(”%)

AN )
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Since p is large, we have

¢(mrp) < ¢(n)

which is absurd. Theorem 4 is proved. a

We now give a brief outline of the proof of Proposition 2. Let ¢ be
a sufficiently small positive number and n = 2. Constants implied by
‘<, >’ and ‘O.( )’ will depend at most on €. Constants implied by
‘O’ will be absolute. We use the abbreviation ‘m ~ M’ for

M<m<2M.

We write
a=13/20, §=ux/(16v7).

Let B be the set of integers in (2v,3v), and let A be the set of k in B

for which
T
1-6 — 1.
< {k} <

For £ = A or B, we write

é’d:{keé’:d|k},
S(&z)=[{ke&:plk=p2= =z}

Then the number of primes in A is S(A, (3v)!/2). We prove that

ov
S 3v)1/2) > ——
(A4, (Bv)™7) 4logv
which establishes Proposition 2.
We begin with the asymptotic formulae

(4.8) 3 adl =60y % + 0. (5v"3)

s~M s~M
(M < wvi73a7¢) and

(4.9) Y abi=6v > ashe | O, (5v'~3m)

st
ste A steB
s~M,t~N s~M,t~N
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(M in any of the intervals

[Uchta, U175a75], [U3a+a, ,U173a75] [v5a+€’ vlfafs])‘

Here as, s < 2M, and bt ~ N are complex numbers with |as],
|b:] < v". We prove (4.8) by combining the argument of Lemma 2
of [22] with bounds for exponential sums taken from [15, 5]; the
procedure for (4.9) is analogous.

Proceeding as in [22, 5|, via a fundamental lemma, we reach the
asymptotic formula

> anS(An, 00 =6 7 anS (B, v/ )1+ O(g(v)

mn~M m~M

+ Oc((logv) 1)) + O (60 —27).

Here M < v11/20_5, 0 <apy < v, a, = 0 unless all prime divisors of
m are at least v'/1972¢; y = 100¢, and

s =esn (1 e (1)),

We may now carry out the decomposition of S(A, (3v)'/2) in exactly the
same way as [5, Section 5] with v in the role of z, and push the argument
to a conclusion by following that paper with very little adaptation.
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