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INVERSE SCATTERING AND INFINITE MATRICES

M. KOVALYOV

1. IST for the KdV. The inverse scattering transform and its
application to the KdV equation have been known for quite awhile.
There has been a lot of research done as well as some attempts to
explain why the IST works. In this paper we will show that the whole
theory can be obtained using a very simple linear algebra type of
argument shown in Example 1. We illustrate our ideas in detail on
the KdV as the simplest equation to which the IST can be applied and
then sketch them for a more general case of first order systems.

We start with the fundamental observation that the KdV

(1) ut − 6uux + uxxx = 0, lim
x→±∞ u(x, t) = 0

can be written as

(2a) L̇ = [L,A]

where

(2b)
A = 4

∂3

∂x3
− 3

(
u
∂

∂x
+

∂

∂x
u

)

= 4
∂3

∂x3
− 6u

∂

∂x
− ∂u

∂x

and

(2c) L = − ∂2

∂x2
+ u, lim

x→±∞ u(x) = 0.

We will proceed in the following way. First we will study some
properties of the operator (2c) without additional assumptions (1) and
(2a). We will obtain a relationship (called Gelfand-Levitan-Marchenco
equation) between the spectrum and eigenfunctions of L and u(x).
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Thereafter we will show how the condition (2a) can affect the spectrum
and eigenfunctions of L and how it will change the Gelfand-Levitan-
Marchenco equation.

It is well known from the theory of ODEs that L possesses both
discrete and continuous spectra. The discrete spectrum of L is simple
and consists of an at most countable set (can be finite or even empty)
of negative numbers, whereas the continuous spectrum of L is double
and fills up the positive half of the real axis. The eigenfunctions of L
corresponding to both continuous and discrete spectra satisfy

Lψ = k2ψ(3a)
ψ(x, k) ∼ e−ikx, x→ +∞.(3b)

In addition, as x→ −∞, they satisfy the asymptotic

(3c)
ψ(x, k) ∼ a(−k)e−ikx − b(k)eikx,

a(k)a(−k) − b(k)b(−k) = 1

where a(−k), b(k) are some complex functions.1 ψ(x, k) is a solution of
(3b) and so is ψ(x,−k). Since the Wronskian W (ψ(x, k), ψ(x,−k)) of
these two functions is independent of x, we have the following string of
equalities

2ik = lim
x→+∞W (ψ(x, k), ψ(x,−k))

= lim
x→−∞W (ψ(x, k), ψ(x,−k))

= 2ik(a(k)a(−k) − b(k)b(−k))
and therefore a(k)a(−k) − b(k)b(−k) = 1. If k is real the coefficients
also satisfy a(k) = a(−k), b(k) = b(−k), and as a consequence
|a(k)|2 − |b(k)|2 = 1.

The solution of (3) can be written as

(4) ψ(x, k) = e−ikx +
∫ +∞

x

sin k(x− y)
k

u(y)ψ(y, k) dy.

We can think of (4) as a linear equation for a generalized matrix ψ(y, k)

(5)
∫ +∞

−∞
θ(y − x)

[
δ(x− y) − sin k(x− y)

k
u(y)

]
ψ(y, k) dy = e−ikx
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with a triangular matrix2

(6) θ(y − x)
[
δ(x− y) − sin

k(x− y)
k

u(y)
]
dy

in front of ψ and the nonhomogeneous term e−ikx. Here θ(y − x) = 1
if x ≤ y and 0 otherwise.

To solve (5) for ψ(y, k), we need to multiply (5) by the “inverse”
of (6). Although we do not know what the inverse of (6) is, we can
suppose that (analogously to the ordinary matrices) the “inverse” of a
triangular matrix is also triangular (this can actually be proved [3]),
i.e., it must have the form

(7) θ(y − x)[δ(x− y) +K(x, y)] dy

with some function K(x, y), i.e.,

(8)
ψ(x, k) =

∫ +∞

−∞
θ(y − x)[δ(x− y) +K(x, y)]e−iyk dy

= e−ikx +
∫ +∞

x

K(x, y)e−iky dy.

Substituting (8) into (3) we obtain3

(9) −
(

2
dK(x, x)

dx
+ u

)
e−ikx + lim

s→+∞

[
K(x, s)ik +

∂K(x, s)
∂s

]
e−iks

+
∫ +∞

x

[
∂2K(x, s)

∂x2
− ∂2K(x, s)

∂s2
− uK(x, s)

]
e−iks ds = 0.

Since the functions e−ikx are linearly independent (9) holds if and
only if the coefficient of each one of them is zero, i.e.,

(9a)

2
dK(x, x)

dx
+ u = 0

lim
s→+∞

[
K(x, s)ik +

∂K(x, s)
∂s

]
e−iks = 0

∂2K(x, s)
∂x2

− ∂2K(x, s)
∂s2

− uK(x, s) = 0.
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The set of all three equations comprises a nonlinear Goursat problem
for K(x, s); it has a solution and thus the triple of equations is not
contradictory. The first of these equations gives us u(x) in terms of the
functionK(x, x). Thus, in order to find u(x) we need to find all ψ(x, k)s
or (which is the same) K(x, y) which can be viewed as coefficients of
the ψ(x, k) in the basis e−iky.

To see how it is being done, we look at the following:

Example 1. Let E be an n × n matrix whose columns form an
orthonormal basis, and let Q be an upper-triangular matrix with ones
on the main diagonal and small elements above it. Consider G = QE.
Then we have

QEFE∗ = Q∗−1

where F = (G∗G)−1. If we know EFE∗, we can recover all the elements
of Q. We already know that the diagonal elements of Q are ones,
and the ones below the main diagonal are zeros. Since Q∗−1 is lower
triangular with ones on the main diagonal we obtain (n−1)n/2 linearly
independent linear equations for (n − 1)n/2 unknown elements of Q
(above the main diagonal) by setting the diagonal elements of QEFE∗

to 1 and the ones above the main diagonal to 0. If the columns of E
comprise the standard basis, i.e., if E = identity, the matrix EFE∗

simply becomes F .

According to (8),

ψ(x, k) =
∫ +∞

−∞
θ(y − x)(δ(x− y) +K(x, y))e−iky dy.

We can view this as an analogue of G = QE in Example 1, with
ψ(x, k), e−iky and θ(y−x)[δ(x− y)+K(x, y)] dy corresponding respec-
tively to QE, E and Q.

The analogue of the matrix G∗G in Example 1 would be the scalar
product matrix

S(k, l) = 〈ψ(x, k), ψ(x, l)〉 =
∫ +∞

−∞
ψ(x, k)ψ(x, l) dx,
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whose entries are given by the formulas

(10a)

if k, l ∈ C,
S(k, l) =

2π
1 − |r(k)|2 δ(k − l) − 2πτ̄(k)

1 − |r(k)|2 δ(k + l),

r(k) =
b(k)
a(k)

(10b) if k ∈ C, l ∈ D, S(k, l) = 0.

(10c) if k, l ∈ D, S(k, l) = −ia
′(−k)
b(−k) δlk, a′(−k) =

∂a(−k)
∂k

where D = {k | k is imaginary, Im k < 0, k2 ∈ discrete spectrum} and
C = {k | k is real, k2 ∈ continuous spectrum}.

Proof of (10a). Lψ(x, k) = k2ψ(x, k) implies 〈Lψ(x, k), ψ(x, l)〉 =
k2〈ψ(x, k), ψ(x, l)〉. Using (Lψ(x, k))ψ(x, l) = ψ(x, k)Lψ(x, l)+(∂/∂x)
(ψ(x, k)∂ψ̄(x, l)/∂x− (∂ψ(x, k)/∂x)ψ(x, l)) and Lψ(x, l) = l2ψ(x, l) we
can rewrite this as

(k2 − l2)〈ψ(x, k), ψ(x, l)〉

=
(
ψ(x, k)

∂ψ̄(x, l)
∂x

− ∂ψ(x, k)
∂x

ψ̄(x, l)
)∣∣∣+∞

−∞
.

Behavior of ψ(x, k) and ψ(x, l) at ±∞ is given by the asymptotics
in (3). Substituting those asymptotics into the righthand side of our
expression, we arrive at the formula:

(k2 − l2)〈ψ(x, k), ψ(x, l)〉

= i(k2 − l2)
{
ei(l−k)x

k − l
− a(−k)a(l)e

−i(l−k)x

k − l
+ b(k)b(−l)e

i(l−k)x

k − l

+ b(k)a(l)
ei(l+k)x

k + l
− a(−k)b(−l)e

−i(l+k)x

k + l

}
x→+∞

= (k2 − l2)
{
|a(k)|2e

i(l−k)x − e−i(l−k)x

i(l − k)

− a(−l)b(l)e
i(l+k) − e−i(l+k)x

i(l + k)

}
x→+∞

+ terms weakly going to zero.
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Combining this with (1/i(k±l))ei(k±l)x|x→+∞−(1/(i(k±l)))ei(k±l)x|x→−∞
=

∫ +∞
−∞ ei(k±l)x dx = 2π(δ(k ± l) we obtain (10a).

Proof of (10b). If l ∈ D and k ∈ C or D, then repeating
the argument at the beginning of the previous proof we get (k2 −
l2)〈ψ(x, k), ψ(x, l)〉 = ψ(x, k)∂ψ̄(x, l)/∂x − (∂ψ(x, k)/∂x)ψ̄(x, l)|+∞

−∞.
Since limx→±∞ ψ(x, l) = 0, the righthand side vanishes giving us
〈ψ(x, k), ψ(x, l)〉 = 0, provided |k| �= |l|.

Proof of (10c). We have from the Proof of (10a) for all k and l:
〈ψ(x, k), ψ(x, l)〉 = {ei(l−k)x/(i(l−k))−a(−k)a(l)e−i(l−k)x/(i(l−k))+
b(k)b(−l)ei(l−k)x/(i(l − k)) + b(k)a(l)ei(l+k)x/(i(k + l)) − a(−k)b(−l)
e−i(l+k)x/(i(k+l))}x→∞. If a(−k) = 0 and l → −k, the second and the
last terms vanish, the first and third cancel out and 〈ψ(x, k), ψ(x, l)〉 =
liml→−k b(k)a(l)ei(l+k)x/(i(k + l)) = ia′(−k)b(k) = −ia′(−k)/(b(−k))
because of b(k) = −1/(b(−k)) which in turn follows from (3c) and
a(−k) = 0. Here a′(−k) = ∂a(−k)/∂k.

The structure of the matrix S is “block-diagonal” with first 1 × 1
blocks −i(a′(−k)/b(−k))δlk along the main diagonal followed by “2×2
blocks”

2π
1 − |r(k)|2 δ(k − l) − 2πr̄(k)

1 − |r(k)|2 δ(k + l).

To understand why we say this we need to look at the discrete
analogue of (10a) which is (2π/(1− |rk|2))δkl − (2πr̄k/(1− |rk|2))δk−l,
k, l ∈ {1,−1, 2,−2, . . . , n,−n}. This expression gives us a block-
diagonal matrix whose rows and columns are labeled with the numbers
1,−1, 2,−2, . . . , n,−n rather than 1, 2, 3, . . . , 2n as it is usually done.
Analogue of the whole matrix S would look something like this:

S=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1

. . . 0 elsewhere

αm

2π
1−|r1|2

−2πr̄1
1−|r1|2

−2πr1
1−|r1|2

2π
1−|r1|2

. . .
2π

1−|rn|2
−2πr̄n
1−|rn|2

0 elsewhere
−2πrn
1−|rn|2

2π
1−|rn|2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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with rows and columns labeled appropriately.

The analogue of F in Example 1 would be the spectral matrix F(l,m)
defined as the inverse of S, i.e., the solution of

(11) E
l∈D∪C

S(k, l)F(l,m) = δ̃(k,m)

where4

E
l∈D∪C

S(k, l)F(l,m) =
∑
l∈D

S(k, l)F(l,m)

+
∫

l∈C
S(k, l)F(l,m) dl

and

δ̃(k,m) =

⎧⎨
⎩
δkm k,m ∈ D,
δ(k −m) k,m ∈ C,
0 k ∈ D, m ∈ C or k ∈ C, m ∈ D.

The analogue of EFE∗ in Example 1 would be the matrix Φ(y, z)
defined to be5

Φ(y, z) = E
l∈D∪C

E
m∈D∪C

e−ilyF(l,m)e−imz.

One can easily verify that
(12)

F(l, k) =

⎧⎪⎪⎨
⎪⎪⎩

(ib(−k)/a′(−k))δlk l, k ∈ D,
(1/2π)δ(l− k) + (1/2π)r̄(k)δ(k + l) l, k ∈ C,
0 l ∈ D,

k ∈ C or vice versa.
To better understand how we arrive at (12) let us look at a finite
dimensional analogue. If S is as before,

S−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
α1

. . . 0 elsewhere
1

αm
1
2π

r̄1
2π

r1
2π

1
2π

. . .
1
2π

r̄n

2π
0 elsewhere rn

2π
1
2π

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Replacing blocks
⎛
⎜⎝

1
2π

r̄k
2π

rk
2π

1
2π

⎞
⎟⎠ with

1
2π
δ(k − l) +

1
2π
r̄(k)δ(k + l)

we obtain F .

Correspondingly,

(13)

Φ(y, z) = δ(y − z) −
∑
k∈D

b(−k)
i(∂a(−k)/∂(−k))e

−ik(y+z)

+
1
2π

∫ +∞

−∞
r(k)eik(y+z) dz.

Since the elements Φ(y, z) are analogous to the entries of EFE∗ in
Example 1, the expression QEFE∗ corresponds to

∫ +∞

−∞
θ(y − x)[δ(x− y) +K(x, y)]Φ(y, z) dz,

and in the spirit of Example 1 it must satisfy
∫ ∞

x

[δ(x− z) +K(x, z)]Φ(y, z) dz = 0 for x < y.

This identity can be rewritten as

(14) K(x, y) + F̃ (x+ y) +
∫ ∞

x

K(x, z)F̃ (z + y) dz = 0,

where F̃ (x+ y) = Φ(y, z) − δ(x− y).

Equation (14) is the celebrated Gelfand-Levitan-Marchenco equation.

Usually K(x, y) is obtained by solving the integral equation (14).
How to do it is described in a variety of books on integral equations
and the inverse scattering theory.

Now let L be the operator defined by (3a) with u dependent on time.
Then the eigenvalues of L, i.e., points of the discrete spectrum, are
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time-independent and are constants of motion. Indeed, Lψ = λψ.
Multiplying this by ψ we obtain 〈ψ,Lψ〉 = λ(ψ, ψ〉. Differentiating in
time and using L̇ = [L,A], we obtain 〈ψ̇, Lψ〉+ 〈ψ,LAψ〉− 〈ψ,ALψ〉+
〈ψ,Lψ̇〉 = λ̇〈ψ, ψ〉 + λ〈ψ̇, ψ〉 + λ〈ψ, ψ̇〉. Because L is self-adjoint on
L2(R) and 〈ψ̇, Lψ〉 = λ〈ψ̇, ψ〉, we have that 〈ψ,Lψ̇〉 = 〈Lψ, ψ̇〉 =
λ〈ψ, ψ̇〉 and 〈ψ,LAψ〉−〈ψ,ALψ〉 = 〈Lψ,Aψ〉−〈ψ,ALψ〉 = λ〈ψ,Aψ〉−
λ〈ψ,Aψ〉 = 0. All terms but one cancel out leaving us with 0 =
λ̇〈ψ, ψ〉 and since 〈ψ, ψ〉 �= 0 we must have λ̇ = 0 and therefore
eigenvalues of L must be time-independent. The continuous spectrum
of L continuous fills up the positive semi-axis; it can also be considered
time independent.

The second consequence of (2) is that if ψ is an eigenfunction of L
corresponding to λ, then so is ψ̇ +Aψ, i.e.,

(L− λ)(ψ̇ +Aψ) = 0

which implies that ψ̇ + Aψ is proportional to ψ. To see it, we
differentiate in time Lψ = λψ and use L̇ = [L,A] to get L̇ψ+Lψ̇ = λψ̇.
Replacing L̇ with [L,A] gives use LAψ − ALψ − (L − λ)ψ̇ = 0 or
(L− λ)(ψ̇ +Aψ) = 0.

Since ψ̇+Aψ is in the eigenspace of k2, it must be a linear combination
of ψ(x, k) and ψ(x,−k)

ψ̇ +Aψ = αψ(x, k) + βψ(x,−k).

For x → +∞, ψ̇ + Aψ ∼ 4ik3e−ikx and αψ(x, k) + ψ(x,−k) ∼
αe−ikx + βeikx, so we must have α = 4ik3, β = 0, which gives us

(15) ψ̇ +Aψ = 4ik3ψ, k2 = λ.

As x approaches −∞, this equation gives us

ȧ(−k)e−ikx − ḃ(k)eikx

=
(
− 4

∂3

∂x3
+ 4ik3

)
(a(−k)e−ikx − b(k)eikx)

which in turn yields

ȧ(k, t) = 0, ḃ(k, t) = 8ik3b(k, t)
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or

(16) a(k, t) = a(k, 0); b(k, t) = b(k, 0)e8ik3t.

Remark. If L and A were n × n matrices we would have been
able to solve (2) for L in the form L(t) = (ψβ)L(0)(ψβ)−1, with
(ψβ) = −A(ψβ). Indeed, assuming for simplicity that all eigenvalues
of L are simple, we would have the jth eigenvalue of L, ψj and
corresponding eigenvector ψj satisfy (L − λj)(ψ̇j + Aψj) = 0 and
therefore ψ̇j + Aψj = βjψj for some βj because each λj is simple.
The last identity is equivalent to (d/dt)(ψβ) = −Aψβ where ψ is the
matrix whose columns are the ψjs and β = diag (e−β1t, . . . , e−βnt). The
solution of L̇ = [L,A] then would be given as L(t) = (ψβ)L(0)(ψβ)−1.

To determine u(t, x) all we have to do is to replace a, b and r in
(10) and the part of Section 1 thereafter with the a(k, t), b(k, t) and
r(k, t) = b(k, t)/a(k, t) given by (16). To solve the KdV for some
given initial data u(x, 0) we have to compute a(k, 0), b(k, 0) and r(k, 0)
corresponding to u(x, 0) and then use the Gelfand-Levitan-Marchenco
equation with a(k, t), b(k, t) and r(k, t) given by (16) to determine
the function K(t, x, s). The solution of the KdV then is obtained via
u(x, t) = −2dK(t, x, x)/dx.

2. IST for the first order systems. In this section we apply the
ideas of Section 1 to the first order systems. For simplicity’s sake, we
take a pair of 2 × 2 equations

ψx = Uψ, U =
(

0 q(x)
r(x) 0

)
, lim

x→±∞U(x) = 0

ψt = −Tψ, lim
x→±∞T (x) =

(−A 0
0 A

)
.

The compatibility condition for them is an equation of motion Ut =
[U + ∂/∂x, T ] that can be solved with the IST. Let

λl = λ

(
δl1
δl2

)
, λ ∈ C, l = 1 or 2,
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and µm = (δm1δm2)µ, µ ∈ C, m = 1 or 2 and let ψ(x, λl) and ϕ(µm, x)
be the solutions of the equations:

−∂ψ(x, λl)
∂x

= Uψ(x, λl) + iλ

(
1 0
0 −1

)
ψ(x, λl)(1a)

ψ(x, λl) ∼
(
e−iλx 0

0 eiλx

)(
1 0
0 −1

) (
δl1
δl2

)
,(1b)

x→ +∞

(2a)

∂ϕ(µm, x)
∂x

= ϕ(µm, x)
(

1 0
0 −1

)
U

(
1 0
0 −1

)

+ iµϕ(µm, x)
(

1 0
0 −1

)

(2b) ϕ(µm, x) ∼ (δm1, δm2)
(
eiµx 0
0 e−iµx

) (
1 0
0 −1

)
, x→ +∞.

In addition these functions satisfy

(1c)
ψ(x, λl) ∼

(
e−iλx 0

0 eiλx

)(
ã(λ) b̃(λ)
−b(λ) a(λ)

)

·
(

1 0
0 −1

) (
δl1
δl2

)
, x→ −∞

(2c)
ϕ(µm, x) ∼(δm1δm2)

(
a(µ) −b̃(µ)
b(µ) ã(µ)

)

·
(
eiµx 0
0 e−iµx

) (
1 0
0 −1

)
, x→ −∞

with a(λ)ã(λ) + b(λ)b̃(λ) = 1.

Reasoning for (1c) is the same as for (1) (3c). To prove (2c), we
let ψ(x, λ) be the matrix whose lth column is ψ(x, λl) and ϕ(µ, x) the
matrix whose mth row is ϕ(mµ, x). then

∂

∂x

[
ϕ(µ, x)

(
1 0
0 −1

)
ψ(x, λ)

(
1 0
0 −1

) ]

= i(µ− λ)ϕ(µ, x)ψ(x, λ)
(

1 0
0 −1

)
,
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because of (1a) and (2a). Using this formula with λ = µ and the
conditions (1b) and (2b), we obtain

ϕ(λ, x) =
(

1 0
0 −1

)
ψ−1(x, λ)

(
1 0
0 −1

)

and (2c) follows.

The functions ψ(x, λl) and ϕ(µm, x) can be written as

ψ(x, λl) =
{(

e−iλx 0
0 eiλx

)
+

∫ ∞

x

K(x, s)
(
e−iλs 0

0 eiλs

)
ds

}

·
(

1 0
0 −1

) (
δl1
δl2

)
(1d)

=
∫ +∞

−∞
θ(s− x)

[(
δ(x− s) 0

0 δ(x− s)

)
+K(x, s)

]

·
(
e−iλs 0

0 eiλs

) (
1 0
0 −1

) (
δl1
δl2

)
ds

and
(2d)

ϕ(µm, x) =(δm1δm2)
∫ +∞

−∞
θ(x−s)

[(
δ(s− x) 0

0 δ(x− s)

)
+K̃(x, s)

]

·
(
eiµx 0
0 e−iµx

) (
1 0
0 −1

)
ds

with 2 × 2 matrices K(x, s) and K̃(x, s). The proof is similar to that
of (1) (5).

Once we know K(x, s) we can determine U similarly to how we did
for (1) (9a), so all we need to do is to determine the K(x, s).

We get bounded solutions if λl ∈ Λ0∪Λ1∪Λ2 and µm ∈M0∪M1∪M2,
where λ0 = {λl | λ ∈ R, l = 1 or 2}, Λ1 = {λl | l = 1, ã(λ) =
0,Re iλ > 0}, Λ2 = {λl | l = 2, a(λ) = 0,Re iλ < 0}, M0 = {µm |
µ ∈ R,m = 1 or 2}, M1 = {µm | m = 1, a(µ) = 0,Re iµ < 0},
M2 = {µm | m = 2, ã(µ) = 0,Re iµ > 0}.

For ϕ(µm, x), ψ(x, λl) bounded at ±∞, we define S(µm, λl) =∫ +∞
−∞ ϕ(µm, x)ψ(x, λl) dx.
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The nonzero entries of S are:

if λl ∈ Λ0, µm ∈M0, r(λ) = b(λ)/a(λ), r̃(λ) = b̃(λ)/ã(λ),

(3a) S(µm, λl) =
2πδ(λ− µ)
1 + r̃(λ)r(λ)

(δm1δm2)
( −1 −r̃(λ)
r(λ) −1

) (
δl1
δl2

)
;

if κ ∈ Λ1, κ2 ∈M2,

(3b) S(κ2, κ1) = i
ã′(κ)
b̃(k)

;

if κ2 ∈ Λ2, κ1 ∈M1,

(3c) S(κ1, κ2) = − ia
′(κ)
b(κ)

.

Proof of (3a). Let ψ(x, λ), ϕ(µ, x) be as defined after (2c). Then

(4)
∫ +∞

−∞
ϕ(µ, x)ψ(x, λ)

(
1 0
0 −1

)
dx

=
1

i(µ− λ)
ϕ(µ, x)

(
1 0
0 −1

)
ψ(x, λ)

(
1 0
0 −1

) ∣∣∣∣
+∞

−∞

=
1

i(µ− λ)

{(
e−i(λ−µ)x 0

0 ei(λ−µ)x

)
x→+∞

−
(
a(µ)ã(λ)ei(µ−λ)x + b̃(µ)b(λ)e−i(µ−λ)x

b(µ)ã(λ)ei(µ−λ)x − ã(µ)b(λ)e−i(µ−λ)x

−a(µ)b̃(λ)ei(µ−λ)x + b̃(µ)a(λ)e−i(µ−λ)x

−b(µ)b̃(λ)ei(µ−λ)x − ã(µ)a(λ)e−i(µ−λ)x

)}
x→−∞

=
1

i(µ− λ)

{
[1 − b̃(λ)b(µ)]e−i(λ−µ)x − ã(µ)a(λ)ei(λ−µ)x

ã(λ)b(µ)ei(λ−µ)x − b(λ)ã(µ)e−i(λ−µ)x

−b̃(µ)a(λ)e−i(λ−µ)x + a(µ)b̃(λ)ei(λ−µ)x

−[1 − b(λ)b̃(µ)]e−i(λ−µ)x + ã(λ)a(µ)ei(λ−µ)x

}
x→+∞

If λ and µ are real, we can write it as
1

i(µ− λ)

{
ei(λ−µ)x − b(λ)b̃(λ)ei(λ−µ)x − a(λ)ã(λ)e−i(λ−µ)x

−b(λ)ã(λ)e−i(λ−µ)x − ei(λ−µ)x)

a(λ)b̃(λ)(ei(λ−µ)x − e−i(λ−µ)x)
−e−i(λ−µ)x + b(λ)b̃(λ)e−i(λ−µ)x + a(λ)ãei(λ−µ)x

}
x→+∞

,
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with positive terms weakly going to zero as

x→ +∞ =
ei(λ−µ)x − e−i(λ−µ)x

i(µ− λ)

∣∣∣
x→+∞

(
a(λ)ã(λ) a(λ)b̃(λ)
−b(λ)ã(λ) a(λ)ã(λ)

)

=
2πδ(λ− µ)
1 + r̃(λ)r(λ)

( −1 −r̃(λ)
r(λ) − 1

)

and this implies (3a).

Proof of (3b). S(µ1, λ2) is the element in the first column and second
row of (4) in the Proof of (3a). Set λ = κ and take

lim
x→∞ lim

µ→κ

ã(κ)b(µ)ei(κ−µ)x − b(κ)ã(µ)e−i(κ−µ)x

i(µ− κ)
= −b(κ)ã(κ)

i
.

Since ã(κ) = 0, b̃(κ)b(κ) = 1 and we obtain (3b).

Proof of (3c). Similar to that of (3b).

Define F(λl, µm) to be the inverse of S(µm, λl), i.e., the solution of
Eµm

F(λl, µm)S(µm, νn) = δ̃λlνn
, where

δ̃λlνn
=

⎧⎪⎪⎨
⎪⎪⎩

δlnδ(λ− ν) if λl, νn ∈ Λ0

1 if λl = νn ∈ Λ1

or λl = νn ∈ Λ2

0 otherwise,

and by Eµm
we mean generalization of summation defined as

E
µm

F(λl, µm)S(µm, νn) =
∫ +∞

−∞

2∑
m=1

F(λl, µm)S(µm, νn) dµ

+
∑

µ1∈M1

F(λl, µ1)S(µ1, νn)

+
∑

µ1∈µ2

F(λl, µ2)S(µ2, νn).

The entries of F are:
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if λl ∈ Λ0, µm ∈M0,

(5a) F(λl, µm) =
1
2π
δ(λ− µ)(δl1δl2)

(
1 −r̃(λ)

r(λ) 1

) (
δm1

δm2

)

if κ1 ∈ Λ1, κ2 ∈M2,

(5b) F(κ1, κ2) =
b̃(κ)
iã′(κ)

if κ2 ∈ Λ2, κ1 ∈M1,

(5c) F(κ2, κ1) = − b(κ)
ia′(κ)

;

all the other entries are zeros.

The linear algebraic analogue of what we just did is as follows.

Example 2. Let Q and Q′ be upper triangular matrices with ones on
the main diagonal, and let E and E′ be two matrices such that columns
of each one of them form an orthonormal basis. Define G = QEN−1

and G′ = E′Q′N with N being an invertible diagonal matrix. Also
define S = G′G and F = S−1 = NE−1Q−1N−1Q′−1E′−1. Then the
matrix QEFE′ = QENE−1Q−1N−1Q′−1 = Q′−1 + Q′′, where Q′′ is
an upper triangular matrix with zeros on the main diagonal. Thus
QEFE′ is an upper triangular matrix with ones on the main diagonal,
and we can determine Q the same way as we did in Example 1.

The analogy between Example 2 and the quantities described above
is as follows:

ψ(x, λl) and ϕ(µm, x) correspond to G and G′

θ(s− x)
[
δ(x− s)

(
1 0
0 1

)
+K(x, s)

]
Q

(
e−iλs 0

0 eiλs

) (
δl1
δl2

)
E

(δm1δm2)
(
eiµx 0
0 e−iµx

)
E′

(
1 0
0 −1

)
δ(x− y) N and N−1

S,F and Φ S, F and EFE′
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where Φ(x, y) is

∫ +∞

−∞

(
eiλ(s−y) −r̃(λ)eiλ(s+y)

r(λ(eiλ(s+y) e−iλ(s−y)

)
dλ

+
(

0∑
λ2∈Λ2

(b(λ2)/(ia′(λ2)))eiλ2(s+y)

−∑
λ1∈Λ1

(b̃(λ1)/(iã′(λ1)))e−iλ1(s+y)

0

)

The expression Φ(x, y)+
∫ ∞

x
K(x, s)Φ(s, y) ds is analogous to QEFE′

and thus must be zero for y < x. If we introduce F̃ (x + y) =
Φ(x, y) − δ(x− y) we obtain the Gelfand-Levitan-Marchenco equation
K(x, y) + F̃ (x+ y) +

∫ ∞
x
K(x, s)F̃ (s+ y) ds = 0.

So far we have dealt with the scattering problem for time-independent
solutions of ψx = −Uψ only. The functions ψ(x, λl), however, cannot
satisfy the second equation ψt = −Tψ. To remedy the problem the
standard trick is to introduce ψ(t)(x, λ1) = eAtψ(x, λ1), ψ(t)(x, λ2) =
e−Atψ(x, λ2), ϕ(t)(µ1, x) = e−Atϕ(µ1, x), ϕ(t)(µ2, x) = e+Atϕ(µ2, x).

For x→ −∞,

ψ(t)(x, λl) ∼
(
ãe−iλx+At −b̃e−iλx−At

−beiλx+At −aeiλx−At

) (
δl1
δl2

)
.

Substituting this into

ψ
(t)
t (x, λl) =

(
A 0
0 −A

)
ψ(t)(x, λl),

which is the form of ψ(t)
t = −Tψ(t) for large x, we obtain equations for

the scattering coefficients:

˙̃a(λ, t) = ȧ(λ, t) = 0

2Ab(λ, t) + ḃ(λ, t) = 0

2Ab(λ, t) − ˙̃b(λ, t) = 0,

and therefore a(λ, t) = a(λ, 0); ã(λ, t) = ã(λ, 0); b(λ, t) = e−2Atb(λ, 0);
b̃(λ, t) = e2Atb̃(λ, 0). All we have to do now is to rewrite all the formulas
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with ψ(x, λl), ϕ(µm, x), a(λ), ã(λ), b(λ), b̃(λ) replaced by ψ(t)(x, λl),
ϕ(t)(µm, x), a(λ), ã(λ), e−2Atb(λ), e2Atb̃(λ).
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ENDNOTES

1. We write the coefficients (3c) in this somewhat strange manner to be in
agreement with the standard notation used in the existing literature.

2. The word matrix here should not be understood in the regular sense, it is
rather a function of two variables one of which can be understood as the column
number and the other one as the row number. One can think of the expression (6)
as the matrix element in the xth row and yth column. Similarly, ψ(y, k) can be
viewed as the element of a matrix ψ in the yth row and kth column and e−ikx as
the element of a matrix in the xth row and kth column.

3. Using the following identities:

∂ψ

∂x
= −ike−ikx −K(x, x)e−ikx +

∫ ∞

x

∂K(x, s)

∂x
e−iks ds,

∂2ψ

∂x2
= −k2e−ikx − dK(x, x)

dx
e−ikx + ikK(x, x)e−ikx

− ∂K(x, s)

∂x
e−ikx

∣∣∣
s=x

+

∫ ∞

x

∂2K(x, s)

∂x2
e−iks ds,

k2ψ = k2e−kx −
∫ ∞

x

K(x, s)
∂2e−iks

∂s2
ds

= k2e−ikx −
∫ ∞

x

∂2K(x, s)

∂s2
e−iks

+

∫ ∞

x

∂

∂s

[
K(x, s)ike−iks +

∂K(x, s)

∂s
e−iks

]
ds

= k2e−ikx −
∫ ∞

x

∂2K(x, s)

∂s2
e−iks ds

−K(x, x)ike−ikx − ∂K(x, s)

∂s
e−ikx

∣∣∣
s=x

+ lim
s→+∞

[
K(x, s)ik +

∂K(x, s)

∂s

]
e−iks.
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4. One can use the Riemann-Stieltjes integral to replace E.

5. In Φ(y, z), y corresponds to the row number and z to the column number. In
F(l,m), l corresponds to the row number and m to the column number.
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