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GENERATORS OF MAXIMAL IDEALS IN THE
RING OF INTEGER-VALUED POLYNOMIALS

SCOTT T. CHAPMAN AND WILLIAM W. SMITH

ABSTRACT. Let Int (Z) = {f(X) € Q[X]|f(z) € Z for all
z € Z} represent the ring of integer-value polynomials over
Z. The maximal spectrum of Int (Z) consists of all ideals of
the form My o = {f(X) € Int(Z) | |f(a)|p < 1}, where p
is a prime integer in Z, a € Zp and | - |p is the usual p-adic
valuation (see [1]). It is well known that the polynomials

<X> _X(X 1) (X -n+1)

n n! ’

known as the binomial polynomials, form a basis of Int (Z)

as a free Z-module. We use a theorem of Lucas to prove the
o i

following result. Let a € Zp be of the form a = Zi:o a;p’.

Then (‘:) € Mp,o if and only if n = ng + nip + - -+ + ngpt
where 0 < a; < n; for some ¢. We use this result to produce
generating sets for the My q.

The ring of integer-valued polynomials over Z, denoted Int (Z), has
been the focus of much recent research. Brizolis has shown, among
other things, that Int (Z) is a Priifer domain [2]. This paper is based
on his characterization of the maximal ideals of Int(Z) [1, 4]. Let
Z represent the integers, Z* the positive integers, N the nonnegative
integers, Q the rationals, Zp the p-adic integers, and

Int (Z) ={f(X) € Q[X]| f(z) € Z for all z € Z}

the ring of integer-valued polynomials over Z. For each prime p in Z
and each a in Zj, set

Mp,o = {f(X) € Int (Z) | |f()]p < 1}
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where | - |, represents the usual p-adic valuation. Then each M, is a
maximal ideal of Int (Z) and every maximal ideal of Int (Z) is of this
form. Moreover, M, ., = M, if and only if p = ¢ and o = 5 [1].
We focus on the relationship between these ideals and the well-known
binomial basis of Int (Z). Recall that the set of polynomials defined by

()

(X) XX -1 (X —nt1)

and

n n!

for n > 1 forms a Polya basis for Int (Z) as a free Z-module (i.e., a
basis of the form {f,(z)}22, where the degree of f,(z) is n, see Polya
[8]). 4In this note we show for a fixed prime p € Z and a € Z, with

a =Y 2,a;p" that
X
€ My

if and only if n = ng +nip + --- + nyp* where 0 < a; < n; for some 3.
Important in the argument will be the extension of a theorem of Lucas
concerning congruences of binomial coefficients to the p-adic integers.
We will apply our result to produce generating sets given in terms of
the binomial polynomials for each maximal ideal of Int (Z).

We open with a brief review of some of the basic properties of maximal
ideals in Int (Z). Recall that if I is an ideal in Int (Z), then for a € Z
the set I(a) = {f(a) | f(X) € I} is an ideal of Z. By the strong Skolem
property [10], if I and J are finitely generated ideals of Int (Z) with
I(a) = J(a) for each a € Z, then I = J. Using this condition, since
o € Z,\Z implies that M, ,(a) = Z for each a € Z (see [1]) we have
that M, , is not finitely generated (although the same argument does
not apply if @ € Z, since M,, ,(«) = pZ, it remains that none of the
maximal ideals M, , are finitely generated [1, Theorem 1.2.2]). Also,
if « € Z,, then M, , NZ = pZ and M, ,NZ[X] = (p, X — a) for some
a € Z (see [1]). Finally, if « is algebraic over Q then M,, , is a height
2 prime; otherwise, M,, o is of height 1 (see [4]).

Now, for each M,, o, set Int (Z)/M,, o = Fp . Our previous remarks
imply, since
7 C Z[X] C Int (Z)
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and
pz g (an - a’) g Mp,ou

that
Z/pz g Z[X]/(an - a) g Fp’a-

Thus Z, C F,, . If f(X) € Int (Z), then let f(X) represent the image
of f(X) under the natural map from Int (Z) to Fj, o. Since

ta) =0}

forms a basis for Int (Z) over Z, the set

{()1mz0 ()0}

spans [}, . as a vector space over Z,. It is a matter of interest to

determine for a given prime p € Z and « € Zp exactly which ()Tf ) are
in M, . We shall require a theorem of Lucas [7, pp. 417-420] for the
characterization. An alternate proof of this theorem can be found in
[5].

Theorem 1 (Lucas). Let p be a prime integer and a,n € N with
p-adic representations

a=ap+ap+--+app”
and

n=ng+nip+--- + np®

where 0 < a;, n; <p—1 for all i. Then
a ko lai
= ! d p).
() =II(;;) tmoan

Corollary 2. Let p be a prime integer, n € N and « € Zp with

oo
a:Zaipi and n:no—l—nlp—i—---—i—nkpk.
i=0
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Then in Zp,

©)<L)

=

Proof. 1If by = Z;:O a;p*, then lim;_, o by = a. Since ()Tf) € Q[X], it
is a continuous function of Zp — Qp and thus

sm () = (5):

()=11(:) e

Since (Z) =1 whenever i >k, {(bt)} g is eventually constant
t

By Lucas’ theorem,

n

modulo p and thus

©-fi) - -

1=

Another immediate observation based on the Lucas theorem is that
the values {(Z) }aen modulo p are periodic with a period which can
be taken to be p* where n < pt. This is easily seen since a + p' and
a will have the same first k£ digits in the p-adic representation where
n = ng+- - -+ngp*. Moreover, since any polynomial in Int (Z) of degree

n

n can be expressed as f(X) = > " ¢ ()f), it follows that the values
{f(b)}ven are periodic modulo p with period p™ for a suitable m. We
state this in slightly more general terms as a corollary. A stronger
result can be found in [6, Proposition 2.7 and 7.2] in terms of these

sequences modulo p¥ for v > 1.

Corollary 3. Let I be a finitely generated ideal of Int (Z). The
sequence of values {I(b)}pen is periodic modulo p with period p™ for
some m € N.
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Corollary 2 leads us immediately to the desired characterization.

ProposiAtion 4. Let p be a prime integer, n a positive integer
and a € Zy, with o = Y .2 a;p* and n = Zf:o n;p'. The following
statements are equivalent:

1 (%) € Mya,

2. 0 < a; < n; for some i.

Proof. Let p,a and n be as above. By Corollary 2,

() =T1(2) o

Since 0 < n;, a; < p — 1, we have that

p‘(ai> <= <ai> =0<=0<aq; <n,.
n; n;

(Z) =0 (mod p)

if and only if 0 < a; < n; for some 7. O

Hence,

We consider some special cases of the last proposition.

Corollary 5. Let p be a prime integer and o = Z;.io a;p' € Zp.

1. If o = —1, then M, o contains no binomial polynomials.

2. If o # —1, then My, o contains infinitely many binomial polyno-
maals.

3. If a =0, then M, o contains every nonconstant binomial polyno-
maal.

4. Let a € Z". There exists an m € N such that ()Tf) € My o for all
n>m.

Proof. (1) If @ = —1, then a = >_:° (p — 1)p® which is to say that

a; = p — 1 for all i. Hence, whatever the integer n, n; is never such
that a; < n; and, by Proposition 4, ()Tf) ¢ M.
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(2) If @« # —1, then a; # p — 1 for some i and hence there are
infinitely many positive integers n such that a; < n;. For each such n,
Proposition 4 implies that (if) € My o

(3) If @ = 0, then for each n € Z™" there is an i such that a; < n; and
the result follows.

(4) First, it is obvious that one can take m = a + 1, since for n > m

we then have () = 0 and hence (:) € My o ={f(z)p|f(a)}. In fact,
m may also be chosen by writing a = >"_, a;p’ and then for n > pt*1,

(¥) € Mp.o by Proposition 4. O

Corollary 6. Let a € Zp. For every n € Z™T there exist infinitely
many a € Z and for every a € Z, a # a+ 1, there exist infinitely many

n € Z1 such that
X —
( n a) €E Mpq-

Proof. For the first statement, it is clear that (X;a) € M, if and
only if (if) € My, g where 3 = o — a. Write a = Y .2 a;p’. If n # 0,
then some n; # 0 and any a = E?:o bjpj with corresponding “digit”
b; = a; and b; < a; for j # i will yield (*7¢) € M, q.

For the second statement, set § = a — a. Since § # —1, Mp3
contains infinitely many binomial polynomials. For each (il() € Mpg,
(X_a) € M, o and the result follows. O

n

Hence, given a prime p and p-adic integer o, we can construct a
sequence of integers {z;}$2, such that, for each n > 1,

X — 2z,
(X2 ey

Proposition 7. Let p,a and {z;}$2, be as above.

1) )
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is a Polya basis for Int (Z).

2)
o= (5 (57

Proof. Note that the leading coefficient of (X;Z") is 1/n!. Hence, 1)
follows from a simple inductive argument.

For 2), notice that

X — X — 2z,
g(w)=b0+bl< 121>+...+bn< nz>eMp,a

if and only if p|b (this follows since (*%) € M, for i > 1). The
result now easily follows. a

Example 1. We demonstrate the construction of Proposition 7.

a) Consider part 3 of Corollary 5. Here a = 0 and z,, = 0 for each

n > 1. Hence,
X
o= (4()).0)
nJJ)n>1

b) Let « = 1 +p?+p>+---+p' +--- € Zp, and suppose that
n = Zf:o n;p* € N. From the proof of Corollary 6, we may choose
2, = p® where k is the highest power of p less than or equal to n. For
instance, if p = 3, then

X-1 X -1 X -3
w0 (50) (%) ()
X -3 X-9 X-9
. 8 , 9 A\ ) )
c)Leta=1+p+p?>+p%+---+p™ +-... Again, by the proof of

Corollary 6, z, = p® if k = m! for some m € N and z, = 0 otherwise.
For instance, if p = 2, then

o= (4 (1) (57 () ()
(76 G)-)
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In the case where a = n € Z*, we can give a more explicit description
of the generators of M,, ,.

Proposition 8. Let p be a prime integer and n € ZT. Then
X X
Mp7n:<p71+(p_1)< >,{< >} >'
n m) o on

Proof. As illustrated in part 4 of Corollary 5, J C M, ,, where

7= (e}

If g(z) € My, then (since the binomial polynomials form a basis of
Int (Z)) we can write

g(w)zao—l-al()l()—i----—i-an(:) + h()

where 0 < a; < p—1 and h(z) € J. There are only finitely many
choices for g(z) — h(z), label them fi(z),..., ft(x). Setting

I'=(p, f1(z),-- ., fe(x)),

we have that
Mpn=1+J.

By [6, Theorem 3.5] there exists a polynomial f(z) € Int (Z) so that
I = (p, f(x)). Since we are only concerned with having such an ideal
I where M, ,, = I+ J and (i) € J for m > n, we may assume that
f(z) has degree n or less. We now have

My = (P» f), { (i,i) }m>n>

and will verify that f(z) can be replaced with the indicated polynomial
glz) = 1+ (p—-1) (if) The argument uses the fact that if two
polynomials in Int (Z) have the same values at the integers 0,1,... ,t,
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then when written in terms of the binomial polynomial basis, they will
have the same coefficients for

(o) (1) (%)

This is easily seen as these coefficients are determined by a difference
table involving these common values of the polynomials.

For 0 < k < n, let by = f(k) and, since f(z) € M, ,, we can write
b, = pc for some integer c. Let h(z) be the integer-valued polynomial
of degree n or less for which h(k) = by for 0 < k <n—1and h(n) =c.
Taking note that g(k) =1 for 0 < k < n —1 and g(n) = p, we have
g(z)h(z) and f(z) have the same values for 0,1, ... ,n. Writing

h(x)g(m)_d0+---+dn<f> +---+dm<i>,

we conclude from the earlier remark that f(z) = do + -+ + d,, (X)

Hence, f(z) — h(z)g(z) € <{ <i> } >
It follows that m=n

(oG, = (o ()],

=My n. u]

An analysis of the proof of Proposition 8 implies that when p > n,
the polynomial g(z) = = + (p — n) could have been used. The property
needed is that p{ g(k) for 0 < k <n—1 and g(n) = p. The h(z) in the
proof is then constructed having the needed values modulo p. Hence,
for p > n, the second generator can be chosen with coefficients in Z.

That is,
A )

Example 2. In Proposition 8, if p = 11 and a = 5, we obtain

X X
M1175: <11,£E+6,<6>,(7>,>
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If p=>5 and a = 11, we obtain

o 04 () )

Notice that, in each case
M1175(5) =11 and M5,11(11) = (5)

(see the remarks prior to Theorem 1).

If a is a negative integer, then the method set up in Proposition 8
can still be used to construct a set of generators for M,, ,. Choose any
integer b such that a — b > 0. Then, under the automorphism ¢} of
Int (Z) defined by ¢p(X) = X + b, op(Myp o) = M, 4—p. So, if

Mpws= (0 { ()] )
e {(2))

We close with an observation regarding the residue field Fj, . It is
well known that Fj, , = Z,, see [1, 3, 4]. This is easily seen as a
consequence of part 2 of Proposition 7, or by Corollary 6 combined
with the fact that since

(o) =a(X) e ran () < ()

(where aj, = (—1)"t* (‘”":Zﬁl)) then (X;“) € M, implies that

()= (G) ()
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