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ISOMETRIC ISOMORPHISMS
BETWEEN NORMED SPACES

CHI-KWONG LI AND WASIN SO
In memory of our very good friend, Robert Thompson

ABSTRACT. Two normed spaces (V1, ||-|[1) and (Va, ||-||2)
(over F = R or C) are isometrically isomorphic if there is a
linear isomorphism L : Vi — V3 such that

IL()|]2 = [|v]l; forall we V.

For various finite dimensional normed spaces, we determine
whether there are isometric isomorphisms between them and
characterize these mappings if they exist. The results are
then applied to solve some related problems involving the
dual norms and norms induced by invertible linear operators.
These answer some open problems and give conceptual proofs
for some results on norms.

1. Introduction. Let (Vy,]-||1) and (Va,]| - ||2) be normed spaces
over F = R or C. They are isometrically isomorphic if there is a linear
isomorphism L : V; — V5 such that

IL(v)||2 = [|v]js forall ve Vj.

Such an L is called an isometric isomorphism from Vi to Va. Clearly
one can identify the two normed spaces if they are isometrically isomor-
phic. Therefore, it is interesting to determine when this will happen
and characterize the isometric isomorphisms between the two normed
spaces, if they exist. This problem has been considered in infinite di-
mensional spaces including various sequence spaces and function spaces,
e.g., see [14, 15]. However, it seems that the same problem has not
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608 C-K. LI AND W. SO

been studied systematically in the finite dimensional case. The pur-
pose of this paper is to fill this gap. It is worth mentioning that the
finite dimensional case may not behave as the infinite dimensional case,
especially when F = R. More evidence will be seen in our study.

From now on we shall confine our attention to finite dimensional
normed spaces. Since two isometrically isomorphic normed spaces
must be linearly isomorphic, we may assume that V; = Vo = V in
our discussion. We shall say that two norms on V are isometrically
isomorphic if the two normed spaces are. With this terminology, our
problem can be stated as:

Problem A. Let V be a finite dimensional linear space equipped with
norms || - ||y and || - ||2. Determine the conditions for the existence
of isometric isomorphisms between these two norms, and characterize
such mappings if they exist.

Recall that the isometry group of a norm is the group of linear
isometries for the norm. The following result shows that knowing
the isometry groups of || - |1 and || - ||2 is very useful in the study
of Problem A.

Proposition 1.1. Suppose that || - |1 and || - ||2 are norms on V
with isometry groups Gy and Go, respectively. If L is an isometric
isomorphism from || - ||1 to || - ||2, then L=*GoL = G1. In particular, if

G1 = Gy = G, then L is in the normalizer N(G) of G in the general
linear group GL(V) of V.

Proof. Suppose that L is an isometric isomorphism from |[|-||1 to ||-]|2.
Then L~! is an isometric isomorphism from || - ||z to || - ||1. If T € Ga,
then

1L TL)]lr = ITL()]2 = L)z = llv]l

for all v € V. Thus L~ 'G5 L is a subset of G;. Similarly, one can prove
that LG1L~"! is a subset of Gs.

The second assertion is clear. O

We shall use Proposition 1.1 and some known results on isometry
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groups to answer Problem A for various kinds of norms in the next few
sections.

Besides Problem A we also obtain answers for problems involving
the dual norms, and norms induced by invertible linear operators. To
describe these questions, we suppose that V is equipped with a fixed
inner product (z,y). In this paper we shall use the inner product
(z,y) = tr (zy*) = tr (y*z) for column vectors or matrices.

Let U(V) denote the group of orthogonal or unitary operators on V
depending on F = R or C. Suppose G is a closed subgroup of U(V).
A norm || - || on V is a G-invariant norm if ||g(v)|| = ||v|| for al v € V
and for all g € G, i.e., G is a subgroup of the isometry group of || - ||.
If S € GL(V), then || - ||s defined by [|S(v)]| is also a norm. We shall
study the following problem, which has drawn the attention of several
authors in the last few years, e.g., see [8, Section 3.2 and its references].

Problem B. If || - || is a G-invariant norm, what is the condition on S
so that || - ||s is also a G-invariant norm?
It is clear that S is an isometric isomorphism from || || to ||-||s. Thus

the answer of Problem A is useful to study Problem B. Furthermore,
we have the following result that can be easily verified.

Proposition 1.2. Suppose that || - || is a G-invariant norm on V
with isometry group H, and S € GL(V). Then

(a) STYHS is the isometry group of || - || s;
() || - ||s is a G-invariant norm if and only if G < S~'HS;
(©) || lls is a G-invariant norm if S € N(H).

Next we turn to another problem. The dual norm of a norm || - || on
V is defined (and denoted by)

le]l* = sup{|(z, y)| : llyll < 1}.

It is known, e.g., see [7, (5.4.16)] that there exists v > 0 such that
|lz|| = v||z||* for all z € V if and only if ||z||*> = v(z, ) for all x € V.
A more general question is the following.
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Problem C. When is a given norm isometrically isomorphic to its dual
norm?

For p > 1, the l,-norm on F" is defined by I,(z) = (3, |=:|P)'/.
It is well known that the [,-norm and the /;-norm are dual to each
other if and only if 1/p +1/¢ = 1. The ly-norm, which is also known
as the Euclidean norm, is self-dual, and hence is trivially isometrically
isomorphic to its dual norm. For other [,-norms, it turns out that only
the l;-norm on R? is isometrically isomorphic to its dual norm, the
lo-norm. As will be seen, this is actually a special instance of a more
general result, cf. Corollary 2.4, in Section 2.

In connection to Problem C, we have the following result that gener-
alizes [7, (5.4.16)].

Proposition 1.3. Suppose that 'V is equipped with an inner product
(z,y). Then there is a positive definite operator S on V such that
lz|| = [|Sz||* for all z € V if and only if ||z| = (Sz,z)'/? for all
zeV.

Proof. Suppose ||z|| = ||Sz||* for all z € V. Let T = S~/2. Then,
for any z € V,

el = max{|(z, y)| : lyll <1}
max{|(z,y)| : [[Ty[| <1}
max{|(z, T~ '2)| « ||| < 1}
max{|(T ™"z, 2)| - ||| < 1}

= |77 z]|".
It follows that
lzllz = |Tz|| = STz (" = T~ 2||" = ||2|I7
for all z € V, ie., || |r is self-dual. So ||z||r = (x,z)"? and

|z|| = (Sz,z)Y/? for all z € V.

Conversely, if ||z| = (Sx,z)'/?, then by the Cauchy-Schwartz in-
equality, we have

ISz||* = max{|(Sz,y)| : (Sy,9)"/* < 1} = (Sz,2)"/* = |l2]].
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The result follows. O
Here is another observation related to Problem C.

Proposition 1.4. Suppose that || - || is a norm on 'V with isometry
group G. If L is an isometric isomorphism from || - || to || - ||*, then
LGL™! = G*, the group of all the dual transformations of g € G. In
particular, if G = G*, then L € N(G).

As mentioned before, we shall study Problems A-C for different
normed spaces. In particular, Section 2 deals with symmetric gauge
functions on F™, Section 3 is concerned with unitarily invariant norms
on F*" Section 4 deals with unitary similarity invariant norms on
H,,, the real linear space of n x n Hermitian matrices and Section 5
contains results on other types of norms on (skew-)symmetric matrices.
Some remarks and related problems are mentioned in Section 6.

If H is a subgroup of a group K, we write H < K. If K is
generated by subgroups H, ..., Hy, and elements hq,... , hy, we write
K = (Hy,... ,Hg,h1,... ,hy). If G < U(V), denote by Ny(G) the
normalizer of G in U(V). As can be seen, we often need to deal with
the normalizers of groups in our study. For a connected Lie group
G, it is easy to obtain N(G) from Ny(G), e.g., see [3, Theorem 2.5].
The group of positive numbers under multiplication is denoted by R,
which is also identified as a subgroup of GL(V).

2. Symmetric gauge functions. Let GP(n) be the group of
generalized permutation matrices, i.e., those matrices of the form DP,
where D is a diagonal matrix in U(F") and P is a permutation matrix.
A norm || - || on F" is a symmetric gauge function if |Pz| = ||| for
all z € F", and for all P € GP(n). We have the following result.

Theorem 2.1. If G is the isometry group of a symmetric gauge
function on F", then one of the following happens:

(a) G is U(F™) or GP(n).
(b) F* = R* and G is B = (GP(4), B) or A= (GP(4), A), where
A=T-(1,1,1,1){(1,1,1,1)/2
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and

- {(12)e( )

(c) F* = R? and G is the dihedral group Dgj, with 8k elements for
some positive integer k.

Furthermore,

R.-B if G=A or B,
N(G) =< Ry -Disr  if G = Ds,
R:-G otherwise.

Proof. By Theorem 4.1 in [4], we get conditions (a)—(c). It is well
known that N(U(F™)) = Ry - U(F").

Suppose G = GP(n) and L € N(G). Since L~'GL = G < U(F"),
it follows that (see the proof of Lemma 2.3 in [10]) L = yU for some
U e U(F") and v > 0. Thus v 'L € Ny(G). Since, for n # 2,4, G is
a maximal (closed) subgroup of U(F"), see [4, Theorems 2.3, 2.4], and
since Ny (G) # U(F™), we have Ny (G) = G.

For n = 4, the only closed overgroups of G = GP(4) are A, B and

U(R*), and none of them is the normalizer of G. Hence Ny (G) = G
and L € yG.

As in the preceding case, one can show that N(G) = Ry - Ny(Q) if
G = A or B. By the results in [4] (see the proof and discussion after
Theorem 3.2), we have Ny (A) = B and Ny (B) =B

As before, one can show that N(Dgr = Ry - Ny(Dsk). By the fact
that Ny (Dsk) = Digk, the result follows. O

By Proposition 1.1 and Theorem 2.1, we have the following result
that answers Problem A for symmetric gauge functions.

Theorem 2.2. Suppose that || - ||1 and || - |2 are symmetric gauge
functions on F™ with isometry groups Gy and G5, respectively. There
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is an isometric isomorphism L from || - ||1 to || - ||2 if and only if there
exists v > 0 such that one of the following holds:

(a) G1 = G, ||z]|1 = 7||z||]2 for all x € F", and v~'L € G;.

(b) F* = R, G1 = G2 = A, ||z||1 = 7||Bz]|2 for all z € R*, and
v 1L € B\A.

(c) F* = R?, G, = G2 = Dgy, ||z]|1 = YRz jarzl|2 for all z € R?,
and y~'L € Dy \Dsr, where

_ [ cos(m/4k)  sin(mw/4k)
Ryjg = (Sin(ﬂ-/4k) cos(7r/4k)> .

We remark that only condition (a) can happen in infinite dimensional
spaces, e.g., see [14]. In the finite dimensional case, there are examples,
cf. Examples 6.1 and 6.2, of || - ||; and || - ||2 satisfying condition (b) or
().

Next we turn to Problem B for symmetric gauge functions. This
problem has been studied in [6], and a characterization of S is given,
cf. 3.1(c), 3.2(c), 3.3(c) and 3.4(c). As mentioned by the authors of
that paper, their proofs are computational, and it would be nice to
have a conceptual proof. By Theorem 2.2 we easily obtain the following
corollary that answers Problem B for symmetric gauge functions. Note
that our description of S is more explicit than that in [6].

Corollary 2.3. Suppose that || - || is a symmetric gauge function on
F" with isometry group G. For S € GL(F™), || - ||s is a symmetric
gauge function if and only if there exists v > 0 such that one of the
following holds:

(a) v 1S € G.
(b) F*=R* G=A and v 1S € B\A.
(c) F* = R?, G = Dg; and v~ 1S € Dygx\Dsk-

Proof. If || - || is a symmetric gauge function, then S is an isometric
isomorphism from || - || to || - ||s, and so we can conclude that one
of the conditions (a)—(c) of Theorem 2.2 holds. For the converse,
notice that the isometry group of the norm || - ||s is Gs = S™!GS



614 C-K. LI AND W. SO

by Proposition 1.2. Since S € N(G) in all cases (a)—(c), the result
follows from Proposition 1.2. O

Next we consider Problem C for symmetric gauge functions.

Corollary 2.4. Suppose that || - || is a symmetric gauge function on
F" with isometry group G. There is an isometric isomorphism L from
| - || to its dual norm || - ||* if and only if there exists v > 0 such that
one of the following holds:

(a) G =U(F"), ||z|| = vl2(z) for all z € F*, and v 1L € U(F").

(b) F* = R*, G = A, ||z|| = ~|Bz||* for all z € R*, and
y~'L € B\A.

(c) F* = R?, G = D, ||z]| = Y||Rrjar|* for all z € R?, and
’)/71L € Dlgk\ng.

Proof. Note that || - ||* is also a symmetric gauge function with
isometry group G. Hence an isometric isomorphism L from || - || to
Il - |I* must satisfy one of the conditions (a)—(c) in Theorem 2.2. If
condition (a) of Theorem 2.2 holds, then || - ||* is a multiple of || - ||
This can happen if and only if it is a positive multiple of the Euclidean
norm [, e.g., see [7, 5.4.16]. Thus we get the conclusion. O

One may wonder whether conditions (b) and (c) in Corollary 2.4 can
indeed occur. Actually, the norms || - ||; and | - ||z in Examples 6.1
and 6.2 are dual to each other and satisfy conditions (b) and (c) in
Corollary 2.4, respectively.

It is interesting to note that, by Proposition 1.3 and Corollary 2.4,
except for F* = R? or R*, a symmetric gauge function on F" is
isometrically isomorphic to its dual norm if and only if it is induced
by an inner product. It would be interesting to know whether this
conclusion holds for other norms (not necessarily symmetric gauge
functions) on F™.

3. Unitarily invariant norms. A norm || - || on F™*" is unitarily
invariant if ||[UXV|| = || X|| for all X € F™*" and for all U € U(F™)
and V € U(F"). Let I' be the group of linear operators of the form
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A — UAV for some fixed U € U(F™) and V € U(F"), and let 7 be
the transposition operator on F"*" ie., 7(A) = At. By the results in
[10], see also [3], we have the following result.

Theorem 3.1. If G is the isometry group of a unitarily invariant
norm, then one of the following happens:

(a) G =UF™ ™).
_r if m # n,
() 6= { (T,7) if m=n.
(c) Fxn = RY4 and G = @ = (T, 7, ¢), where ¢ is defined by
¢(A) = {A+ BLAC, + B2AC> + B3AC3}/2,

with ) 1
Bl_(o (1) ®<(1) 0>’
e 2)e3 %)
B3—<? _01>®<(1) (1)>
01:<(1) _01>®<—01 (1))’
C2:<01 é)@(é (1)>’
C3—<(1) (1)>®<_01 (1J>

Furthermore, R, -® ifG=(I1),
N(G):{R:-G otherwise.

Using Proposition 1.1 and Theorem 3.1, we have the following result
that answers Problem A for unitarily invariant norms, which was raised
in [10].

Theorem 3.2. Suppose that || - |1 and || - ||2 are unitarily invariant
norms on F™>*™ with isometry groups G1 and Gs, respectively. There
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is an isometric isomorphism L from || - ||1 to || - ||2 if and only if there
exists v > 0 such that one of the following holds:
(a) G1 = Ga, || X||1 = v||X||2 for all X € F™*" and v~'L € Gj.

(b) F™xm = RY4, Gy = Gy = (I,7), [ X[ly = Y|¢(X)]l2 for all
X e R and v 'L € ®\G;.

There exist examples, cf. Example 6.3, satisfying condition (b) of
Theorem 3.2. Next we turn to Problem B for unitarily invariant
norms. This problem has been considered in [8], cf. Theorem 3.5. Our
description of S is more explicit.

Corollary 3.3. Suppose that || - || is a unitarily invariant norm on
F™>" with isometry group G. For S € GL(F™*"), ||-||s is a unitarily
tnvariant norm if and only if there exists v > 0 such that one of the
following holds:

(a) y~1S e G.
(b) Fmxn = R¥4 G = (I, 7), and v~1S € ®\(T, 7).

Proof. Similar to that of Corollary 2.3. O
Now we consider Problem C for unitarily invariant norms.

Corollary 3.4. Suppose that || - || is a unitarily invariant norm on
Fx™ with isometry group G. There is an isometric isomorphism L
from || - || to its dual norm || - ||* if and only if there exists v > 0 such
that one of the following holds:

(a) G = UF™ ™), |X| = v(X,X)Y2 for all X € F™" and
vy 1L € UF™*").

(b) F™xn = R¥4 G = (T, 7), || X|| = vl|¢(X)||* for all X € R**4,
and y~'L € ®\(I', 7).

Proof. Similar to that of Corollary 2.4. O

By Example 6.3, one sees that condition (b) of Corollary 3.4 can
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actually happen.

4. Unitary similarity invariant norms. A norm || - | on H,,
the real linear space of n X n complex Hermitian matrices, is unitary
similarity invariant if ||[U*XU|| = ||X|| for all X € H,,, and for all

U € U(C"). Cousider the following subgroups of GL(H,,):

I'; is the group of linear operators on H,, of the form X — U*XU
for some fixed unitary U, and

K is the group of invertible operators of the form X — aX + (8 —
a)(tr X)I/n for some nonzero «, 8 € R.

It is not difficult to check that K is the centralizer of I'; in GL(H,,).
Furthermore, we have the following result.

Theorem 4.1. If G is the isometry group of a unitary similarity
inwvariant norm on H,,, then one of the following holds:

(a) G=TU(H,)T~! for some T € K.

(b)) G=U'H,)={T€UH,) : T(I) = £I}.

(¢) G = (T'y,7,To), where Ty is defined by Tp(A) = A — (2tr A)I/n.

(d) G = (T'y, 7).

Furthermore, N(G) = { Ry G 4G= .TU(Hn)T?l’
(G,K) otherwise.

Proof. The isometry group result is proved in [11]. The result on
N(G) can be found in [5]. We give a different proof in the following.

Now consider N(G). If G = TU(H,,)T~! and L7'GL = G, then
T~'LT € N(U(H,,)) is a scalar operator. Thus, L is a scalar operator.
It follows that N(G) < Ry - G. The reverse inclusion is clear.

Suppose G = U'(H,,) and L 'GL = G. By using an orthonormal
basis of H,, with I/\/n as the first member, the matrix representation
of every element in G is of the form [+1]@®U for some orthogonal matrix
U. Let the matrix representation of L be L. Then, for every matrix U
of the form [+1] ® U, the product LU will be of the form VL, where

V = [£1]®V for some orthogonal matrix V. One easily concludes that
this can happen if and only if L = [a] & bl,,2_1, i.e., L € K. It follows
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that N(G) < (G, K). The reverse inclusion is clear.

Next suppose G = (I'y,7,Tp) and L € N(G). Then LTL™ ! € G for
any T € G. As a result, for any unitary U there is a unitary V such
that one of the following happens:

(i) LWUXU*) = VL(X)V* for all X € H,.
(ii) L{UXU*) = VL(X)'V* for all X € H,,.
(iii) L{UXU*) = V(ToL(X))V* for all X € H,,.
(iv) LUXU*) = V(ToL(X))!V* for all X € H,,.

Let U(Y) = {WYW* : WW* = I} be the unitary similarity orbit
of Y € H,. By (i)—-(iv), we have L(U(E11)) C T1 U T2, where
Ti =U(Y1) =U(YY) with Y] = L(E11), and Tz = U(Yz2) = U(YS) with
Y2 = ToL(E11). Since U(E11), T1 and T3 are connected, L(U(E11)) C T;
for i =1 or 2. Since U(E11) is an algebraic set, e.g., see [9], and since
L is invertible, a result of Dixon [2] ensures that L(U(E11)) = T;. Now
L maps a unitary similarity orbit onto another one. By the result of
[13], we have L € (G, K). The inclusion (G, K) < N(G) is clear.

Similar to the above case, if G = (I';,7), one can prove that
N(G) = (G,K). O

We are ready to prove the following result that answers Problem A
for unitary similarity invariant norms on H,,.

Theorem 4.2. Suppose that || - ||1 and || - ||2 are unitary similarity
inwvariant norms on H,, with isometry groups G1 and G, respectively.
An isometric isomorphism L exists between them if and only if there
exists T € K such that || X|1 = ||T(X)||2 for all X € H, and
T7'L e Gi.

Proof. Note that Gy and G2 must satisfy conditions (a)—(d) of
Theorem 4.1. Suppose L is an isomorphic isomorphism between the
two norms. Then L~ 'G>L = G by Proposition 1.1.

If G, = L,U(H, )L, * for some L; € K, then Gy = L,U(H,,)L,"* for
some Ly € K. Thus L, 'LL; € N(U(H,,)) and hence is of the form yR
for some R € U(H,). Thus, |All; = |L(A)|2 = [lyL2RL; *(A)[|> =
|(LaRL; )T (A)||2 = | T(A)||2, where T = vLy L7 € K, and T~'L =
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LIRLl_1 € (7; as asserted.

If Gy =U'(H,), (T'1,7,Tp) or (I'1, ), then G2 must be of the same
structure. Thus L € N(G;) = (G1, K), and the result follows from
Theorem 4.1.

The converse is clear. O

By Theorem 4.2, one easily obtains the answer of Problem B for
unitary similarity invariant norms on H,,.

Corollary 4.3. Suppose that || - || is a unitary similarity invariant
norm on H,, with isometry group G. For S € GL(H,), | - ||s is a
unitary similarity invariant norm if and only if ST € G for some
TeK.

Now we consider Problem C for unitary similarity invariant norms on

H,.

Corollary 4.4. Suppose that || - || is a unitary similarity invariant
norm on H,. There is an isometric isomorphism L from || - || to its
dual norm || - ||* if and only if

(a) G =TU(H,)T" for some T € K such that |T(X)| = (X, X)'/?
for all X e H,, and T*LT € U(H,,), or

(b) G = (T'1,7), [|A|l = [ To(A)||* for all A, and ToL € G, where
To(A) = A— (2tr A)I/n.

Proof. Suppose L is an isometric isomorphism between || - || and its
dual norm || - ||*. Then L is in the normalizer of G, that satisfies one
of the conditions (a)—(d) in Theorem 4.1. If G satisfies (a), the result
follows from Proposition 1.3. If G satisfies (b) or (c),then there exist
R, S € G such that RLS is a positive definite operator on H,, and is still

an isometric isomorphism between || - || and its dual norm. But then,
by Proposition 1.3, ||-|| should be induced by an inner product, and the
isometry group of ||-|| should satisfy (a), which is a contradiction. Thus

(b) and (c) cannot hold. If Theorem 4.1(d) holds, we get condition (b)
of the corollary.



620 C-K. LI AND W. SO

The converse is clear. O

We suspect that case (b) in Corollary 4.4 cannot happen. However,
we are not able to prove it at the present. In general it would be
interesting to know whether ||-|| and ||-||* can be related by a reflection
R on a normed space V| i.e., R is defined by R(z) = = — 2(z,v)v for a
fixed vector v € V with (v,v) = L.

One may also consider unitary similarity invariant norms on C™*".
The corresponding isometric isomorphism problem has been solved in
[5] very recently.

5. Results on symmetric and skew-symmetric matrices. In
this section we consider the following matrix spaces: S, (F) is the linear
space of all n x n symmetric matrices over F, and K, (F) is the linear
space of all n X n skew-symmetric matrices over F.

We consider unitary congruence invariant norms on V = S, (C) or
K, (C), i.e., those norms || - || on V satisfying ||[U!XU]|| = || X]| for all
X € V and for all U € U(C™). We have the following result.

Theorem 5.1. If G is the isometry group of a unitary congruence
invariant norm on V. = S,(C) or K,(C), then one of the following
holds:

(a) G=U(V).

(b) G = Ty, the group of invertible operators on V of the form
X — U'XU for some U € U(C").

(c) V is K4(C) and G = (T'2,v), where ¥(X) is obtained from X
by interchanging its (1,4) and (2, 3) entries and interchanging its (4,1)
and (3,2) entries.

Furthermore, N(G) =R, - G.

Proof. The assertions on isometry groups follow from the results in
[8] and [12].

We consider the normalizer of G. If G = U(V), the result is clear. If
G satisfies the conditions (b) or (c), then clearly R - G < N(G).
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For the reverse inclusion, suppose L € N(G). Then, for every
U € U(C™), there exists V € U(C"), such that L(UAU") = VL(A)V*
for all A € V, or L(UAU') = VyL(A)V! for all A € V. Let
UX) = {UXU : U € U(C")}. For a special choice of X € V,

we conclude that L(U (X)) = U(Y) for some Y € V. By the results in
[12], we see that vy 'L € G for some « > 0. The result follows. O

By Proposition 1.1 and Theorem 5.1, we have the following result.

Theorem 5.2. Suppose that || - ||1 and || - ||2 are unitary congruence
invariant norms on V.= S,(C) or K,(C) with isometry groups Gy
and Ga. An isometric isomorphism L from || -||1 to || - ||2 exists if and

only if G1 = Ga, ||All1 = 7||A|l2 for some v > 0 and y~'L € G;.
For Problems B and C, we have the following corollaries.

Corollary 5.3. Suppose that || - || is a unitary congruence invariant
norm on 'V = S,(C) or K,(C) with isometry groups G. For S €
GL(V), || - lls is a unitary congruence invariant norm if and only if
there exists v > 0 such that v~ 'S € G.

Corollary 5.4. Suppose that || - || is a unitary congruence invariant
norm on 'V = S, (C) or K, (C) with isometry groups G. There is an
isometric isomorphism L from || - || to its dual norm || - ||* if and only

if G = U(V), and there exists v > 0 such that ||X|| = v(X, X)/? for
al X €V andy 1L e U(V).

One can consider unitary congruence invariant norms on C"*™. The
corresponding isometric isomorphism problem has been solved in [5]
very recently.

A norm || -]l on V = S,(R) or K,(R) is orthogonal similarity
invariant if ||[U'XU|| = ||X|| for all X € V and for all U € U(R").
Orthogonal similarity invariant norms on S,(R) behave in the same
way as unitary similarity invariant norms on H,. Omne can modify
the proofs in Section 4 to get the corresponding results on orthogonal
similarity invariant norms on S,(R). Orthogonal similarity invariant
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norms on K, (R) behave in the same way as unitary similarity invariant
norms on K,(C). One can modify the proofs in this section to get
the corresponding results on orthogonal similarity invariant norms on
K,(R).

One may also consider orthogonal similarity invariant norms on
R™ ™, Problems A-C for such norms are still open.

6. Remarks and related problems. In our discussion, we
adopt an algebraic approach to determine the existence of isometric
isomorphism between two norms. As we see, it is in general very rare
to have an isometric isomorphism. In many cases, the two norms have
to be multiples of each other.

There is a geometric approach to the isometric isomorphism problem.
Suppose that B; is the unit norm ball of || - ||; for ¢ = 1,2. Then L is
an isometric isomorphism from || -||; to || - ||z if and only if L(B;) = Ba.
Furthermore, if £; denotes the set of extreme points of B; for i = 1,2,
then the above conditions are equivalent to L(€;) = &;. Thus, our
results are related to linear operators mapping certain sets onto certain
sets. Such questions are special instances of linear preserver problems.
One may see the monograph [17] for a nice survey of this topic. The
geometric approach is especially useful in constructing examples as
shown in the following.

Example 6.1. Suppose that the unit norm ball of ||-||; on R* equals
the convex hull of

& ={P(1,1,0,0)"/v2: P € GP(4)}.

Then, e.g., see [4], the unit norm ball of the dual norm || - ||z of || - ||1
equals the convex hull of

& ={P(1,1,1,1)!/2: P € GP(4)} U {P(1,0,0,0)" : P € GP(4)}.
One can verify that B(&;) = &; and condition (b) of Theorem 2.2 holds.
Example 6.2. Suppose that the boundary of the unit norm ball of

| - |l1 on R? equals the regular convex polygon with 4k sides centered
at the origin with (1,0)" as one of the vertices. Then the unit norm
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ball of the dual norm || - ||z of || - |1 is obtained by rotating the unit
norm ball of || - ||; by an angle 2w/8k. One can check that condition
(c) of Theorem 2.2 holds.

Example 6.3. Suppose that the unit norm ball of || - ||; on R***
equals the convex hull of the set & of all matrices in R*** with singular
values 1,1,0,0. Then, e.g., see [12], the dual norm || - ||2 of || - ||1 is the
Ky-Fan 2-norm, and the unit norm ball of || - ||; on R*** equals the
convex hull of ¢(&1), the set of all matrices in R*** with singular values
1,0,0,0, or with singular values 1/2,1/2,1/2,1/2. One can verify that
condition (b) of Theorem 3.2 holds.

A more general problem is studying the possibility of embedding a
normed space V7 into another normed space V3 of higher dimension by
an injective linear map that preserves norms. This seems to be much
more difficult. One may see [16] for a special instance of this problem.

Acknowledgment. Dr. Beata Randrianantoanina brought our
attention to the paper [1] in which the isometric isomorphism problem
for symmetric gauge functions on F™ was also studied.
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