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A KAPLANSKY THEOREM FOR JB*-ALGEBRAS
S. HEJAZIAN AND A. NIKNAM

ABSTRACT. We provide a new proof of a previously
known result, namely every (not necessarily complete) algebra
norm on a JB*-algebra generates a topology stronger than the
one of the JB*-norm. As a consequence, if § is a homomor-
phism of a JB*-algebra A into a Banach Jordan algebra B,
then

(i) the range of 6 is closed in B if 0 is continuous,

(ii) @ is injective if and only if it is bounded below.

Introduction. A Jordan algebra is a nonassociative algebra A over
the complex or real field in which the product satisfies ab = ba and
(ab)a® = a(ba?), a,b € A. The Jordan triple product {abc} is defined
to be (ab)c + a(bc) — (ac)b, and for a in A, L, denotes the operator of
left multiplication by a.

A Banach Jordan algebra is a Jordan algebra A equipped with
a complete norm || - ||, such that [|abl| < |a]||bll, a,b € A. A
complex Banach Jordan algebra A with an involution *, such that
[{aa*a}|| = ||la||® for all a in A is called a JB*-algebra. It has been
shown in [18] that in a JB*-algebra A the involution * is an isometry,
and every closed associative *-subalgebra of A is a C*-algebra. this
shows that the class of JB*-algebras coincides with the class of Jordan
C*-algebras introduced by Kaplansky in 1976, see [17]. For a JB*-
algebra A, we denote by C*(a) the C*-subalgebra of A generated by a
self-adjoint element a € A. If A is a C*-algebra we define the Jordan
product of two elements a,b in A by a.b = (ab + ba)/2. In terms of
this product, A becomes a JB*-algebra. A closed linear *-subspace
of a C*-algebra B which is closed under the Jordan product is called
a JC*-algebra. The theory of JB*-algebra is of capital importance in
the theory of JB*-triples, and the classification of bounded symmetric
domains in the complex Banach spaces, see [6] and [9].
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Kaplansky [8] proved that any algebra norm on C(X), the C*-
algebra of real or complex valued continuous functions vanishing at
infinity on a locally compact Hausdorff space X, dominates the usual
supremum norm. This result was improved by S. Cleveland [4], showing
that every (not necessarily complete) algebra norm on a C*-algebra
generates a topology stronger than the one of the C'*-norm. Recently,
the subharmonic methods in [1] and [14] have been applied in [5] and
[15], see also [10, Theorem 6.1.16] to give distinct but closely related
proofs of Cleveland’s result. Very recently the arguments in [5] and [15]
have been applied in [3] and [12] to extend Cleveland’s result to JB*-
algebra. In this paper we prove Cleveland’s theorem for JB*-algebra
by purely classical methods, avoiding the application of subharmonic
methods.

Suppose 6 is a homomorphism of a Banach Jordan algebra A into a
Banach Jordan algebra B. The range of 6 is denoted by R(f) and we
define the separating space og(6) of 6 in B by

op(0) ={be B|Ha,} € A4,a,, = 0, and 0(a,,) — b}

and the separating space o4(f) of 6 in A is defined by o4(0) =
6= (op(8)). op(f) and o4(f) are closed linear subspaces of B and
A, respectively. 04(0) is an ideal in A and () is an ideal in R(6),
the closure of R(#) in B. By the closed graph theorem 6 is continuous
if and only if op(f) = {0}. The same argument as in [4, page 1099]
shows that the main boundedness theorem is valid for nonassociative
complete normed algebras, that is, if A and B are nonassociative
complete normed algebras, if § is a homomorphism of A into B, and if
{z,} and {y,} are sequences in A such that z,y, = 0, n # m, then

Sup {—H@(wnyn)ﬂ ‘n € N} < o0.
1l 1yl

2. The results.

Lemma 1. Let A be a JB*-algebra, and let a and b be positive
elements in A such that ab=0. Then LynLym = Lym Lgn, m,n € N.

Proof. First we show that L,L, = LyL,. Since ab =0 and a > 0, we
have (a'/?)%b = 0; therefore, by [2, Lemma 3-2], a'/?b = 0 and by [T,
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Equation 2-42] for each z,y € A, we have
{za'?y}b = {(xb)a' Py} + {wa'/*(yb)} — {w(a'/*b)y}.

Taking y = a'/?, it follows that L,Ly = LyL,. Now for m € N,
by [2, Corollary 3-3(iii)], a”™b = 0; hence, Lym Ly, = LyLgm since a™
and b are positive. The above argument, replacing a and b by b and
a™, respectively, shows that b"a™ = 0 for all n € N. Therefore,
LymLyn = Lyn Lgm, m,n € N. ]

As a consequence, if a and b are as above, and if f € C*(a) and
g€ C*(b), then LyLy, = LyLy and fg = 0.

Lemma 2. If0 is a homomorphism of a JB*-algebra A into a Banach
Jordan algebra B and {x,} is a sequence of positive elements in o 4(6)
such that .z, =0, n # m, then, except for a finite number of values
of n, we have 0(z,)* = 0.

Proof. Suppose that 6(z,)* # 0 for infinitely many n. Replacing
by a subsequence, if necessary, we may assume 6(z,)* # 0 for all
positive integers n. Since z,, € o4(6), there is a sequence {anx} in
A such that limg o0 ane = 0 and limg_oo O(ank) = 6(z,). Thus,
limg oo {Znanken} =0, n € N. We have

leII;O O(zp{znankz,}) = kli_}n;() 0(zp){0(zn)0(ank)0(zn)}
= 9($n){9($n)9(wn)9(mn)}
= 0(x,)* #0.

Therefore, limy_, oo ||0(zn{znankzs })I|/|I{znankz}|| = 00, n € N.
For each positive integer n, pick {(n) such that

10@n){Znanim)@n} |
{Znanim)zn} |

Put yn = {Tnanin)Tn}. Since zy, T, > 0 and zpzm = 0, n # m, then
by Lemma 1, we have L, L, = L, L, . Thereforez,y, =0,n #*m,
and [|0(znyn)|l/l1Znlll|lyn]] > n, n € N. By the main boundedness
theorem, this is a contradiction. ]



980 S. HEJAZIAN AND A. NIKNAM

Theorem 3. Suppose 0 is a homomorphism of a JB*-algebra A into
a Banach Jordan algebra B. Then

(i) R(8) is closed in B if 0 is continuous,

(i) If 0 1is injective and R() is dense in B, then the map ¢ of A
into B/op(0) defined by ¢(a) = 0(a)+ op(0) is a continuous surjective
homomorphism.

Proof. (i) Set Kerf = 6=1({0}) and A° = A/ker(f), then Ker () is
a closed x-ideal and A° is a JB*-algebra [11, 17]. Define 6" : A° — B
by 6%(a + Kerf) = 6(a). Then 6° is an injective homomorphism,
R(6°) = R() and ||6°]| = ||6||. Let z be an element in A°. Consider
the C*-algebra generated by xz*, then by [11, Proposition 2.2] and the
Kaplansky theorem for commutative C*-algebras [8], we have

|z]* < 2ljwa*|| < 2)16°(z2)|
= 2(|6°(2)6° ()|
< 2/0°[[116° () | [|]|-

Hence ||z|| < 2[|60°]]||6°(z)]|, = € A°. Tt follows that R(6) is closed.

(ii) It is easy to see that ¢ is a well-defined homomorphism with
dense range, by [16, Lemma 1.3] ¢ is continuous and, by part (i), ¢ is
surjective. ]

Theorem 4. Suppose 0 is an injective homomorphism of a JB*-
algebra A into a Banach Jordan algebra B. Then there exists a constant

M > 0 such that ||z]| < M||6(z)||, =z € A.

Proof. We may replace B by the closure of R(6) and assume that R(0)
is dense in B. The map ¢ is a continuous surjective homomorphism
by Theorem 3. It is enough to show that ¢ is injective, since then the
inverse map ¢! is continuous by the open mapping theorem and hence
there is a constant M such that

lz]] < Ml|g(x)|| = M||0(x) +op(B)] < M[|6(z)], =€ A.

Now suppose ¢(a) = 0 for some nonzero element a in A. By the
definition of ¢, a lies in 04(f) and we can assume without loss of
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generality that a > 0, since 04(0) is a closed ideal and therefore it is
self-adjoint by [11]. If SP(a) denotes the spectrum of a, then SP(a)
is finite, since otherwise the same argument as in [4, Theorem 5.1]
shows the existence of a sequence {z,} of nonzero positive elements
of o04(f) such that z,z,, = 0, n # m, so 6(z,)* = 0 for all but a
finite number of values of n, by Lemma 2, and so z,, = 0 for all but a
finite number of values of n, since € is injective and z,, > 0 for all n.
From the finiteness of SP(a) and the spectral theory, there is a nonzero
projection p € 04(). Thus, 6(p) € o(f) and 6(p)* = 6(p) # 0. This
is a contradiction since o (f) contains no nonzero idempotents [13].
Therefore ¢ is injective. u]
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