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ASYMPTOTIC FORMULAE OF
LIOUVILLE-GREEN TYPE FOR A GENERAL
FOURTH-ORDER DIFFERENTIAL EQUATION

A.S.A. AL-HAMMADI

ABSTRACT. As asymptotic form of solutions of Liouville-
Green type for a general fourth-order differential equation are
given under general conditions on the coefficients for large .

1. Introduction. In this paper we consider the asymptotic form of
four linearly independent solutions of a general fourth-order differential
equation

(1.1)  (poy")" + (p1¥")’
1
1 ) .
+ 5 Z {g2; y (J+1) +{q2_; .y(a+1)}(z)] —poy =0
j=0

as r — 00, where z is the independent variable and the prime denotes
d/dz. The functions p;, 1 < j < 3, and ¢;, j = 1,2, are defined
on an interval [a,o0) and are not necessarily real-valued, while pg is
nowhere zero in this interval. We shall consider the case where the
three functions g1 (p2/po)**, p1(p2/po)'/* and ga(p2/po)'/* are all small
compared to py as x — o0.

In this case the solutions all have a similar exponential factor as given
below in Theorem 4.1.

In the case where p; = ¢; = ¢2 = 0, (1.1) reduces to
(1.2) (poy")" —p2y =0

which is the case n = 4 of the nth order equation considered by
Hinton [9] and Eastham [4], and they showed that, subject to certain
conditions in the coefficients py and py, (1.2) has solutions

(13) @) ~ g Vo(@)p; 5 (@) exp (wk / ’ (72) 0 dt>
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where wg, 1 < k < 4, are the fourth roots of (1).

This form is Liouville-Green asymptotic form for the fourth-order
equation (1.2). As we shall see under our case Theorem 4.1, we obtain
the solutions of (1.1) which extended those of (1.2). We shall use the
asymptotic theorem of Eastham [6, Section 2|, [7] to get our main
results for (1.1).

2. The general method. We write (1.1) in the standard way [9]
as a first-order system

(2.1) Y' =AY

where the first component of Y is y and

0 1 0 0
_ 0 —(1/2)qipy " Py 0

@2 A= /2 —p+ (R (1 Dprta 1
P2 —(1/2)(12 0 0

Asin [1, 2], we express A in its diagonal form
(2.3) T~1AT = A,

and we therefore require the eigenvalues \; and eigenvectors v;, 1 <
j <4, of A.

The characteristic equation of A is given by
(2.4) poA* + 1A’ + p1A® + @A — p2 = 0.

An eigenvector v; of A corresponding to A; is

1 1 2\
(25) v; = (17 Ajapo)‘? + 5(]1)\]', —§Q2 +p2>\J 1>

where superscript ¢ denotes the transpose. We assume at this stage
that the \; are distinct, and we define the matrix 7" in (2.3) by

(2.6) T:(’Ul V2 Us U4).



ASYMPTOTIC FORMULAE 803

Now if we write

(2.7) E=

—_ o O o
o= O o
S O = O
O OO

then by (2.2) EA coincides with its own transpose.
Hence, by [5, Section 2], the v; have the orthogonality property

(2.8) (Bvg)tv; =0, k # j.

As in [1], we define the scalars mj, 1 < j < 4, by

(2.9) m; = (Bv;)'vj,

and the row vectors

(2.10) rj = (Bvj)t.

Then, by [5, Section 2], we can define 7! by

(2.11) T =(mi'rs my'ra m3z'rs mp'ry)

and the

mj = [% det(AI — A)} .

=4dpoAd + 312 + 2p1; + g

(2.12)

By (2.3), the transformation

(2.13) Y =TZ
takes (2.1)

(2.14) Z'=(A-T7'T")Z,
where

(2.15) A:dg()\l,)\g,)\g,)\4).
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Now if we write
T = (t), 1<j, k<4
then by (2.11) and (2.6)

(2.16) tir = m; 'rjvy.

Hence, for the diagonal elements, we consider k = j; (2.16) gives

(217) mjtjj = T'j’U;-

now by (2.9) m; = (Ev;)"v;. Differentiating the m;, we get

(2.18) m’; = 2r;v’,

Hence, by (2.18), (2.17) gives

!
_1m

2.1 ti =~

1<j<4
Now by (2.5) and (2.10), (2.16) gives, for j #k, 1 < j, k < 4,

_ 1 1 !
(2.20) tik = my, 1{A;c <p0>\? + §Q1>\j> + )\j <p0)\i + §Q1)\k>
1 / —1y/
- §CI2 + (p)‘k ) ¢

Now we need to work out (2.19) and (2.20) in terms of p;, 0 < j < 2,
and gj, j = 1,2, to determine the form (2.14) and then make progress
towards (1.1).

3. The system Z' = (A + R+ S)Z. In our analysis, we impose
basic conditions on the coefficients, as follows:

(i) po and p, are nowhere zero in some interval [a, 00), and

(3.1) q1 = o(p;/4pg/4), T — 00,
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and we write

P1
2 Do
Also
(3.3) p1 = o(p;/zpé/z), T — 00,

and we write

q1

(3.4) V=5 = o(1).
by Py
Finally, let
(3.5) g2 = o(pg/4p(1)/4), T — 00,
and we write
(3.6) =B ___ .

M= "3/4 1/a
p2/p0/

Now, as in [1, 2], we can solve the characteristic equation (2.4)
asymptotically as x — oo using (3.1), (3.3) and (3.5) to get the distinct
eigenvalues \; as

(3.7) Aj = wj <§—Z>U4(1 +6;),  1<j<4,
where

(3.8) wy; = 1, wg = —1, w3 = Wg =1,

and

(3.9) 6; =000)+0(7)+0(n), 1<j<4

Now, by (2.12), (3.2), (3.4), (3.6) and (3.7),

(3.10) m; = 4wlpy*py {1+ 0(6) + O(7) +O(n)}, 1<j<4
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Also, on substituting (3.7) into (2.12) and differentiating, we obtain

Lpy | 31
m —4(.03 1/4p3/4{——0+——2
2 \4po ' 4po

+py 'y H{O() + O(y') + O(n')}.

(3.11)

At this stage we also require the following condition

(ii) d(p3/p2), d(po/po), Y(P2/P2); Y(Po/P0)s N(P2/P2)s M(Po/Po)s
a1/ (w3 pe’"), 91 (03, 44/ (03 *p ”)areaﬂL(a,oo).

Further, we note that, on differentiating d,v and 7 and using (ii), we
obtain

(3.12) d',4" and 7 are all L(a, o).

Now, for the diagonal elements ¢;;, 1 < j < 4, we use (2.19); hence, by
(3.10) and (3.11), (2.19) gives

1 3\/
(3.13) by = 2P oy o) + o).
8 pops

Now, by (3.7), (3.9) and (3.10), we have

_ 1
mj 1)‘;9 (po)\? + 5(]1)\j>

(3.14) _ 1_16%_—1% <p_'2 _ %E) {1+0(5) +0() +0(n)}

+0(") +0>)+0(),

_ 1
m; 1>\j (p)\i + §Q1)\k>

(3.15) . ,
= —w; 1w2<p2 @> 14+ 0(8)+O(y) + O
= g9 i ( 22+ 2 ) (14 0() + 0() + O}
-1 0
P2 Do
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and
m;l(p)\kjl),
(3.17) _ (g2 P {L+0(8) +0(y) +O(n)}
16 % 79 P2 Do

+0(8") +0H') +0().

Similarly, as for t;;, we can find ¢, j # k, 1 < j, k < 4, by using (3.14),
(3.15), (3.16), (3.17) and (2.20), and then we can write the system
(2.14) as

(3.18) Z'=(A+R+S)Z,
where, in this case
(3.19)
—(1/8)p1  —(1/8)p2 —(1/8)(1 +i)ps (1/8)(1 —1i/2)ps — (i/16)p2

. —(1/8)p1 —(1/8)p1 —(1/8)(1 +i)ps3 —(1/8)(1 —i)ps3

0 (i/4)ps3 —(1/8)p1 (1/8)(1 —i)ps — (1/8)p2

0 —(i/4ps (1/8)(1+i)p3s — (1/8)p2 —(1/8)p1
where
(3.20) p1 = [m&], = B0 P2 g PO PR

Po D2 Po D2 Po D2

and S is L(a,00) by (3.12) and (3.13).

Asin [1, 2], we can apply the asymptotic theorem in [6, Section 2] to
(2.19), provided only that A and R satisfy the conditions in [6, Section
2].

4. The asymptotic result.

Theorem 4.1. Let the coefficients pg and ps be nowhere zero in
[a,00) and CP[a,o00) with p1,q1 and gz CV|a,00). Let (3.1), (3.3),
(3.5) and (ii) hold. Also, let

py (po) " Py (po\"*
(4.1) = <—> —0 and =2 <—> — 0, T — 00,
Po \ P2 D2 \ P2
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and

4 4 4 4
e () ) ) G
D2 Po ’ D2 b2 ’ D2 pz’ D2 D2

are all L(a,00).

Let
(4.3) Re (A — A})

have one sign in [a,00) for each unequal pair (i,j). Then (1.1) has
solutions yx, 1 < k < 4, such that

(4.4) yg(x) ~ po_l/s(w)pz_:s/s(w) exp (/w Ak (t) dt>, T — 00.

Proof. We apply the asymptotic theorem in [6, Section 2] to (3.19).
By (3.19) and (3.20), we first require

()} E=e(2))
Do D2 ’ b2 Do ’

this being [6]; for our system this is true by (4.1). We also require that

{on- A]-)-lp—f)}' e sace),  {On- m-”’—'?}' € L(a, o),

Do D2

for ¢ # j, this being [6] for our system.

This is true by (4.2) and (ii). Asin [1], we also note that (4.2) implies
that the simplifying condition [6] be satisfied. Now since all conditions
hold for the asymptotic result of [6], it follows that, as z — oo, (3.18)
has four linearly independent solutions Zy(x) such that:

(45)  Zn(z) = {ex + o(1)} exp </ {)\k(t) - é(i’;’o—]g} dt>,

where ey, is the coordinate vector with kth component unit and other
components zero. Now we transform back to Y by means of (2.6) and
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(2.13). By taking the first component on each side of (4.5) and carrying
out the integration of —(1/8)((pop3)’/(pop3)), we obtain (4.4) after an
adjustment of a constant multiple in y.

5. Concluding remarks. (i) First we note that in (4.3) we have for
convenience used a simplified form of the Levinson dichotomy condition
[10, 6, Section 1]. As given in [1], the above theorem also holds if (4.3)
is generalized to

(5.1) Re(A\j — ) =f+yg

where f has one sign in [a,00) and g is L(a,c0) [6]. Here we give some
cases where (5.1) holds. Substituting (3.7) back into (2.4) and using
(3.2), (3.4) and (3.6) as in [1], we obtain

1 w? wj
52) 0; = =wid = Ly = <[ n+ 0() + 0(v*) + O(n*)

+ 0(67) + O(dn) + O(yn).
Then, by (2.4) and (5.2), we get

Do 1/4 1 Po 1/4
Aj = Ak = (wj — wk)(—> = ;@i —wi) <—> 5

Do Do
/4
L 3 (P2>1
~ (W —w £2
4( J k) p()
1/4
1 5 2y [ P2
- = — —= )
f - (2)

(5.3)

Now suppose that

(5.4) (i-j) 1/452 € L(a, ),
(5.5) (2) e Laco),
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and

(5.6) (%)1/4772 € L(a, o).

Then it follows immediately from (5.3)—(5.6) that (5.1) is satisfied in
the following two cases.
Case A. p;, 0<i <2, and g;, i = 0,1, are real-valued functions.
Case B. p;, 0 <1 <2, and ¢;, ¢ = 0,1, are pure-imaginary functions.

(ii) We consider Theorem 4.1 as applied to the coefficients

(07 « (07
po = 1z, p1 = cox?, p2 = c3x?,

(07 (07
q1 = caT™, G2 = c5x™°,

where a;, 1 <3 <5, and ¢;, 1 < i < 5, are real constants with ¢; # 0
and ¢z # 0. Then (3.1), (3.3), (3.5) and Section 3 (ii) all hold under
the three conditions:

(5.7) as + 3a; —4ay >0,
(5.8) o3 4+ oy — 20 > 0,
and

(59) as + a; — 4as > 0.

Also (4.1) and (4.2) hold if

(5.10) a; —az —4<0.
Again (5.4) holds if

(5.11) as+Tar —8as —4 >0,
and (5.5) holds if

(5.12) 3as + bay; — 8as — 4 > 0,
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while (5.6) holds if
(513 a1 + 3az — 4as > 0.

)
Now (5.7) is implied by (5.10) and (5.11), (5.8) is implied by (5.10) and
(5.12), and (5.9) is implied by (5.10) and (5.13); hence, we need only
(5.10)(5.13).

(iii)) We consider Theorem 4.1 as applied to the coefficients py =
c1z® exp((2/3)z?), p1 = cox® exp(z?), ps = c3x® exp(22b), 1 =
caz® exp(z?), g2 = c52®® exp(z®), where ¢; and cs are not equal to
zero and «;, 1 <4 < 5, a and b are real constants with ¢ > 0 and a < b.

Again it is easy to check that all the conditions (3.1), (3.3), (3.5),
Section 3 (ii), (4.1), (4.2), (5.1)—(5.6) are satisfied.

(iv) Now for the particular Equation (1.2) in which p; = ¢ =¢2 =0
n (1.1), the asymptotic formula (4.4) reduces to (1.3) which agrees
with the result of Eastham [4, Theorem 1] and Hinton [9].

(v) For the example of power coefficiency with ¢; = g2 = 0, the
result here agrees with [11 p. 131, condition (ii)].
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